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ABSTRACT

The ever-increasing amount of data means that today’s decision-makers and analysts are
often faced with an overwhelming amount of information, arriving in a variety of formats
from multiple sources. This work addresses three interrelated challenges within information

fusion - context exploitation, explainability and situation awareness and demonstrates their
application to maritime situational awareness.

In uncertain reasoning, scenario context can be defined as information relevant to the reasoning
task at hand but not directly involved with it. This context can be exploited in the construction of
the model. The benefit of exploiting context in the construction of the model is two-fold. On the one
hand, its explicit representation can provide better insight into the problem. On the other hand, it
may improve the expressiveness of the model and result in an inference that better represents
available knowledge. Context exploitation can also improve the interpretability of the model and
can be used to generate better explanations.

A reasoning process built upon evidential networks is transparent by design. Still, it can
be not easy to follow due to many variables and the complex information combination process.
As such, tools for explanation generation and tracking the origin of beliefs, uncertainty and
conflict in evidential reasoning systems are proposed. Finally, we must consider the problem of
fusion on a higher level in the Joint Directors of Laboratories (JDL) framework, where uncertain
relations between multiple entities need to be tracked. An extension of the conceptual graphs
framework to allow uncertainty modelling is proposed, along with appropriate information fusion
strategies. These three notions are put together, and their relationship is demonstrated in two
maritime domain scenarios: situation awareness of multiple vessels involved in illegal fishing and
underwater infrastructure threat assessment focused on the impact of partially reliable sources.
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4.13 Monte Carlo histogram using Ĉ(m1,m|A) (top) and benchmark (bottom) . . . . . . . . . 95

4.14 Valuation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.15 Bivariate hexagonal binning showing density of bba pairs satisfying and not satisfying

the preference property for Bel as a function of the distance and the conflict between

them, using maximum of belief decision making and Dempster’s combination . . . . . . 101

4.16 Bivariate hexagonal binning showing density of bba pairs satisfying and not satisfying

the preference property for distance-based measure as a function of the distance and

the conflict between them, using maximum of belief decision making and Dempster’s

combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.17 Set of scatter plots for decision making using maximum of belief, combination using

Dempster’s rule and the belief measure being used as the contribution measure . . . . 103

4.18 Set of scatter plots for decision making using maximum of belief, combination using

Dempster’s rule and the belief measure being used as the contribution measure . . . . 104

4.19 Histogram of bba pairs satisfying and not satisfying the preference property for Bel,

where 0.2< dJ(m1,m2)< 0.45 and 0.1< mJ(;)< 0.4 for different values of SA⊆B . . . . 105

4.20 Histogram of bba pairs satisfying and not satisfying the preference property for different

values of SA⊆B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Excerpt from a maritime concept vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Conceptual graph representation without uncertainty modelling . . . . . . . . . . . . . . 119

5.3 Conceptual graph representation with uncertainty modelling . . . . . . . . . . . . . . . . 120

5.4 Conceptual graph representation with uncertainty modelling . . . . . . . . . . . . . . . . 120

5.5 Conceptual graph representation with uncertainty modelling . . . . . . . . . . . . . . . . 120

5.6 Excerpt from a maritime concept vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Basic knowledge model of the topic of interest . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Graph G1generated from the first source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.9 Graph G2 generated from the second source . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



5.10 Graph G1 ⊗G2 generated using disjunctive fusion of both concepts in G1 and G2 . . . . 122

5.11 Graph G123, the result of combination of the three sources G1 ⊗G2 ⊗G3 using an

appropriate fusion strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.12 Graph G4 with Nec(G4)= 0.3 and Pos(G4)= 0.8 . . . . . . . . . . . . . . . . . . . . . . . . 124

5.13 Graphs resulting from combination of G2 and G4 assuming that G4 is necessary (5.13a)

and that G4 is possible (5.13b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.14 Simplified model for the maritime surveillance scenario from [107], the geographical

location has been removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.15 Evidential network for possible implementation of trivial type hierarchy . . . . . . . . . 132

5.16 Valuation network showing the concepts and relations in the model for Marcel analysis

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 A single vessel conceptual graph shown for ARAMIS . . . . . . . . . . . . . . . . . . . . . 141

6.2 Valuation network for assessment of illegal activity and illegal fishing . . . . . . . . . . 142

6.3 A single vessel conceptual graph shown for ARAMIS obtained through inference on

AIS data with P = 0.44442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 A single vessel conceptual graph shown for BOHUN obtained through inference on AIS

data with P = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 A single vessel conceptual graph shown for CHEKHOV . . . . . . . . . . . . . . . . . . . 144

6.6 Excerpt from the greater conceptual graph, showing the different possible situations

regarding rendez-vous of vessel CHEKHOV. The case when neither of the two sources

is true is not shown here, but it corresponds to 6.5 only (P = 0.0625) . . . . . . . . . . . . 145

6.7 Valuation network for assessment of illegal activity for a cargo vessel . . . . . . . . . . . 145

6.8 The full conceptual graph showing the most likely world including all the four vessels . 148

6.9 Sensitivity spaces for inference on illicit activity of CHEKHOV . . . . . . . . . . . . . . . 151

6.10 Sensitivity spaces for inference on illicit activity of CHEKHOV using Dempster’s rule

of combination exclusively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.11 Shapley values for contribution of the sources to the solution from Figure 6.8 . . . . . . 152

6.12 Simplified, high-level relationships between inference targets (green) and directly

relevant or auxiliary information (cyan). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.13 The evidential network implementing the multi-source threat assessment reasoning . 156

6.14 Amount of evidence supporting (belief, lower bound), amount of evidence consistent

with (plausibility, upper bound) and amount of evidence against THREAT (top graph)

and its three components (bottom graph), for each of the four vessels . . . . . . . . . . . 158

6.15 Sensitivity spaces for the impact of the individual reports on inference on THREAT . . 160

6.16 Sensitivity spaces for the impact of INTENT on inference on TREAT . . . . . . . . . . . 161

6.17 Sensitivity spaces for the impact of the individual reports on INTENT . . . . . . . . . . 161

6.18 Source behaviour as variation of α and β, with directions corresponding to maximum

positive changes of belief, plausibility, specificity and consonance . . . . . . . . . . . . . 163

6.19 Sensitivity spaces for belief and plausibility with two-dimensional quality valuation

and different directions of source uncertainty shift for source 2 . . . . . . . . . . . . . . . 164

xv



6.20 Sensitivity spaces for inference on Threat where the parameters describing source

behaviour are varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.21 The comparison of sensitivity of the inference result to the report with (blue) and

without (red) the source model included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xvi



C
H

A
P

T
E

R

1
INTRODUCTION

The ever-increasing amount of data means that today’s decision-makers and analysts are

often faced with an overwhelming amount of information, arriving in a variety of formats

from multiple sources. This thesis begun with a very open-ended research question—what

are the ways in which the sense-making in a general heterogeneous multi-intelligence scenario can

be improved? Is very clear that no single answer exists, but rather there are a variety of different

aspects of the problem each of which can be investigated by itself. As such, this thesis addresses

three major challenges which arise in the field of information fusion. The first is concerned with

selection of information to use. This includes modelling the relationships between various variables

of interest and understanding the performance of the different sources which provide information.

Some information may exist which is relevant to a problem, but does not address it directly—such

information is considered the context of the problem, and its exploitation is one of the main areas

of focus of this thesis. Another challenge is understanding the fusion process. If its outcome is

some decision it is important that the sources which contribute to it the most can be identified.

This notion of identifying the origin of information is called provenance and itself, as well as more

general generation of explanations, or explainability, is another major aspect of this thesis. Finally

we must consider that the fusion problem often goes beyond identifying the true value of some

variable, but often requires uncovering uncertain relationships between multiple entities. This

problem of situation assessment is the third of the main notions discussed here. These three areas

are presented in context of maritime situational awareness and discussed in light of relevant

examples.

1.1 Main notions and their relations

As discussed above, this thesis addresses three key challenges associated with heterogeneous

information fusion, but all of them are addressed through the lens of handling uncertain informa-

tion. There is little doubt that handling information that is uncertain or imperfect to different
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Provenance

Situations

Context

Both provenance and context
deal with explainability

Contextual expressiveness
allows tracking uncertainty

Identifying sources of con-
flict in situation awareness

Justifying decisions in com-
plex, multi-source environment

Context naturally rep-
resented as a situation

Modular approach
helps with scalability

Figure 1.1: The relationships between the three main focus areas of this thesis

degrees is one of the most important, if not the most important, challenge within the field of

information fusion. Questions of contextual reasoning, explainability, and situation awareness

need to be addressed, taking into account the key issue of uncertainty. As such multiple methods

of uncertainty representation are discussed at length. However, throughout this thesis, the bulk

of work is focused on the belief function theory and usage of evidential networks for reasoning.

Alternative approaches to uncertainty modelling, in particular probability and possibility theories,

are employed at times, but the main focus remains with Dempster-Shafer theory of evidence and

its extensions. The literature review and background discussion on uncertain reasoning are the

focus of Chapter 2.

Figure 1.1 shows the relationships between the three main areas of interest introduced in the

previous section. First, let us discuss these concepts in a little more detail. The first, context, as

discussed earlier, is concerned with information which is relevant, but not directly involved in

the fusion process. A typical example of a context variable in many maritime fusion problems is

weather. While it may not be a part of the problem itself, it is likely to affect both the behaviour

of the agents as well as the performance of the available sensors. This extended modelling of

performance makes it possible to increase the expressiveness of the information source model,

which thus can make it possible to track the origin of uncertainty better.

The provenance—and more generally the provision of explanations—can be considered one

of the main challenges when it comes to deployment of automated decision support systems, in

particular in safety-critical situations. In order for users to be able to employ such systems for

decision-making, they need to trust is. This trustworthiness, among others, can be facilitated by

explainability and the main method of provision of explainability in information fusion systems

is by provenance—by showing which sources of information contribute to what extent to the

particular decision as well as by showing how credible they are through their contributions to

conflict. Context feeds into explainability directly by explicit modelling of additional variables,

making it possible to assess the impact of contextual variables and source reports independently.

However, additionally, as mentioned above, it can improve the tracking of uncertainty.

Finally we go back to the third challenge, the modelling of multi-entity situations. This is
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particularly relevant to making sense of semantic information, where many entities or agents can

be described with a variety of relations between them. In maritime situational awareness this

can be illustrated with multiple vessels collaborating, possible performing rendez-vous or being

connected through some other property (the owner or the country). Alternatively this can also

relate to a single entity with a variety of properties which need to be investigated in more detail.

This example of multiple vessels which share an owner is an illustration of a particular context

relevant in this scenario—the owner of the vessels may not be part of the fusion problem (e.g. the

vessels’ intentions), but is relevant to it and the resulting relationship between the vessels can

be used to make inference about their intentions. Furthermore, as the complexity of the scenario

increases it becomes even more important to be able to produce explanations and track the impact

of individual information sources.

1.2 Thesis structure

In an uncertain reasoning scenario, context can be defined as a set of information relevant

to the reasoning task at hand but not directly involved with it. This context can be exploited

in the construction of the model. The benefit of this is two-fold: on the one hand, its explicit

representation can provide better insight into the problem, and on the other hand, it may improve

the expressiveness of the model and result in an inference which better represents available

knowledge. Context exploitation can also improve the interpretability of the model and can be used

to generate better explanations. The work on context stems from the existing models for partially

reliable sources within evidence theory. Existing implementations of contextual belief correction

are consistent with the notion of context-of some specific problem (the set of all information

relevant to a particular problem), the approach used in this PhD work builds on the notion

of context-for, additional information used to either improve the characterisation of sources or

constrain the problem domain. A detailed discussion of the notions of context-of and context-for

takes place in Chapter 3. While the notion of context has already been addressed to some extent in

the existing literature on information fusion, it has not been to date formalised in the light of belief

functions theory. The aforementioned contextual belief correction does not interpret context the

way most other literature does. A more in-depth analysis of context, especially when discussing its

impact on source modelling, forms a natural link with the problem of non-independent sources.

These topics are discussed at length in Chapter 3 of this thesis. Most of the work from Chapter 3

was carried out at the Centre for Maritime Research and Experimentation as part of the Data

Knowledge and Operation Effectiveness project under the supervision of Anne-Laure Jousselme.

The second major challenge identified in information fusion is that of provenance or explain-

ability. Chapter 4 discusses this problem. There are three main properties of the fusion result

which may be tracked through the process. These include the information or decision itself, the

conflict as well as uncertainty. Identifying the relative contribution of a source to belief in a

hypothesis has been previously done using sensitivity spaces. In this thesis, some alternative

approaches are proposed, using geometric interpretations of belief functions or interpreting the

fusion process as a cooperative game and exploiting the Shapley value. This is similar to recent
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developments in explainability methods in machine and deep learning, where the Shapley value

is used as an explainability tool. Some properties such a contribution measure should satisfy

are proposed, and the degree to which different metrics comply with the properties of the ideal

contribution measure is used as a benchmark.

Furthermore, identifying the origin of and handling conflict is a major issue in information

fusion, with several authors discussing methods of conflict management as well as computing the

relative contribution to the conflict. Finally, in some information fusion systems, it can be useful to

identify the relative impact of individual sources on the overall uncertainty

This notion is extended to encompass different source models, such as truthfulness and

relevance as well as more complex models of source behaviour, by considering the different

dimensions of source reliability to be a scalar field. This is one of the major links between the

notions discussed in Chapter 3 and in Chapter 4. Furthermore, the additional expressiveness

provided by contextual reasoning is itself a method of obtaining a greater degree of explainability

or interpretability.

Chapter 5 addresses the notion of situation awareness and dealing with the fusion of informa-

tion pertaining to multiple objects with some relationships between them. A degree of situation

awareness is obtained by extending the notion of conceptual graphs, a graphical representation

of logical relationships, to uncertain conceptual graphs, such that each concept node may have

an uncertain value. A fusion strategy allowing for two different levels of reliability of a source

providing the conceptual graph is developed—with the upper level, corresponding to plausibility or

possibility, implying that some of the information provided is true, and the lower corresponding to

the situation where all information provided by the source has to be true. A method of representing

conceptual graphs as valuation networks has been proposed, allowing uncertain reasoning in these

situations. Furthermore, links between Markov Logic Networks, valuation networks and uncertain

conceptual graphs have been briefly investigated. The modular approach exploited throughout

this thesis through the use of valuation networks and utilisation of context for determination of

the scope of reasoning supports the scalability, an important aspect of multi-source, multi-target

uncertain fusion.

Finally, two scenarios within the maritime situation awareness domain have been proposed to

demonstrate the applicability of the methods developed. The first one deals is a situation awareness

scenario with multiple sources reporting on multiple targets. Contextual information is used to

model the sources, and different provenance techniques are used to support decision-making.

The second scenario pertains to the assessment of a threat a vessel may pose to underwater

infrastructure. More emphasis is placed on the explanation of the impact of individual sources and

the assessment of the impact of source imperfections. These scenarios are presented in Chapter

6. The second scenario from Chapter 6 was developed at the Centre for Maritime Research

and Experimentation as part of the Data Knowledge and Operation Effectiveness project with

Anne-Laure Jousselme and Maximilian Zocholl.
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1.3 Key contributions

The key contributions of this thesis are as follows: in Chapter 3, a formal extension of the

behaviour-based source correction model is proposed to include context. This is framed in relation

to existing models of contextual reasoning and the notions of context-for and context-of. This

makes it possible to also frame existing work on contextual belief correction in relation to the

notions of context-of source and context-of problem. As such, this work creates a bridge between

two different areas of research in information fusion whilst also standing in its own right as a

method for contextual reasoning, increasing the expressiveness of the model while allowing better

explainability. Furthermore, some methods of dealing with sources with unknown dependency

relations are proposed and discussed.

In Chapter 4, a new method for assessing the contribution of a single body of evidence to the

belief in a proposition is proposed through the exploitation of the geometric interpretation of belief

functions and the geometric distance. Several properties a contribution measure should satisfy

are proposed, which apply to contributions to information, conflict and uncertainty. One of these

is not easily satisfiable and is instead used as a benchmark to compare this new contribution

measure to other possible measures. The properties of this distance-based contribution measure

are investigated, and it is shown to have relatively good performance regardless of the decision-

making method used and belief combination method. This is unlike other measures, which tend to

perform significantly better in some configurations but significantly worse in others.

Chapter 5 extends the notion of conceptual graphs to allow for embedding uncertainty in

conceptual graphs. A fusion strategy allowing for two different levels of reliability of a source

providing the conceptual graph is developed, and the notion of modal uncertainty embedded in

graphs is briefly addressed. Links between the uncertain conceptual graph formalisms and Markov

Logic Networks and valuation networks are established.

In Chapter 6, the explainability methods from Chapter 4 are framed in relation to source

models discussed in Chapter 3. Interpretation of the different dimensions of source reliability

to be a scalar field makes it possible to construct sensitivity spaces that can be used for the

determination of the impact of source uncertainty on the reasoning.

1.4 List of research outputs

1.4.1 Poster presentations

1. BELIEF 2018 Compiegne - Provenance Across Belief Combinations with VAST 2018 use

case, P.Kowalski, T.Martin

2. LANL Data and Information Fusion Conference 2019, Maritime Situation Awareness Work-

shop 2019, BFAS Summer School 2019 - Arms smuggling investigation: context-aware

uncertain information fusion with evidential networks, P. Kowalski, A.-L. Jousselme
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1.4.2 First-author conference publications

1. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge

Discovery (ICNC-FSKD) - Assessment of the contribution of a source of information to the

final belief in a proposition, P.Kowalski, T.Martin

2. 2018 21st International Conference on Information Fusion (FUSION) - Provenance Across

Evidence Combination in Theory of Belief Functions, P.Kowalski, T.Martin

3. 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management

(CogSIMA) - Embedding Uncertainty in Conceptual Graphs for Semantic Information Fusion,

P.Kowalski, T.Martin

4. 2020 IEEE 23rd International Conference on Information Fusion (FUSION) - Explainability
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5. 2021 IEEE 24th International Conference on Information Fusion (FUSION) - Investigating
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2
BACKGROUND

“Probability is the most important
concept in modern science,
especially as nobody has the
slightest notion what it means ”

— Bertrand Russel (probably)

The problem of information fusion is the assessment of the true state of the world given a

set of sources providing information. The information in question may be uncertain, vague

or imperfect in another way. The sources may present this information in different formats,

using a variety of uncertainty representation frameworks. Finally, there may be multiple ways

in which these information pieces may be combined to construct the image of the real world. In

this chapter, some of the tools used within the field of information fusion are introduced. The

first section is concerned with the concept of information fusion itself, its basic principles and

generalised models. In the subsequent section, the concept of information quality is discussed

with a focus on different types of imperfections and uncertainties. Furthermore, the uncertainty

formalisms and models are addressed and discussed in detail before discussing the available tools

for knowledge representation which may, to a different extent, implement the uncertainty models

discussed. Finally, we address some of the more advanced concepts within information fusion:

graphical models, ontology-based fusion and Markov logic networks.

2.1 The basic principles and generalised models of information
fusion

Information fusion is a type of aggregation process, the purpose of which is to extract truthful

knowledge from a number of incomplete or otherwise uncertain information sources. The following

section discusses the key properties and principles of information fusion, as described by Dubois
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et al. [1]. These properties are unanimity, information monotonicity, consistency enforcement,

optimism, fairness, insensitivity to vacuous information, commutavity and minimal commitment.

Note that as these are general properties, they may not necessarily be applicable to specific

settings, particularly when considering imprecise and uncertain fusion.

The basic postulate of unanimity implies that the information sources unanimously agree on

has to be assumed to be true - thus, the weakest form implies that all the information agreed to

be possible remains possible, and all the information assumed to be impossible by all the sources

remains impossible post-fusion (this is also referred to as possibility and impossibility preservation

respectively). Information monotonicity implies that for two (or more) non contradicting sets of

information sources, the fusion of a more informative set should result in more informative

results. A consistent piece of information is a piece of information such that it does not contain a

contradiction. Similarly information items are mutually consistent if either their supports overlap

(weak mutual consistency) or their cores do (strong mutual consistency). Consistency enforcement

means that fusion of individually consistent inputs should result in a consistent output (or at least,

the result of their combination is not empty), optimism implies that (in the absence of information

to the contrary) it should be assumed that all sources are equally reliable in agreement with

their mutual consistency. Fairness implies that each input should propagate to the fusion output,

insensitivity to the vacuous information means that vacuous information should not contribute

to the final result and minimal commitment implies that the final result should contain as little

information as possible whilst complying with the remaining properties.

Finally, when discussing the principles of fusion, it is important to differentiate between

information fusion and similar yet different techniques. Primarily the difference between prefer-

ence aggregation and information fusion is that the latter describes the state of the world based

on a set of imperfect inputs, whereas the former describes the ideal world in accordance with

sources representing individuals or criteria. Consider a simple example of weather. For the sake

of information fusion, if two sources report the temperature to be hot and cold respectively, the

purpose of fusion is to resolve this inconsistency and determine the real temperature. If two

individuals are trying to decide on a holiday destination, a mild climate may be an acceptable

trade-off between hot and cold - however, such a middle-ground approach is very unlikely to yield

the appropriate answer in an information fusion scenario.

From a more formal viewpoint, Dubois et al. [1] proposed a general setting for information

fusion. A generalised representation of information items is proposed, such that Ti represents an

information item, which may be a subset of possible worlds, a plausibility relation, a fuzzy set, a

mass assignment and similar. A vacuous item is an information item expressing total ignorance.

Let T = {T1...Tn} be the set of possible information items of a certain format. Again, according

to [1] a n-ary fusion operation is a mapping f n : T n → T . When it is not ambiguous we replace f n

with f (see1).

First of all we consider a set of worlds, or possibilities Ω, one of which is true. Each information

item T can be characterized as having the following features: its support, S(T) ⊆ Ω, its core

1Note the change from Dubois’ article where the arity of the fusion operator is denoted by subcript
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C(T) ⊆Ω and an induced plausibility ordering. The notion of plausibility ordering corresponds

to that of potential surprise[2] - the more plausible a state of affairs is, the less surprising its

presence is. Alternatively a state of affairs is plausible if there is little indication that it would not

be true. The support S(T) corresponds to the set of all worlds, which are not impossible, whereas

the core C(T) corresponds to the set of all fully plausible worlds. This definition can be generalised

to different frameworks for representing information items, such as sets, plausibility relations,

Dempster-Shafer mass assignments and others, as is shown throughout this chapter.

2.2 Uncertainty modelling formalisms

The question of how uncertainty should be represented has been a subject of a long-time debate.

Nowadays, there is little question that the theory of probability formulated by Rev. Thomas

Bayes is the one most commonly used and well-understood throughout the world; taught in

primary schools and adapted to be used in cutting-edge Artificial Intelligence solutions. At a

deeper inspection, however, it is clear that the theory of probability is not the be-all and end-all

solution to uncertainty quantification (even though some Bayesians would certainly disagree)[3].

For one, the commitment to numbers means that any two events must be comparable; on another,

there is no way of actually quantifying ignorance or second-order uncertainty. Furthermore, when

combining probability with logic, further issues arise, such as Lewis triviality (discussed later in

this section). In this section, we explore the different approaches to expressing - and quantifying -

uncertainty, including but not limiting ourselves to the probability theory and discuss how they

can be used in an information fusion framework.

2.2.1 Set based and interval based approaches

Most representations of uncertainty begin with the concept of possible worlds, sometimes called

elementary outcomes,a frame of discernment or in probability theory the sample space. Generally,

these concern all the possible outcomes of the event under consideration. In one of the most

common known random events, tossing of a six-sided die, we consider six possible worlds, each

realisation corresponding to the side on which the die may land. We will sometimes refer to the

set of likely or known worlds as events or propositions, and to the individual worlds as hypotheses.

Thus we may have the most coarse method of representing uncertainty. Consider some (large)

set of possible worlds W and an agent expressing her knowledge on the true state of the world.

The size of the set of the worlds W ′ ⊆ W that the agent considers possible can be considered a

qualitative measure of her uncertainty. Even though there is no method of quantifying the relative

likelihood of each possible world, we still are able to model the agent’s uncertainty to some degree.

For example, consider the problem of identifying a seaborne vessel. One possible set of worlds may

be W = {military, commercial, leisure}. It is clear that the granularity of this set of worlds is

arbitrary. Clearly, we could be performing this identification on a lower level - the type of military

vessel, the activity of the commercial vessel or even the Maritime Mobile Service Identity (MMSI)

of the vessel itself.
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An agent may describe her knowledge as "The vessel is not a military vessel", defining the

possible worlds as W ′ = {commercial, leisure}. The agent considers possible every U such that U∩
W 6= ; and knows every U such that W ′ ⊆U . To illustrate if we consider a refinement of the frame

of possible worlds such that commercial = { f ishing, cargo}, the agent considers U = f ishing to

be possible. On other hand if we consider a coarsened set of worlds W = {military,non−military}

the agent knows U = non−military

This concept of set-based uncertainty can be easily extended to the case where the set is

non-discrete. Consider the case where the variable of interest is the vessel’s speed. Consider here

that the possible worlds lie within the range W = [0,60] knots. An agent describes his assessment

of the vessel speed as being between 7 and 9 knots - W ′ = (7,9). As such, the agent considers the

speed of 8 knots possible and knows that the speed is within U = [6,10].

2.2.2 Probability theory

Bayesian probability is undoubtedly the best-known approach to uncertainty representation

and for drawing inferences in the presence of uncertainty. Continuing with the possible worlds

semantics, we can consider probability to be a measure describing the likelihood that a world w

out of the set of possible worlds W = {w1w2, ...wn} is the real world. The agent assigns a number

to each of the possible worlds; the greater the number, the greater the likelihood. In some cases,

not all the possible worlds may be assigned a probability value; it is, however, assumed that the

subset of W to which a probability is assigned satisfies closure properties.

Definition 2.1. An algebra over W is a set F of subsets of W that contains W and is closed under

finite union and complementation ( if U ∈F and V ∈F then so are U ∪V ∈F and Ū ∈F

This algebra F over W is the domain of the probability measure. Conventionally, its range is

the interval [0,1]. Hence the following definition:

Definition 2.2. A probability space is a tuple (W ,F ,P), where F is defined as above and P is a

probability measure on W , a function P :F → [0,1]. P also satisfies the following axioms:

P1. P(W)= 1

P2. P(U ∪V )= P(U)+P(V ) if U and V are disjoint elements of F

A crucial theorem in probabilistic modelling is the well-known Bayes’ theorem, describing the

probability of event based on a set of conditions related to the said event. It is usually stated as

follows:

(2.1) P(A|B)= P(B|A)P(A)
P(B)

where P(A|B) denotes the conditional probability of A given B.

An important aspect of Bayesian probability is that it does not allow for explicit modelling of

ignorance. This can often be a disadvantage in information fusion, where the fact that there is

information missing may in itself be information. Typically this lack of ignorance is modelled using
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the principle of indifference, where if no knowledge on probabilities of some events is provided,

they are assumed to be equally likely.

2.2.2.1 Justifying probability

This chapter has been opened by an alleged quote from Bernard Russell, claiming that "nobody has

the slightest notion what it (probability) means". If we choose to quantify belief using probability,

it is important to understand the meaning behind these numbers or, at the very least, justify

their use. The classical approach to applying probability would be to reduce a situation to a

number of elementary outcomes and assume each of them to be equally likely (principle of

indifference). For instance, if it is known that given some geo-temporal conditions, 30% of vessels

in an area are fishing ships, it can be safely assumed that if a vessel is observed on radar, in the

absence of any other information, the likelihood of it being a fishing vessel is P(fishing) = 0.3,

and by complementing P(not fishing) = 0.7 (as this particular vessel is equally likely to be any

"elementary ship", and 30% of these are fishing vessels). The problem with this approach is that it

is often not possible to find the set of "equally likely elementary outcomes", in particular when

we do not have full knowledge about the situation. Some alternatives are relative frequencies or

subjective assessments. The issue with the former is that it is often hard or impossible to extend

it to all probabilistic situations, in particular complex, uncommon events. This is the attempt

of constructing an objective assessment of probability. The subjective alternative assumes that

there is no such thing as the objective notion, and it is simply assigned by an individual. Some

attempts to argue that such selection should satisfy the axioms P1 and P2 have been made, most

famous in terms of betting behaviour. Although the discussion of the philosophical argumentation

for subjective probability may be out of the scope of this thesis, it is discussed again later in this

chapter when discussing probability transformations of belief functions.

2.2.2.2 Bayesian fusion

In Bayesian statistics, probability is interpreted as a degree of belief, and hence all quantities

involved in the fusion task are interpreted as being subejctively random. This allows for symmetric

treatment of all the information involved. In this sense, any known value provided by an informa-

tion source is a consequence of the quantity of interest adopting some "true" but unknown value.

Hence the uncertainties are modelled probabilistically using the degree of belief interpretation.

The transformation of sources of information to achieve a homogeneous mathematical represen-

tation can be performed using a variety of techniques, such as the application of the maximum

entropy principle [4]. The fusion itself is performed through an application of the Bayes theorem

(2.1).

As discussed previously, a downside of Bayesian methods is a requirement for a prior probability

distribution that may be unknown. If this is not the case, a variety of vague (uninformative) prior

distributions has been proposed in literature [5]. If the information delivered by the fusion sources

dominates the fusion task, this can be relatively simple, as the posterior is relatively stable against
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different choices of the prior. However, if this is not the case, sensitivity analysis typically needs to

be performed using a variety of priors.

Consider the following simple example where a sensor provides an information on an object,

classifying it either as type A or type B, so that the quality of interest z = {A,B}. N sensors provide

this information, each with a reliability rating r, which is used to model uncertainty - r×100%

of the time the sensor will rely correct information, and the remainder it will provide no useful

information. Thus the information sources can be modelled as pairs di = {ti, r i}, where ti is the

reported object type. Thus using these definitions and the rules of probability the following holds:

P(di|z)= P(ti, r i|z)= P(ti|r i, z)P(r i|z)

And following from the above definition of reliability:

P(ti|r i, z)= r i · 1z=ti + (1− r i)
1z=ti + 1z 6=ti

2

Bayes theorem can be used to derive:

P(z|d1...dN )= P(d1...dN |z)P(z)
P(d1...dN )

∝ P(d1...dN |z)=
N∏

(i=1)
P(ti|r i, z)=

N∏
(i=1)

(
1+ r i

2
1z=ti +

1− r i

2
1z 6=ti

)
thus producing an expression for probability of the variable of interest given a set of information

sources di = {ti, r i} [6].

Until recently, a major weakness of the Bayesian statistics was that the calculation of posterior

distribution was not computationally viable; as the number of variables increases, the calculation

can become computationally infeasible. This has changed with the development of the Monte

Carlo Markov Chain (MCMC) theory - a Markov chain which converges to a unique stationary

distribution, which also is the posterior distribution of interest [7] [8].

2.2.3 Possibility and fuzzy sets

Possibility measures are another method of assigning numbers to possible worlds. First introduced

by Lofti Zadeh and further developed by Didier Dubois and Henri Prade, it is both an extension of

fuzzy sets theory and fuzzy logic as well as an alternative to probability theory for uncertainty

modelling. In Zadeh’s view it was meant to provide graded semantics for natural language

statements, whereas Duibois and Prade developed it as a complete uncertainty model. A possibility

measure Pos assigns a value in [0,1] to each subset of W , satisfying the following axioms:

Pos1. Pos(;)= 0

Pos2. Pos(W)= 1

Pos3. Pos(U ∪V )= max(Pos(U),Pos(V )) if U and V are disjoint

The critical difference between the possibility and probability axioms is that the union of two

disjoint sets U ∩V yields the maximum in possibility theory and the sum of appropriate measures
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in the probability theory. Furthermore, it can be shown that Pos3 holds when the sets are not

disjoint, whereas this is not true for the corresponding probability axiom.

Furthermore in possibility theory there exists a dual called necessity measure Nec. It is

defined as follows

(2.2) Nec(U)= 1−Pos(Ū)

Fuzzy logic is a concept strongly related to possibility theory. It is a form of multi-valued logic,

where the truth values may take the form of any number between 0 and 1. This is in contrast to

Boolean logic, which enforces "crisp" values - only values of 0 or 1 are allowed.

The purpose of such fuzzy logic can be illustrated with the sorites paradox[9] (paradox of the

heap). Consider a heap of sand from which individual grains are being removed. Whilst it would

seem obvious that removing a relatively small number of grains does not turn the heap into a

non-heap, it is also clear that at some unspecified point, the remaining grains do not constitute

a real heap. In fuzzy logic, the membership function can be specified by essentially providing a

lower bound on "definitely a heap"(1) and an upper bound on "not a heap at all"(0). If the number

of grains is between these two bounds, the truth value is also larger than 0 but less than 1.

Fuzzy data fusion can be used in situations where vague or partial data is fuzzified using a

gradual membership function and then standard fuzzy logic fusion rules can be used. Simple fuzzy

fusion rules are either conjunctive rules (typically used when fusing data provided by equally

reliable and homogeneous sources) such as intersection or product of fuzzy sets or disjunctive

rules such as addition or intersection of fuzzy sets (used if at least one of the sources is unreliable,

or the data is conflicting) [10]. The following equations represent fuzzy set intersection, product

(conjunctive), sum and union (disjunctive):

µ∩
1 (x)= min[µF1(x),µF2(x)] ∀x ∈ X(2.3)

µ∩
2 (x)=µF1(x) ·µF2(x) ∀x ∈ X(2.4)

µ∪
1 (x)= max[µF1(x),µF2(x)] ∀x ∈ X(2.5)

µ∪
2 (x)=µF1(x)+µF2(x)−µF1(x) ·µF2(x) ∀x ∈ X(2.6)

To illustrate this, consider, again, a medical diagnostics scenario with a patient calling a

medical helpline for advice. For the sake of simplicity, assume that the symptoms of some pathology

(e.g. risk of a stroke) are severe headaches and high systolic blood pressure. Both these terms are

fuzzy terms, and the former cannot be reliably measured in a crisp manner, whereas the latter

is likely to vary between individual patients. If a patient reports "mild to severe" headaches and

"higher than usual" blood pressure, the former could be interpreted as being a "severe headache"

to a degree of 0.7, and the latter as "high blood pressure" to a degree of 0.6. Using a conjunctive

fusion rule from equation 2.3, this could put the patient at risk of a stroke of 0.6. Based on this,

the consulting doctor could decide that the patient is not in need of emergency medical attention

but should see a GP as soon as possible.

Some adaptive fuzzy fusion rules have been developed as a compromise between strictly

conjunctive and disjunctive fusion approaches. An example of such adaptive fusion rule has been
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proposed by D. Dubois and H.Prade for fusing data from two sources with a varying degree of

conflict:

(2.7) µAdaptive(x)= max

[
µ∩

i (x)

h
(
µF1(x),µF2(x)

) ,min
[
1−h[µF1(x),µF2(x)],µ∪

i (x)
]]∀x ∈ X

Where h
(
µF1(x),µF2(x)

)
measures the degree of conflict between the membership functions and

µ∪
i (x) and µ∩

i (x) are the desired fuzzy fusion rules[11].

Fuzzy fusion is well suited to modelling the membership of a target in a vaguely defined class,

as opposed to modelling uncertain membership in a well-defined class. However, similarly to

Bayesian probability, it does require prior knowledge of membership functions for different fuzzy

sets. [10].

The fusion of possibility distribution is based on the set-theoretic or logical view of information.

The selection of fusion methods is dependent on how agreeable data sources are and what is

known about their reliability; the basic conjunctive and disjunctive fusion rules discussed in the

context of fuzzy fusion are appropriate only in a very limited number of scenarios[12]. Generally,

if the purpose of fusion is to visualise the proportion of sources that treat some situation as

possible, arithmetic mean or another type of mean of possible values may be most appropriate

[12]. Possibility fusion is argued to be most appropriate in environments where no statistical data

is available and in the fusion of heterogeneous data sources [11]. Although it is less popular than

evidence theoretic or probabilistic methods, and hence less research on the topic exists, it has been

shown to be capable of achieving comparable results [13]. Some areas where possibilistic data

fusion approaches were proven to be successful include autonomous robot localisation in partially

known environments[14][15] and risk assessment [16]. However, it is also argued that this method

of fusion is not appropriate for merging conflicting evidence, especially when one piece comes from

the general knowledge base and another is a piece of evidence directly conflicting the prior data

[12].

2.2.4 Dempster-Shafer belief functions

The Dempster-Shafer theory[17][18] can be considered both as a generalisation of probability (by

assigning the probability mass to sets of outcomes rather than to individual outcomes) and of

possibility theory (through the induction of upper and lower probabilities).

Mathematically the theory of evidence is formalised as follows. Consider a set of possible,

exclusive and exhaustive worlds, named frame of discernment, Ω= {ω1,ω2...ωn}. The belief mass

distribution (or Basic Probability Assignment – BPA, or mass function) is defined as

m : 2Ω→ [0,1](2.8) ∑
A⊆Ω

m(A)= 1(2.9)

The mass associated with the empty set, m(;), can represent hypotheses outside the frame of

discernment, relaxing the exhaustivity hypothesis. Under the closed world assumption, we have

m(;)= 0 while the open world assumption allows m(;) 6= 0. Some special cases of belief functions

include the simple support function, the vacuous belief function and the dogmatic belief function.
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Definition 2.3 (Simple support belief function). A simple support belief function is a belief

function such that there exists only one set with non-zero mass which is not the universal set. As

such a simple support mass function for X ∈Ω with weight P is:

(2.10) m(A)=


1−P if A = X

P if A =Ω
0 otherwise

The notation X P is sometimes used to denote such a belief function. Note that the weight refers to

the mass on the universal set rather than the focus.

Definition 2.4 (Vacuous belief function). A vacuous belief function is a belief function with mass

of 1 on the universal set, i.e. m(Ω)= 1

Definition 2.5 (Dogmatic belief function). A belief function is dogmatic if m(Ω)= 0

Finally, we may consider the probability distribution a special case of a belief function where

all the mass is assigned to singletons.

Hence the plausibility and belief functions can be deduced, which may be interpreted as upper

and lower probabilities, or, consistently with possibility theory as corresponding to the possibility

and necessity measures, respectively

(2.11) Bel(A)= ∑
B:B⊆A

m(B)

(2.12) Pl(A)= ∑
B:B∩A 6=;

m(B)

Belief functions on joint frames Just like in the case of proability theory, belief functions

can be expressed on joint frames. Consider two frames of discernment ΩX = {x1, x2...xn} and

ΩY = {y1, y2...yn}. We may consider the joint frame of discernment ΩXY to be the Cartesian

product of the two frames: ΩX ×ΩY = {x1 × y1, x1 × y2, ...xn × yn}

A joint belief mass for two variables X and Y is defined over ΩXY = ΩX ×ΩY such that

mXY : 2ΩXY → [0,1]. This mass describes the joint partial knowledge over variables X and Y ,

representing the relationship between them.

The operations of vacuous extension and marginalization represent coarsening and focusing

of knowledge respectively (see Figure 2.1).The vacuous extension of the mass mX defined on the

frame ΩX to the joint frame ΩXY , with A ∈ΩXY and B ∈ΩX is defined as follows:

(2.13) mΩX ↑ΩXY (A)=
mΩX (B) if A = B×ΩY

0 otherwise
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Figure 2.1: Marginalization and vacuous extension (from [19])

Marginalisation in the belief function framework is defined as follows, with A ∈ΩX and B ∈ΩXY :

(2.14) mΩXY ↓ΩX (A)= ∑
B⊆ΩXY ,B↓ΩX =A

mXY (B)

where B↓ΩX is the set projection of B ⊆ΩXY over ΩX .

A property of the joint belief functions which is of particular interest is that they be used to

encode uncertain logical relations through the truth set. Consider some logical formula φ , which

holds with probability p. It can be encoded by the simple support belief function

(2.15) mφ(A)=


p ifA = {B :φ(B)}

1− p if A =ΩX ×ΩY

0 otherwise

where {B :φ(B)} is the set of all B ∈ΩX ×ΩY satisfying the formula φ.

For example, given frames ΩX = {x1, x2} and ΩY = {y1, y2}, a material implication x1 → y2 can

be written as ¬(x1∧¬y2). Thus the focal set supported by the mass function describing this relation

is {x1 × y2, x2 × y1, x2 × y2}.

Discounting The problem of making inference on true state of the world given some source is

discussed in more detail in the next chapter. However an operation which is often used in belief

function theory is that of discounting. This process, sometimes referred to as Shafer’s discounting

redistributes a proportion of the mass assigned to the non-universal set to the universal set. It can

be considered the most basic implementation of the reliability (or relevance) of the source. The
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mass m is discounted by the factor α as follows

(2.16) mα(A)=
αm(A) ifA 6=Ω
αm(A)+ (1−α) if A =ΩX

Combination of evidence and normalisation The conjunctive rule of combination (CRC)

combining different sources of information pertaining to the same frame of discernment was

proposed in [20]. Using notation consistent with above, the joint mass is obtained as follows

(2.17) mC
J = (m1 ∩ m2)(A)= ∑

A=B∩C
m1(B)m2(C)

The mass attributed to the empty set can be considered the conflict between the two masses:

(2.18) mC
J (;)= ∑

;=B∩C
m1(B)m2(C)

As such mass function can be normalized by forcing m(;) = 0 if the frame of discernment is

considered to be exhaustive

(2.19) ˆm(A)=


1
1−m(;) m(A) i f A 6= ;,

0 i f A =;

The normalized CRC is called Dempster’s rule of combination and is denoted by mDS
J = m1 ⊕m2.

Some other rules of combination exist2. Probably one of the most widely known, albeit rarely

used, is the disjunctive combination rule (DRC), proposed by Smets [21]. As per its name, the joint

mass function is obtained as follows:

(2.20) mD
J = (m1 ∪ m2)(A)= ∑

A=B∪C
m1(B)m2(C).

One of the main criticisms of Dempster’s rule is that it provides highly counterintuitive results

when the sources of information are conflicting. Zadeh’s example of disagreeing experts is probably

the most well-known instance of such criticism. Essentially, when two sources of information

are primarily conflicting, but there exists a tiny intersection, Dempster’s rule will assign the

entire mass to this intersection through normalisation. This problem is avoided when using the

unnormalised CRC but at the cost of relaxing the closed-world assumption.

Yager’s rule is another solution to this problem whereby the conflicting mass is assigned to the

universal set (ignorance) rather than redistributed across all the focal sets [22]. The difference

between using the CRC and Yager’s rule can be attributed to the presumed cause of conflict

between the two sources. If we use CRC, we assume that the two sources are reliable, and the

disagreement comes from modelling issues, such as an incorrect frame of discernment. In this

case, assigning the mass to the empty set corresponds to the belief that the true state of the world

lies outside of the frame of discernment considered. In the case of Yager’s rule, conflict resolution

2To the extent that it has become a running joke in the belief functions community that every aspiring belief
functions researcher must propose their own rule for combining two belief functions
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is obtained by assuming that the disagreement stems from the unreliability of the sources, and as

such, the conflict is treated as vacuous information.

Whereas Dempster’s rule requires the sources to be reliable, truthful and independent, un-

normalised CRC allows the sources to be conflicting and disjunctive rule can be applied when

it is known that some of the sources are not reliable or truthful (or rather at least one of the

sources is reliable and truthful). Dubois and Prade[23] propose a generalised rule to the case

when the sources are not independent. This variation of conjunctive rule (and, by extension,

other set-operation based rules) can be used if the relationship between the two dependent mass

functions is known. This means, the two mass functions to be combined are treated as if they

were defined on different frames of discernment Ω and Ω′ and the joint mass mΩ×Ω′
defining

the dependency relation between the two masses m1 and m2 is known such that m1 = m↓Ω and

m2 = m↓Ω′

From this we obtain the Dubois-Prade conjunctive and disjunctive rules as follows:

(2.21) mDPC
J (A)= ∑

A=B∩C
m(B×C)

and

(2.22) mDPD
J (A)= ∑

A=B∪C
m(B×C)

with B ∈Ω and C ∈Ω′.
Finally, another approach to handling non-independent sources is the cautious combination

rule proposed by Denoeux [24]. This rule is different to Dubois and Prade’s in that it does not

require the knowledge of the dependency relation between the two masses. The idempotency of

this rule is achieved by drawing from the canonical decomposition of a belief function, a process by

which some basic belief assignments can be decomposed into a set of simple support functions and

the Least Commitment Principle (LCP). It can be interpreted as using the two mass functions to

generate a set of constraints and subsequently selecting the least informative mass.

The canonical decomposition of a non-dogmatic belief function is performed with the use of the

commonality function q:

(2.23) q(A)= ∑
B⊇A

m(B)

which can be used to compute the weight of each generalized simple support mass function, with

w ∈ [0,∞). This implies that the mass on the unique non-universal focal set may be negative, in

which case it is no longer a real mass function, but can be interpreted as absorption of beliefs [25]:

(2.24) w(A)= ∏
B⊃A

q(B)(−1)|B|−|A|+1

and the cautious rule of combination defines the joint BBA as one with the following weight

function

(2.25) w1?2 = min(w1(A),w2(A)) ∀A ∈Ω
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and thus the mass can be obtained

(2.26) m1 ? m2 = ∩ A∈ΩAw1?2

2.2.4.1 Dissimiliarity measures in the theory of evidence

A dissimilarity measure between BBAs can represent the degree of (dis)similarity between two dif-

ferent bodies of evidence. [26] provides a comprehensive review of various dissimilarity measures.

Some, such as Jousselme’s distance, are defined based on the geometrical interpretation of a BBA

[27], whilst others use an alternative approach.

Geometrical interpretation of BBAs A body of evidence can be seen as a discrete random

variable with its values being the members of 2Θ and with the probability distribution m. While

this interpretation is useful in many situations, allowing the usage of the random sets framework

in the context of the theory of evidence [28], a given BBA B,m has fixed values m(A) ∀A ∈B, B ⊆ 2Θ.

Hence it is possible to neglect the random aspect of the body of evidence B,m and use the following

geometric interpretation.

A vector space E2Θ is generated by all the subsets of Θ. Therefore it is possible to define a BBA

as a special case of a vector of E2Θ , −→m with coordinates m(A i) such that
∑2N

i=1 m(A i)= 1; m(A i)≥ 0.

Note that this definition does not impose the closed-world assumption.

Jousselme’s distance Jaccard index, or Jaccard similarity coefficient is a statistic used for

comparing the similarity (or diversity) of sample sets.

(2.27) S(A,B)= |A∩B|
|A∪B|

S(A,B)= 0 implies that the sets have nothing in common; S(A,B)= 1 means they are identical. The

Jousselme distance is an L2 Euclidean distance with the Jaccard’s matrix used as the weighting

matrix. It is defined on E as follows

(2.28) dJ(m1,m2)=
√

1
2

(−→m1 −−→m2)TJac(−→m1 −−→m2)

where Jac is the metric (weighting) matrix, a 2N ×2N matrix with its elements Jac(A,B)= |A∩B|
|A∪B|

[29], proven to be a strict distance matrix in [30].

Other geometric measures of dissimilarity exist and they are discussed at length in [26]

2.2.4.2 Decision making under belief functions

The general decision making problem is making a decision δ based on m(·). In its most classical

variant, we make an assumption that δ ∈Θ, i.e. the decision problem consists of choosing a specific

element of the frame of discernment θ̂, which represents the set of solutions to the problem at

hand. Note that in a more realistic scenario, the decision making problem would be based on

the set of actions that would not necessarily be related by a one-to-one mapping to the frame of

discernment. Many decision criteria have been proposed in the literature with varying levels of

complexity and adoption. In this section, some of the most commonly used ones are presented.
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1. Maximum of belief (pessimistic scheme) This decision making procedure is based off the

so-called pessimistic scheme, where the element of the frame of discernment with the largest

belief value is chosen

(2.29) θ̂ = argmax
i

Bel(θi)

2. Maximum of plausibility (optimistic scheme) If a more optimistic - less cautions - approach

is to be adopted the element of th frame of discernment with the maximum of plausibility is

chosen (i.e. with the least amount of evidence directly against it)

(2.30) θ̂ = argmax
i

Pl(θi)

3. Maximum of probability As the two previous approaches can be seen to be either overly

cautious or optimistic a more balanced attitude is usually taken. In order to do this the

basic belief assignment is transformed into a probability measure P(·) compatible with the

belief interval [Bel(θi),Pl(θi)] using one of many probabilistic transformations, such as the

commonly used pignistic probability transformation[31]

(2.31) PBet(θi)=
∑
θ∈2Θ

m(θ)× |θ∩θi|
|θi|

thus making it possible to choose θ̂

(2.32) θ̂ = argmax
i

P(θi)

Other popular transformations of BBA to probability mass include taking the mass of

singletons directly and normalising (thus ignoring partial ignorance) and plausibility-based

methods [32].

Another theoretical approach, which is referenced later in this paper is to make decisions by

using a strict distance metric d(·, ·) between two BBAs. The methods of implementation of these

distances are discussed in the next section.

(2.33) θ̂ = argmind(m,mθ)

where m is the basic belief assignment based on which the decision is made, and mθ is the BBA

focused on θ i.e. m(θ)= 1.

In their work on decision-making using distances, Dezert and Han [33] have proposed a quality

indicator q(θ̂) defined as follows:

(2.34) q(θ̂)= 1− d(m,mθ̂)∑
θ∈2Θ\θ d(m,mθ)

which evaluates how good the decision is compared to all other possible decisions - in the case of

classical decision problem to all other singletons in the frame of discernment. It can be seen that

this indicator will reach its maximum when the BBA m(·) is fully focused on the decision and the

higher the value of q(θ̂) the more confidence can we have in the decision θ̂.

20



2.2.5 Interpretations of belief functions

The original two interpretations of belief functions are that of upper and lower limits on proba-

bilities (Dempster’s interpretation) which was then rephrased as the sum of evidence by Shafer.

However, there are several interpretations of belief functions that are distinct from Dempster-

Shafer’s Theory. Let us recall that the original Dempster’s theory considered belief functions to

be lower bounds of traditional probability distributions[20]. Shafer abandoned this view leaning

towards the interpretation of belief functions as subjective opinion, with its meaning consistent

with notions of "evidence", "doubt", or "support". This was taken further by Philippe Smets, who

has proposed a different approach to the combination of belief functions in response to Lotfi

Zadeh’s criticism.

Transferable Belief Model The cornerstone of Smets’ Transferable Belief Model[31] (TBM)

is the division of reasoning levels into the credal level, dealing with beliefs and implemented

using belief functions and the pignistic level, on which the decisions are made. The transformation

between the two is performed with the pignistic probability transformation (Equation 3). The

key difference in the treatment of belief functions, however, is the relaxation of the exhaustivity

principle. The conjunctive combination rule without normalisation is used, and the probability

mass on the empty set is allowed, corresponding to an unexpected outcome - an event outside

the known frame of discernment. This interpretation of mass on the empty set became popular

even among authors working outside TBM and not necessarily considering the transfer of beliefs

between the credal and pignistic levels. This approach is used throughout this thesis unless stated

otherwise.

2.3 Information quality and types of uncertainty

All information to be dealt with originates from some type of sources, be they hard, such as sensors

or soft such as human reports. All kinds of sources tend to have some degree of information quality

and imperfections associated with them. The individual sources may be more or less reliable,

and the information they provide may or may not be credible. Furthermore, other dimensions of

information quality exist, such as ambiguity, incompleteness, imprecision and others.

It is common to classify uncertainty as either epistemic or aleatoric, which roughly correspond

to knowledge-related and randomness-related, respectively. The former can be reduced, either

through the inclusion of additional or better information sources, change in the fusion mecha-

nism or similar means, whereas the latter cannot. In the framework, we use the latter broadly

corresponds to imprecision and the former to ignorance, as defined later in this section.

2.3.1 Source quality and information quality

It is self-explanatory that the concepts of information quality and source quality are very closely

related as a source is mostly characterised by the quality of information it generates. Conversely,

information of unknown quality can be characterised according to its originating source. Regard-
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less, the two terms are not strictly equivalent. STANAG 2511[34] [35] distinguishes between

the two, and each piece of information is jointly and independently characterised according to

its source quality and information quality. The former, source reliability, is determined by the

history of the past information provided by the source and the credibility of the information itself

is determined by its relationship with other available pieces of information on the same topic and

their respective qualities. As such, the reliability of the source is designated by a letter from A

to F, where values A to E denote decreasing confidence in the source, and F denotes ignorance

regarding its quality. Similarly, the quality of information is assessed on a numeric scale of 1 to

6, where values 1 to 5 denote decreasing credibility, and 6 implies the lack of ability to judge the

truth.

2.3.2 Types of uncertainty and modelling of uncertainty

A large number of typologies exist for the classification of types of information quality dimensions

in general or uncertainty specifically. Here we recall two such attempts at classification, one from

Generalised Information Theory [36] [37] and a dictionary of different terms relating to data

imperfection produced by Smets [38]. Note that the latter is consistent with vocabulary in [39],

which follows from [40]. It is important to bear in mind that even considering these typologies,

the exact meanings and definitions of some terms may vary. For instance, it is clear that in Smets

typology in Figure 2.3, the meaning of "uncertainty" is somewhat different to its interpretation in

Figure 2.2. Furthermore, it may seem at first glance that in Figure 2.3 terms such as uncertainty

and imprecision are mutually exclusive; it is important to note that this is not the case. According

to Smets, the distinction between imprecision, inconsistency and uncertainty is related to the

model of possible worlds. An imprecise statement is satisfied by several words, and an inconsistent

one is satisfied by none. An uncertain statement imposes ordering on the several worlds which

satisfy it; as such uncertain and imprecise statements are closely related. These terms tend to

become easier to distinguish when considered under specific uncertainty representation formalism

- although different formalisms cover only some subsets of the variety of information quality

measures discussed.

2.3.2.1 Crisp imprecision or nonspecificity

Crisp imprecision can be considered the first level of uncertainty expression and describes the

(in)ability of the source to distinguish between its elements and providing a set of values it believes

to be true. It is modelled by the source, providing a set of hypotheses within which the true

hypothesis lies or, for numeric information, an interval containing the true value. For example,

a classifier may be unable to distinguish between a tugboat and a fishing vessel. Similarly, all

sensors produce imprecise readings according to their specifications. In crisp sets non-specificity

can be quantified using Hartley function[41] and by its generalizations in different uncertainty

modelling formalisms[42].
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Uncertainty

Fuzziness Ambiguity

NonspecificityDiscord
Disagreement in
choosing among
several alternatives

• dissonance

• incongruity

• discrepancy

• conflict

Lack of definite or
sharp distinctions

• vagueness

• cloudiness

• haziness

• unclearness

• indistinctness

• sharplessness

One-to-many rela-
tionships

Two or more alterna-
tives are left unspeci-
fied

• variety

• generality

• diversity

• equivocation

• imprecision

Figure 2.2: Three basic types of uncertainty - typology from [36]

Imperfection

InconsistencyImprecision Uncertainty

With error

Without error

Objective

Subjective

DispositionPropensityVagueMissing

• incoherence

• conflict

• inconsistency

• confusion

• erronoeus

• incorrect

• inaccurate

• invalid

• distorted

• biased

• nonsensical

• meaningless

• incomplete

• defficient

• ambiguous

• approximate

• vague

• random

• likely

• possible

• necessary

• believable

• probable

• doubtful

• possible

• unreliable

• irrelevant

• indecidable

Figure 2.3: Uncertainty typology (or dictionary) adapted from [38]

2.3.2.2 Fuzziness

Fuzziness is a type of imprecision related to but distinct from nonspecificity. This is typically,

albeit not exclusively, associated with human sources. For example, a human informant may have

spotted a "large ship" rather than providing numeric values on its gross tonnage or length. This

semantic vagueness means that the statement "ship X is large" usually is not either true or false

but rather has some degree of truth assigned to it. This can be modelled using formalisms such

as fuzzy set theory and possibility theory [43] [44]. Note that the measures of nonspecificity and
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fuzziness are distinct and independent from one another. Furthermore, the two measures have

a different impact on the overall information content. Whereas it is self-explanatory that any

reduction in nonspecificity implies an increase in information content, the converse is not always

true.

2.3.2.3 Discord

We consider discord to be the second level of uncertainty measures, modelled with monotone

capacities such as probabilities, possibilities, belief measures and similar. Monotone measures

are defined as functions g such that for any A,B ∈Ω such that A ⊆ B then g(B)≥ g(A); they are

often used to model some confidence degree in an event being true or false. Furthermore, the

non-additive measures such as belief or possibility induce second-order uncertainty, defining an

interval within which the true confidence degree lies. An objective probability distribution could

be induced from a vessel density map, whereas a subjective one could be produced by a human

agent expressing their beliefs.

The uncertainty content associated with such a measure can be quantified using appropriate

measures such as Shannon entropy in the case of probability distributions or its appropriate

generalisations in the theories of evidence and possibility. In some formalisms, such as the theory

of evidence, several alternative measures may exist [45].

2.4 Graphical models

2.4.1 Conceptual graphs

Conceptual graphs are a framework that essentially allows for the representation of first-order

predicate logic in graphical form [46]. This formalism is a model which encompasses a basic

ontology and graph structure. There exist multiple extensions and re-imaginations of this model,

allowing for definitions of rules and constraints; equalities between concepts and others.

Concepts are used to represent different entities to be modelled as part of a knowledge base.

Each concept is labelled using two components: the conceptual type and a marker. The type defines

the generalised entity, whereas the marker is used to identify a specific object in the world. The

relation nodes indicate the relations established between different entities in the represented

situation.

The vocabulary (or type hierarchy) is a simple ontology used to define the conceptual and

relation types used to label concept and relation nodes, respectively. This can be formalised

as V = (TC,TR ,markers), where TC denotes the partially ordered set of concept types, TR the

partially ordered set of relation types and markers the set of individual markers (names) used to

label the concept nodes. Furthermore ∗ denotes the generic marker. The three sets are assumed to

be pairwise disjoint.

Therefore a basic conceptual graph G can be defined by a 4-tuple G = (CG ,RG ,EG , lG), where

CG ,RG ,EG is a finite undirected and bipartite multigraph with two types of nodes - concept and

relation denoted by CG and RG respectively, and EG being the set of edges.
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The final element of the 4-tuple. lG is the naming function of the nodes and edges such that

each concept node c is labelled with a pair lG(c)= t(c) ∈ TC,m(c) ∈markers∪ {∗} and each relation

node r is labelled by lG(r) ∈ TR .

FishingVessel: Marcel hasDestination Destination:*

Figure 2.4: An example of a conceptual graph describing the destination of fishing vessel Marcel

Conceptual graphs are discussed in greater detail in Chapter 4. Figure 2.4 shows an example of

a conceptual graph, describing a relation of a FishingVessel (concept type) named Marcel (marker),

which has a hasDestination relation with another concept node of concept type Destination with a

generic marker.

This section discusses various approaches for graphical representation of relationships between

uncertain variables and appropriate reasoning

2.4.2 Bayesian networks

Bayesian networks are tools for modelling with uncertain beliefs based on the probability theory

described above, and in particular, they are useful for representing problems involving many

related hypotheses. Such a network consists of two components: a directed acyclic graph (DAG)

and a set of conditional probabilities - these can be thought of as the qualitative and quantitative

components of a Bayesian network, respectively. The structure of a Bayesian network corresponds

to the conditional independence between the propositional variables represented by the nodes[47]..

An example Bayesian network from [48] is shown in Figure 2.5.

Warning

Threat

Collision Distance Covered

Figure 2.5: Structure of a Bayesian network for identification of critical situations between two
ships

The above example illustrates a potential Bayesian network identifying some of the factors,

which may determine whether a vessel poses a threat to another one. The conditional independence

relations are such that the likelihood of warning is conditionally independent on the distance

between the vessels and the collision likelihood, given that the degree of threat is known.

Some weaknesses of Bayesian networks are due to the principles of Bayesian probability

modelling. Specifically, all the hypotheses and relationships are fixed in advance, and it is only the

evidence that varies across problems. As multi-source information problems may involve uncertain

numbers of entities, they may produce exponential sets of association hypotheses[49].
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2.4.3 Markov networks

Markov networks, or Markov random fields, are undirected graphical models. It is described by a

graph, where the nodes represent random variables. It can be considered similar to a Bayesian

network in its representation of dependencies between variables, the main difference being that

Markov networks are undirected and may be cyclic. As such, they can be applied to a wider

range of problems where no natural directionality is associated with the dependencies, and some

dependencies can be expressed by MRFs, which cannot be expressed by Bayesian Nets (and vice

versa). A major downside is that the exact computation of probabilities for MRF’s is NP-hard in

the general case, and approximation techniques need to be used.

Whereas in Bayesian networks, conditional probability distributions are associated with each

node, probability in Markov networks is computed using potentials over cliques. A potential is a

function mapping every combination of variables in a clique to a positive real number. A probability

of a world is then proportional to the product of all the potentials corresponding to the values

taken by variables in that world.

Unlike in the directed Bayesian case, we are not concerned with how one variable is generated

from the other, but rather the level of coupling between the dependent variables in the graph.

As such, rather than needing to define how some variable A is constructed from B, we define the

strength of interactions of these variables. More formally:

Definition 2.6. A Markov Random Field(MRF) is a probability distribution p over a set of vari-

ables X = {x1, ...xn} with corresponding frames of discernment {Ω1...Ωn} defined by an undirected

graph G, the nodes of which correspond to the variables in X .

(2.35) p(x1...xn)= 1
Z
Πc∈Cφc(xc)

where C is the set of cliques and φ is a non-negative function over the variables in the clique

(such that xc is defined over ΠcΩc

Furthermore the partition function Z is used for normalization:

(2.36) Z = ∑
x1...xn

Πx∈Cφc(xc)

2.4.4 Markov Logic networks

A Markov logic network is a tool for bridging probabilistic representation and first-order logical

reasoning. A relatively recent development proposed by Richardson and Domingos [50] uses a

weighted first-order logic knowledge base as a template for the construction of a Markov Random

Field. First Order Logic (FOL) is a collection of formal logic systems which unlike propositional

logics allows for quantifiers and variables. As such it is possible to create statements (or rules)

which generalise over many possible entities.

The reasoning behind weighting formulas in a knowledge base is that while many formulas

are typically true in the real world, they may not always be true and, as such, are going to only

capture a fraction of relevant knowledge or need to be excessively specific by including all the

26



possible exceptions. A classical example of such a first-order logic rule is "birds fly" or, in FOL

∀x, bird(x) =⇒ f l ies(x). This rule can have an infinite number of groundings, expressions where

variables are replaced with constants. In MLN we consider a finite set of constants, or values that

x can take. Consider that we live in a world where only birds are seagulls, sparrows and penguins.

In this case the earlier formula has 3 groundings and it actually holds true in two of them, as we

know that f l ies(sparrow), f l ies(seagull) and ¬ f l ies(penguin).

Formally we have:

Definition 2.7. A Markov logic network L is a set of pairs (Fi,wi), were Fi is a formula in first-

order logic and wi is a real number. Together with a finite set of constants C = {c1...cn} it defines a

Markov network ML,C as follows:

• ML,C contains one binary node for each possible grounding of each predicate appearing in L.

The value of that node is 1 if the ground atom is true and 0 otherwise.

• ML,C contains one feature for each possible grounding of each formula Fi in L. The value of

the feature is 1 if the formula is true and 0 otherwise and the weight of the feature is wi

The probability of a world specified by the ground Markov network ML,C is given by:

(2.37) p(x1...xn)= 1
Z

exp(
∑

i
wini(x))

which clearly follows from the exponential form of Equation 2.35.

A set of assumptions is in place to ensure that the set of possible worlds for (L,C) is finite

and that ML,C represents a unique, well-defined probability distribution over these worlds. These

assumptions are that of unique names (different constants refer to different objects), domain

closure (only objects in the domain are representable using constant and function symbols in

(L,C)) and known functions (for every function in L its value applied to any possible arguments is

known and is in C). In particular, this last assumption makes it possible to replace functions by

their values when grounding formulas.

2.4.5 Valuation-based systems and evidential networks

An evidential network is a graphical model representing knowledge about a set of uncertain

variables modelled using belief functions [51]. Nodes in the graph represent uncertain variables,

while the valuations represent uncertain relationships between subsets of variables or uncertain

evidence about a single variable. It is the realisation of a Valuation-Based System (VBS) [51] (or

valuation network), consistent with the evidence theory, where valuations are encoded with mass

functions.

A valuation algebra is a tuple (X ,V , ∩ ,↓) where X is a set of uncertain variables of interest,

V is a set of valuations, ∩ is an aggregation operation between valuations and ↓ is a focusing

operation.
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Let X and Y be two uncertain variables defined over the frames ΩX and ΩY respectively. A

joint mass function for X and Y is defined over ΩXY =ΩX ×ΩY such that mXY : 2ΩXY → [0,1].

This mass function describes the joint partial knowledge over variables X and Y , representing the

relationship between them.

The conjunctive combination operation is implemented using a modified version of Equation

(2.17). If mX and mY are the two joint mass functions for variables X and Y respectively, with

A ∈ΩXY , B ∈ΩX and C ∈ΩY , then:

(2.38) (mX ∩ mY )(A)= ∑
B∩C=A

mΩX ↑ΩXY
X (B)mΩY ↑ΩXY

Y (C)

where mΩX ↑ΩXY
X denotes the vacuous extension, of the mass function mX defined over the frame

ΩX to the joint frame ΩXY , with A ∈ΩXY and B ∈ΩX :

(2.39) mΩX ↑ΩXY (A)=
mΩX (B) if A = B×ΩY

0 otherwise

Marginalisation corresponds to focusing of knowledge and is defined as follows, with A ∈ΩX and

B ∈ΩXY :

(2.40) mΩXY ↓ΩX (A)= ∑
B⊆ΩXY ,B↓ΩX =A

mXY (B)

where B↓ΩX is the set projection of B ⊆ΩXY over ΩX .

The fusion problem is solved by extending all mass functions to the joint space, and marginal-

ising over the variable of interest. Let denote by Y ∈X the variable of interest, by Ω the joint

frame of all variables, and let m be a valuation of V , then the result of the fusion problem is:

(2.41) mΩY =
(
∩m∈Vm↑Ω

)↓ΩY

In practice, axioms for local computation implemented by a VBS avoid ever computing the joint

and rather use belief propagation schemes within binary joint trees [51].

Joint belief functions can be used to encode uncertain logical relations through the truth set.

Consider some logical formula φ which holds with probability p. It can be encoded by the simple

support belief function:

(2.42) m(A)=


p if A = {B :φ(B)}

1− p if A =ΩX ×ΩY

0 otherwise

where {B :φ(B)} is the set of all B ∈ΩX ×ΩY satisfying the formula φ. In this paper we use the

following propositional logic symbols: ↔ denotes equivalence, → denotes material implication,

∧ and ∨ denote logical conjunction and disjunction respectively and ¬ denotes negation. For

example, given frames ΩX = {x1, x2} and ΩY = {y1, y2}, a material implication x1 → y2 can be

written as ¬(x1 ∧¬y2). Thus the focal set supported by the mass function describing this relation

is {x1 × y2, x2 × y1, x2 × y2}.
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2.5 Context awareness

The notion of context itself has been defined by various authors in different ways. Generally

speaking, from an information fusion perspective, context is information that does not directly

characterize the focal element of the problem but rather its surrounding or situation. The ap-

proach to the context in this thesis is most similar to that from [52], where context variables are

exogenous to the problem, but the endogenous variables may be dependent on them. Some possible

context types may include user context (requirements), physical context (time of the day, weather,

infrastructure), device context (available information sources and their quality) and more[53][54].

Several works on aligning uncertain reasoning and information fusion with contextual infor-

mation exist. In the probabilistic framework, the Markov Logic Networks (MLN) can be used

to incorporate context [55]. Furthermore, in probabilistic reasoning, there exist the concepts of

contextual independence and hence contextual belief networks [56]. In evidence theory, we have

the work of Mercier et al. on contextual discounting and, more generally, on contextual informa-

tion correction [19]. Gundersen discussed the relation between context and situation awareness,

distinguishing between agent and situation context; however, with little interest in handling

uncertainty and conflict [57]. All in all, the purpose of the context within information fusion is

largely adaptation and explainability, as discussed in a recent survey by Snidaro et al. [58].

In all of these approaches, the exact meaning of context varies and is not necessarily consistent

with its usual definition. In the existing work using MLN context is treated just like any other

piece of evidence, and relatively little emphasis is placed on what makes context contextual. The

contextual belief networks share the shortcomings of other Bayesian approaches, such as dealing

with incomplete information, modelling ignorance and logical reasoning. Contextual discounting

in belief functions framework does not deal with what we would consider the context in an

information fusion sense; its context is actually the true state of the world. In this chapter, a new

model for contextual reasoning with partially reliable sources is proposed, placing significant

emphasis on understanding what context is and how it can be exploited within the belief function

framework.

2.5.1 Context in artificial intelligence

The notion of context has largely entered the computer science mainstream as part of the concept

of pervasive or ubiquitous computing [59], as part of which the paradigm of concept-aware systems

was developed. The underlying concept is that pervasive computing provides services to the user

regardless of the environment (as opposed to the 20th-century vision of localized computing),

whereas context-awareness ensures that the right service is provided to the user at the appropriate

time and place, adapting its behaviour without explicit user intervention [60]. The exact meaning

of context, however, does not have a single universally agreed-upon definition. Regardless, the

key ideas expressed in the variety of definitions converge. In general, the notion of context can be

summarized as information that is relevant to the problem at hand but does not explicitly define it.

This could be a political situation in an arms trade investigation, legal regulations when tracking

an illegal fishing ship or meteorological data for assessment of radar data quality.
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Some most widely accepted definitions consistent with these generalised notions have been pro-

posed by Dey [61]: "Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves." and Brézilion[62]

"Context is what contains a problem solving without intervening in it explicitly." Winograd[63]

comments on Dey’s definition and criticizes its broadness in reference to any information. His

definition "The context is a set of information. This set is structured, it is shared, it evolves and

serves the interpretation" restricts it by enforcing structure and relevance to the application.

McCarthy [64] proposed logical representation of context as formal objects. Without going into the

detail of this representation, the basic relation asserts a proposition in some context; however, the

assertion itself is always realized in a context. From this, some interesting consequences follow.

First of all, context is always relative to another context (contextual information cannot exist

without some context of its own). From this, it follows that contexts have infinite dimension and

hence cannot be described completely. Finally, with several contexts exist in a discussion, there is

a common context above them [62]

Another approach takes into account two alternative paradigms of context derived from the

very definition of that word in the English language. Context can mean either "that which unites

or binds together" or "that which surrounds and gives meaning to something else". Based on this

Gong [65] proposes a distinction between context-for (CF) and context-of (CO). With reference

to some situation X, context-of X may refer to all the things within the space of X, whereas

context-for X describes all the external factors which may affect X. In maritime domain we may

consider context-of illegal fishing - in such context, we are concerned with fishing quotas, vessels’

fishing capabilities, marine protected areas (MPAs) and such. On the other hand context-for such a

problem may include season or meteorological conditions. In [66] Steinberg discusses the difference

between the two, placing more emphasis on the type of reasoning. In this case, CF starts with a

specific problem (such as inferencing or decision) and attempts to discover additional information

to resolve uncertainties. CO starts with the perceived situation to derive information about the

situation. As such, the purpose of CO reasoning is to assess expectation; the objective of CF is to

handle goal-driven reasoning.

Steinberg also focuses on context from a more ontological or semantic perspective [66][67].

Situations are defined in terms of entities, relationships and activities in a method very similar

to ontologies or conceptual graphs. In this framework, "context is a situation that provides

information that can be used either a) to condition expectations or b) to improve the understanding

of a given inference or planning/control problem".

Pomerol and Brézilion[68] briefly discuss the relationships between knowledge and context,

identifying contextual knowledge as a subset of all knowledge. Both general and contextual

knowledge can be explicit or implicit and can be made explicit; the particular differences include

that contextual knowledge is this part of knowledge that is useful for describing the nature state

preceding decision and hence may have several realizations. Thus while knowledge is fixed, the

procedural context may change.
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2.6 Summary

The purpose of this chapter was to provide an extensive review of different concepts and tools

associated with the fusion of uncertain information. We have first discussed the generalised

framework for information fusion as proposed by Dubois et al. Subsequently, we have discussed the

imperfections in data and the different frameworks for uncertainty representation. The Dempster-

Shafer Theory, or the theory of belief functions and its variants, were discussed extensively. We

have also briefly discussed how the various uncertain reasoning formalisms could be aligned with

the theory of belief functions through the utilisation of the notion of random sets. Subsequently, we

briefly addressed the problem of information representation and storage and discussed the main

graphical reasoning models - Bayesian Nets, Markov Logic Networks and, in particular, Evidential

Networks. Not all of the concepts discussed are used throughout the remainder of this thesis. Still,

they are discussed here to position the work done throughout this thesis in relation to literature

as well as to make it easier to see the possible avenues for future work. In particular, the notions

of valuation networks and belief function theory are used extensively throughout the remainder of

this thesis. However, we are also concerned with the generalised notions of uncertain information

fusion, especially in Chapter 4. Markov logic networks, conceptual graphs, and possibility theory

are again discussed in Chapter 5 for their use in situational awareness.
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3
REASONING WITH PARTIALLY RELIABLE SOURCES AND CONTEXT

Disclaimer: The contents of this chapter have been largely produced in collaboration with NATO

STO Centre for Maritime Research and Experimentation (CMRE), under the supervision of Anne-

Laure Jousselme as part of the Data Knowledge and Operational Effectiveness project. A signifi-

cicant portion of this content has been published in the CMRE technical report "Multi-source

contextual reasoning for vessel behavourial analysis"

Information fusion, as discussed in the previous chapter, is concerned with the combiantion

of information from multiple sources to get a better estimate of some variable of interest.

However, in most cases, the sources do not provide information on the variable of interest

directly but rather describe some observation of it or some other variable that can be used for rea-

soning about the true state of the variable of interest. As such, models for reasoning with partially

reliable sources or reasoning generally are an important part of the body of knowledge pertaining

to uncertain information fusion. The importance of Contextual Information (CI) within the world

of Information Fusion (IF) stems from the fact that IF systems are typically designed to work in

"well-defined conditions", exploiting both observed data and a priori knowledge. In some cases, this

world behaviour can be very complex and cannot be defined sufficiently without constraining the

problem domain using some form of contextual information. In maritime situational awareness,

some examples include assessing the quality of a radar reading within the context of weather

conditions or identifying events that may be meaningless without context (such as illegal fishing

within the geographical context of marine protected areas).

3.1 Context in information fusion

As in the case of context nomenclature in the field of information fusion remains somewhat

ambiguous and inconsistent. As such we are not concerned with the distinction between knowledge,
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data, sensor and information fusion and in this thesis exclusively use the latter term. It is widely

agreed on that the Joint Directors of Laboratories (JDL) fusion model has gained most acceptance

in the information fusion community - with several revisions and modifications proposed by

different authors[69][70]. Snidaro et al. [71] provide a detailed review of context-based information

fusion applications across the different levels of JDL framework. Some notable examples include:

contextual sensor characterization (JDL Level 0) [72], contextual maritime data association and

filtering (JDL Level 1) [73][74], maritime situational awareness (JDL Level 2) [75][76] as well as a

multi-level (JDL Levels 0-3) context-based harbour surveillance application [77].

In many cases, contextual information in fusion can be interpreted as a constraint, consistent

with one of the definitions provided earlier. These constraints can range from hard or physical

to soft or procedural, with geographical context (maps or routes) being an example of the former

and ship blacklisting an example of the latter [71]. However, there are also situations where the

context may be interpreted as additional features, semantics or situation elements that do not

directly reduce uncertainty in the situation space. A typical example would be the detection of

anomalous situation, which changes the context and increases the number of possibilities. Another

situation where context does not necessarily constrain the problem space is when the context is

used to determine information quality which may, again, increase uncertainty in the problem

space [53][78].

3.1.1 Categories of context

There clearly exists a vast diversity of categories and applications of context in the field of

information fusion. The work of Razzaque [54] addresses the problem of classification of contextual

information. Six conceptual contextual parameters are identified. The author justifies the need for

this with several advantages, including better modelling of information quality, improvements

in source selection, context refinement and context manipulation in order to make the transition

from low-level to high-level processing and fusion more straightforward. We would add to this list

also the explainability and interpretability of both the reasoning process itself and its outcomes.

The proposed categories are user context, physical context, network context, activity context, device

context and service context. Examples of each of these six categories at JDL levels 1 to 3 in the

Maritime Situation Awareness domain are shown in Table 3.1

3.2 Models for partially reliable sources

The information which needs to be handled in many fusion problems is provided by a number

of sources - ranging from most simple physical sensors to machine learning classifiers and un-

structured human intelligence. A physical sensor may be simply unreliable or may have been

tampered with; classifiers performance is determined by a confusion matrix, and information

provided by human witnesses may be vague or even untruthful. These sources vary not only in

accuracy and reliability but also potentially in truthfulness and, in some cases, may display more

complex behaviours.
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Table 3.1: Examples of the six categories of contextual information in MSA domain, adapted from
[53] and [54]

Context JDL Level 1 JDL Level 2 JDL Level 3

User Analyst tracking targets VTS operator Intelligence officer

Physical Coast lines, sea state Anchorage ares, channels Critical infrastructure

Network Network of radars Communications network Intelligence analysts

Activity Usual tracks or routes Season, routes, patterns Recent piracy incidents

Device Radars, satellites AIS coverage Availability of sources

Service Location, heading Anomalies of interest Standard identities

We need to consider the disconnect between the source report, the source knowledge and the

true state of the world. This introduces two levels of noise or uncertainty associated with a source

report - the difference between the true state of the world and the source perception of it and the

potential disconnect between what the source knows and the contents of its report. In general,

the former can be considered the source reliability and the latter the truthfulness (albeit this is

a simplified view as there may be other types of uncertainty involved - such as a human source

unable to express its knowledge due to semantics). This general view is shown in Figure 3.1 [79].

True
world

Source
knowledge

Source
report

Sensing Reporting

CorrectionInference

Figure 3.1: Reporting process

When sources provide unreliable information about the domain of interest, it is necessary to

somehow incorporate this reliability in the uncertainty representation. In the theory of evidence,

this is typically done using one of many discounting operations, most often the classical discounting

proposed by Shafer. However, while this does allow for the inclusion of the reliability assessment

in the uncertainty structure, it is treated as part of the source report rather than an external

variable or metaknowledge.

Some authors have discussed modelling this more explicitly. One of the earlier works discussing

partially reliable sources or witnesses in uncertainty modelling context is that of Bovens and

Hartmann [80], where a witness, whose reliability REL is a random variable provides a report

REP on some hypothesis HY P. This approach naturally translates into evidential reasoning - if

the witness is unreliable, she or he provides no information whatsoever on the variable of interest.

Hence Haenni and Hartmann [81] extended this model to postulate a more general approach

based on Dempster-Shafer theory.

Consider the simple example of an Automatic Identification System (AIS) broadcast over

a lossy channel. The AIS is a transponder on board of ships that automatically emits vessels’

information but that can easily be switched off by vessels’ captains. Useful to avoid collisions,
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the AIS reveals vessels positions that vessels’ masters may wish to keep hidden for some periods

of time. If the signal is broadcasted it may or may not be received depending on the conditions,

however it cannot be possibly received if it is never broadcasted. The variable HY P corresponds

to the AIS broadcast whereas the variable REP corresponds to the reception.

Under Haenni and Hartmann model this source report is generated based on the true state of

the hypothesis HY P and the source reliability REL. There exists some probabilistic relationship

between HY P and REP, which is well-defined but can be different depending on the reliability

of the source. Haenni and Hartmann list an extensive collection of possible source behaviours

and a complete discussion is beyond the scope of this chapter. However the most complete model

relevant to us in this example is the Perfect / Indicator model. If the source is reliable, it provides

perfect information, otherwise it can generate false positives and false negatives, based on some

random variables P and Q which determine the likelihood of false positive or false negative.

Σ(PD) =


Rel =⇒ (H yp ⇐⇒ Rep)

¬Rel =⇒ (H yp =⇒ (P ⇐⇒ Rep)

¬Rel =⇒ (¬H yp =⇒ (Q ⇐⇒ Rep)


For the AIS example we assume that it is impossible for a false positive to be provided (we are

only concerned with missing vessels rather than spoofed vessels) and as such Q is always False,

whereas P is some random variable with its distribution being part of the model.

A more general Belief Based Correction (BBC) model was proposed by Pichon et al. [82]. It is

based on the idea that the source can be in one of the possible states Q = {q1..qn}, which defines the

inference on X , the true state of the world given the source report Y . Formalized with multi-valued

mapping

(3.1) ΓA : Q → X∀A ⊆Y

This can be represented by the categorical mass function:

(3.2) mQ×X×Y
Γ

[ ⋃
q∈Q,A⊆Y

({q}× A×ΓA(q))

]
= 1

which can be combined with the other pieces of evidence: a mass function mY on Y provided by

the source and the mass function mQ on Q describing the metaknowledge on the source. The mass

mQ×X×Y
Γ has vacuous marginals on Q, Y . The marginal on X is vacuous if the entire frame of X is

within the image of Γ.

For the AIS example we can consider two source behaviour models: one where the channel is

lossless and one where it is lossy.

The variable of interest X denotes whether the signal is transmitted ΩX = {t,¬t}, and the

report variable Y denotes whether the signal is received or not ΩY = {r,¬r}. The channel can

lose packets with some likelihood and hence has two behaviour models ΩQ = {l,¬l}. Thus the

source is a perfect source if the channel is lossless (Q =¬l) or always-negative if it loses packets

(Q = l). Therefore the multi-valued mapping Γ maps the report and source behaviour to a set of

hypotheses:
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(3.3)

Γr(l)= t

Γr(¬l)= t

Γ¬r(l)= {t,¬t}

Γ¬r(¬l)=¬t

which can be represented as a categorical mass function mΓ:

mΓ

l× r× t, l×¬r×ΩX

¬l× r× t,¬l×¬r×¬t


= 1

Unlike Haenni and Hartmann’s model, where the variables of interest are all binary, there

is no constraint on the cardinality of X and Y ; furthermore, the masses X , Y and Q can be

non-Bayesian as such BBC model makes it possible to define a wide variety of source behaviours

as long as they can be captured in a mass function on the joint frame Q× X ×Y .

Although the BBC model is proven to be equivalent to an evidential network implementation

with three variables, the general underlying assumption is that the source behaviour is entirely

determined by metaknowledge. Even though it may be uncertain, it is not considered to be an

output of some reasoning process. As such, the accuracy of the source is determined only by

the prior metaknowledge and possibly the true state of the world, in a manner similar to the

contextual information correction concept introduced in [19].

Here we use the BBC model as the main reasoning tool; however, consider the "source be-

haviour" variable Q to describe not only metaknowledge but rather be affected by other elements

of the model. We use X to denote the variable of interest and R to denote the source report,

corresponding respectively to X and Y in BBC and to H yp and Rep in Haenni and Hartmann’s

model. Throughout the rest of this thesis, this model is referred to as the XQR model. The XQR

and the BBC model are mathematically equivalent for the purpose of describing source behaviours

and making inference on some variable of interest. The difference between the two is semantic:

the BBC model places emphasis on the relationship between the source report and the true state

of the world in light of some metaknowledge, whereas the XQR model treats the information

about the source and information provided by the source as two equally important sources of

information. Furthermore, the former is not constrained to be static metaknowledge; it could be

an output of a reasoning process or dynamically obtained otherwise. As such, while an evidential

network is a possible representation of the BBC model, the XQR model is primarily considered to

be a module forming part of a larger evidential network. This places more emphasis on reasoning

about the source quality but also makes the model more suitable for an extension. BBC is defined

by Γ, whereas XQR is defined by m. The causal relationships within this model are captured by

the DAG in Figure 3.2.

This DAG captures the high-level causal relationships. The source report is considered to be

affected both by the true state of the world and the source quality. The contextual belief correction

of Mercier et al. behaviour is captured on this graph by the dashed link between X and Q. However,

37



this does not mean that the value of Q can be inferred from X . While this graph captures the

causal relationships, it does not determine the reasoning implementation. The mass function

obtained from the multi-valued mapping ΓA is used to connect the three variables for reasoning

purposes.

X

R

Q

Figure 3.2: The basic XQR model. The source report is driven by the variable of interest and
the source quality. The source quality itself may be affected by the problem variable (akin to
contextual belief correction)

The XQR model is formally defined using a valuation network. The network consists of three

variables X , Q and R defined on arbitrary frames ΩX , ΩQ and ΩR . The variable X corresponds to

the variable of interest, R corresponds to a report provided by some source and Q describes the

state the source is in. The relationship between the three is captured by the valuation on the joint

frame m ΩX ×ΩQ ×ΩR . This valuation is defined by the mass mXQR such that it has vacuous

marginals i.e. m↓X
XQR = ΩX , m↓Q

XQR = ΩQ and m↓R
XQR = ΩR . The source report is described by a

unary valuation on ΩR and the available information about the source state can be described by a

unary valuation on ΩQ or obtained otherwise (e.g. as a result of some other reasoning process by

adding a valuation on the joint frame of ΩQ and another added variable). The resulting valuation

network is shown in Figure 3.7.

X

R

QmXQR

mR

mQ

Figure 3.3: An evidential network, showing an implementation of the XQR model

To continue with the AIS example, the variable of interest X denotes whether the signal is

transmitted ΩX = {t,¬t}, and the report variable R denotes whether the signal is received or not

ΩR = {r,¬r}. The channel can lose packets with some likelihood and hence has two behaviour

models ΩQ = {l,¬l}. Thus the source is a perfect source if the channel is lossless (Q = ¬l) or

always-negative if it loses packets (Q = l). This source behaviour model can be expressed by a joint

mass function m over the joint space ΩX ×ΩR ×ΩQ :

m

l× r× t, l×¬r×ΩX

¬l× r× t,¬l×¬r×¬t


= 1
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which is the same mass function as in the BBC model.

3.2.1 Contextual belief correction

In the theory of belief functions the concept of context is typically associated with contextual

discounting or more generally contextual belief correction, a method of belief function correction

proposed by Mercier[19] and a generalization of the classical discounting process, as defined in

Section 2.2.4.

Classically the purpose of discounting is to take into account the relative reliability of a source

of evidence by transferring a portion of the belief mass provided by the source to the universal set

representing ignorance, such that:

mα(A)=α m(A)∀A ⊂Ω
mα(Ω)= m(Ω)+ (1−α)m(A).

The contextual discounting process proposed in [19] reasonably assumes that the reliability of

the source is not going to be the same for every element in the frame of discernment. For a trivial ex-

ample, consider a classifier recognising a vessel type on frame Ω= {CARGO,TANKER,PASSENGER}.

This classifier may be far more accurate in identifying the passenger ship than one of the other

two types. Basic extensions of this model include coarsening - where a particular set of outcomes

may be misidentified - and reinforcement, where a sourceis assumed to be more accurate for a

specific target.

In existing works, the notion of context used here is related to the true state of the world,

meaning the true label of the object observed—a finite set of “contexts” partitions the set Ω,

leading to coarsening operations. The reliability of the source is thus defined for each context

A ⊆ Ω, representing the degree to which the source may be reliable, knowing that the true

state of the world lies in A. The model has been extended to other correction mechanisms (e.g.,

reinforcement) while an interpretation within the BBC model has been provided in [83].

The knowledge held by the agent is computed by:

(3.4) mΩ
Ag

[
mΩX

Ag ,mΩQ
Ag

]
=

(
∩L

l mΩQ
Ag[θl]↑ΩX×ΩQ ∩ mΩX

Ag[{Q}]↑ΩX×ΩQ
)↓ΩQ

where mΩX
Ag is the information provided by the source (which is conditional on the source reliability)

and mΩQ

Ag[θL] is a set of L masses describing the agent’s information about the reliability of the

source given a particular context θL. This equation corresponds to first deconditioning the agent’s

knowledge of reliability conditioned on the context and then combining with the source report

conditioned on the reliability.

In general, these methods are generalized by the BBC model and, by extension, by the XQR

model.

As the ”context” as referred to here is actually the true state of the variable of interest, it is

questionable whether this model captures context as per definitions discussed earlier, as most

definitions consider the context to be information that does not explicitly define the problem.

However, it can be argued that the sensing process takes space in the context of the true state of
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the world, which is consistent both with the approach of Mercier et al. [84] and with the distinction

into context-of and context-for. Alternatively, we can consider that the true state of the world is

the context-for estimation of the reliability of the source. With this in mind, this interpretation

is consistent with McCarthy’s formalism ist(c, p) - the proposition that the source is reliable (or

unreliable) holds true with greater (or lower) likelihood given some context.

3.3 Reasoning with context

Figure 3.4 illustrates the partitioning of the problem space. First let us consider the set of all

variables, which are somehow related to the fusion problem at hand, that we will partition to

reflect the notions of context-of and context-for introduced in Section 2.5.1. These can be partitioned

into the set of endogenous variables (or problem variables) X = {X1 . . . Xn} and the set of exogenous

variables. The former is then further partitioned into contextual variables C = {C1, . . . ,Cm} and

excluded variables E i that we decide not to consider in our model. The contextual variables C are

considered to provide context-for the problem described by X .

X1

X3

X2

C1

C2

E1

E2

R1

Q1

R2

Q2

C3

context-for

context-for

context-for

co
nt

ex
t-f

or

context-for

Context-of S1 Context-of S2

Context-of problem

Context-of observations

Figure 3.4: Extension of Steinberg’s model of exogenous and endogenous variables, accounting for
variables outside the context of the problem [52]

This partitioning is consistent with the one proposed by Steinberg and Bowman [52]: what

the authors call “universe of discourse” is called “context-of the problem” here. Rather than a

vocabulary shift, introducing the notion of context-of enables considering and distinguishing
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between more variables than the original model of [52]. Indeed, in a fusion problem involving

multiple partially reliable sources, we are not only concerned with the variables related to the

problem itself. As discussed in the previous section, we assume that the problem variables cannot

be observed directly, but through some observational model as described earlier. Hence, according

to the BBC and the XQR model a set of variables R= {R1, . . . ,Rn} describes the observations of

variables X provided by some partially reliable sources which behaviour is described by a set of

variables Q= {Q1, . . . ,Qn}. We consider these variables R and Q to lie outside the context-of the

problem but rather within the context-of the source. In a similar vein to context-of the problem,

some endogenous variables exist within the context-of the sources which provide context-for the

sources (such as the variable C3 in Figure 3.4). The definition of two contexts-of (the problem and

the sources) allows a formal connection between Steinberg and Bowman’s model and the BBC

model.

Furthermore, we may also consider that some exogenous variables within the context-of the

problem, may provide some context-for the source in addition to, or instead of, providing context-for

the problem (such as the variable C2 in Figure 3.4). As such, a contextual variable C is a variable

such that it is exogenous to the problem (and as such would not appear in the XQR model from

the previous section), but it is relevant or useful to the problem by providing some context-for.

From McCarthy’s notion of infinite contexts, we can always consider how each context con-

sidered exists within a greater context. In particular, while each source exists within its own

context (context-of Si), a greater context-of observations exists, which encapsulates contexts-of all

sources. Furthermore this entire partitioning takes place within the context-of the model, which

encapsulates all the variables and thus is the universe of discourse.

3.3.1 The contextual reasoning model

Here we consider the case where an exogenous variable may either constrain or provide information

on the values of the problem variable or the case where it may affect the behaviour of the

partially reliable source. The context is only of interest to the extent to which it may provide

clues for understanding the entities of interest. On the modelling level, it may be unclear what

the differences are in handling context and problem variables. We propose some assumptions

regarding the relationship between the variables in the previously defined XQR model and a new

contextual variable C. Although these assumptions will not be applicable for all scenarios, they

provide a good starting point and can be relaxed as required.

Problem variables are observed indirectly (X → R) Focus variables (and focus variables

only) are observed by partially reliable sources, and they are only observed indirectly. As such,

any estimate of a focus variable needs to be obtained through inference. A sound argument stands

that the same should apply for context variables; however, this is constrained as it could make the

model grow infinitely (as mentioned earlier, there is no context without context).

Source quality is not affected by the variable of interest X 6→ Q The source quality (or,

more specifically, the source behaviour selection) is not affected by the variable of interest. This
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does not mean that the source is equally reliable for every possible state of the variable of interest,

but rather that this relationship is represented by the source behaviours instead. For example,

the strength of the signal does not affect channel interference - but the source can still be more

accurate if the signal is strong.

Source quality can be affected by exogenous variables (C →Q) The source quality selec-

tion can be affected by contextual variables - for example, high traffic density can cause channel

interference for the signal discussed earlier. This is the major difference between this model

and the other partially reliable source models discussed in the previous section, as the source

behaviour may vary with context.

Context affects the variable of interest but not vice versa C → X , X ,Q 6→ C By definition,

context can affect the state of the variable of interest. It can be argued that that there are many

situations in which a context and variable of interest can be swapped. However, by definition of the

variable types, context needs to be useful, and problem variable is the target of inference - doing

this inference in reverse would make the context the problem variable. Consider the example

from [67], where aircraft speed may be the context for its type, and its type may be the context for

its speed. These are two different problems, and the selection of problem and context variables

depends on operational needs. If both type and speed need to be estimated, then they are both

problem variables.

Reasoning
system

mΩR mΩQ

mΩC
m↓ΩX

Metaknowledge

Observations Inference

e.g. mΩ
Q e.g. source behaviour

models

Figure 3.5: System-level view of the reasoning system with a set of inputs and outputs. Information
flow determines the difference between context variable and a variable of interest

Another way to view the differences between the context and focus variables in this model is

to consider the flow of information. Treating the entire reasoning model as a system, we consider

the metaknowledge and the relationships between variables as internal elements of the system.

Then we can consider the external information on source reports, source quality and context as

system inputs and the variables of interest as its outputs.

The consequence of this approach is that it constraints one of the key properties of this model:

a variable of interest cannot be observed directly and can only be obtained as a result of inference

(even if the inference is trivial, such as a perfect, reliable source). Furthermore, only variables of

interest are considered outputs.

With this in mind, we can extend the XQR model discussed in the previous section with the

fourth variable type C, which represents the contextual information, as per 3.6. In the belief

functions framework, this is modelled as an evidential network, as shown in Figure 3.7.
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X

R

Q

C

Figure 3.6: A variable of interest X and an associated report R provided by a source which
behaviour is determined by Q. The context variable C may affect either or both Q and X

X

R

Q

C

mXQR

mCQmCX

mR

mC

mQ

Figure 3.7: An evidential network, showing an implementation of the XQRC model

It is important to note that there is not necessarily a strict distinction between problem

variable and context variable as both represent the different aspects of the true state of the world,

and the divide is mainly if not entirely determined by the problem statement. In this case, we

distinguish between X and C through the assumption that the variable or variables X are the

variables of interest and as such on themselves should directly affect the report (i.e. the report is

conditionally independent on C provided X and Q). In other words, once a variable is reported on,

it becomes a focus variable.

Recall from an earlier discussion on context that from an information fusion perspective, the

definition of context implies that it must be useful. It can be shown that if the context is not

relevant, then the XQRC model is equivalent to the XQR model and, by extension, to the BBC

scheme.

On the following pages, for the sake of readability, A↑B is a shorthand for A↑ΩB and similarly

A↓B is a shorthand for A↓ΩB , where B is a variable, and ΩB is its frame of discernment.

Proposition 3.1 (Relevance of context). The XQRC model cannot be rewritten as XQR model

unless (mCX ⊕m↑X
C )↓X =ΩX and (mCQ ⊕m↑Q

C )↓Q =ΩQ or the postulate that mXQR has vacuous
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marginals is relaxed

Proof. Provided that mCQ has vacuous marginal on C and m↓X×Q
XQR =ΩX×Q

(3.5) (mCQ ⊕m↑Q
C )↓C = mC

(3.6) (m↑X
CQ ⊕m↑Q

CX )↓X = m↓X
CX

Note that m↓C
CQ = ΩC and mXQR has vacuous marginals on all singletons. Simplifying the

XQRC model to an XQR model is tantamount to removing the variable C by combining all the

valuations which contain it and aligned with the remaining variable set {X ,Q,R}. This is then

combined with the original valuation on {X ,Q,R}, mXQR .This results in the new mass m̂XQR

(3.7) m̂XQR = ((m↑Q
CX ⊕m↑X×Q

C ⊕m↑X
CQ)↓(X×Q)↑R)⊕mXQR

such that:

(3.8) m̂↓X
XQR =

[
(m↑Q

CX ⊕m↑X×Q
C ⊕mCQ↑X )↓(X×Q)↑R ⊕mXQR

]↓X =

=
[
(mCX ⊕m↑X

C )↓X↑R×Q ⊕mXQR

]↓X = (mCX ⊕m↑X
C )↓X

Hence m̂↓X
XQR =ΩX ⇐⇒ (mCX ⊕m↑X

C )↓X =ΩX , and the context is irrelevant to X . Same holds for(
mCQ ⊕m↑Q

C

)↓Q
and the vacuous marginal on Q. �

The implication of this proposition that if the context is not relevant to the uncertain reasoning

problem, the two models are equivalent. This is in line with some definitions of context discussed

earlier, namely the property of context relevance.

Another important property of this model is that the context information is not included twice

in the event that a single context affects the reasoning problem in more than one way. This is

ensured by the valuation network model but can be explicitly proven.

Proposition 3.2 (Inclusion-exclusion (No double counting of context)). If mCX or mCQ is vacuous

the impact of context can be marginalized on Q or X respectively and included in M. Let these be

denoted by m̂CQ = mCQ ⊕m↑Q
C and m̂CX = mCX ⊕m↑X

C . If the condition does not hold, m̂CQ and

m̂CX cannot be both included in this set, unless mC is vacuous.

Proof. Let M denote the set of all the valuations in the XQRC model, and mJ =⊕
m∈M denote

the full joint mass. Let M1 = {mXQR ,mQ ,mR} be the set of valuations included in the XQR model.

Consider also the sets of variables V = {X ,R,Q,C} and V1 = {X ,R,Q}. Assume mC is not vacuous.

(3.9) mJ = ⊕
m∈M

m↑V = ⊕
m∈M1

m↑V ⊕m↑V
CX ⊕m↑V

CQ ⊕m↑V
C

If mCQ is vacuous this becomes:

(3.10) mJ = ⊕
m∈M

m↑V = ⊕
m∈M1

m↑V ⊕ m̂↑V
CX ⊕m↑V

CQ = ⊕
m∈M1

m↑V ⊕ m̂↑V
CX

44



And the context variable can be removed

(3.11) mV1
J = ⊕

m∈M1

m↑V1 ⊕ m̂↑V1
CX

The same applies to m̂CQ if mCX is vacuous. If neither mCX nor mCQ are vacuous then the context

valuation mC is ncluded twice:

(3.12)
⊕

m∈M1

m↑V ⊕ m̂↑V
CX ⊕ m̂↑V

CQ = ⊕
m∈M1

m↑V ⊕m↑V
CX ⊕m↑V

C ⊕m↑V
CQ ⊕mC↑V 6= mJ

provided that mC is not vacuous. �

In other words we can consider the base model M1 and its extensions MX =M1 ∪ m̂CX and

MQ =M1 ∪ m̂CQ , where mCQ and mCX respectively are vacuous. Clearly the full model M 6=
MQ ∪MX as in that case the impact of context would be included twice.

Relation to contextual belief correction Recall from the discussion of contextual belief

correction that in CBC, the agent’s contextual knowledge is provided as a set of BBA’s conditioned

on a different context. Both relationships between context C and the variable of interest X and

quality Q can be interpreted as being obtained from a set of contextually conditional beliefs. In this

case we can consider mCX = ∩C
i mX [ci]↑C×X and mCQ = ∩C

i mQ[ci]↑C×Q . As such, this remains

consistent with McCarthy context formalisation - a belief that holds true in some context c.

However, the introduction of a new contextual variable makes it possible to consider that variable

to be context-for in Gong’s interpretation, as opposed to context-of provided by the CBC.

3.3.2 Illustration: Vessel behaviour analysis example

Recall the example of the AIS broadcast discussed first in Section 3.2.

The introduced contextual variable C represents weather and takes values in ΩC = {Wg,Wb},

corresponding to good and bad weather states, respectively. We consider two uncertain, semantic

expressions describing the impact the contextual information on inference regarding the AIS

transmission status:

1. Bad weather reduces the likelihood that the vessel master will disable the AIS transmission

(for better prevention of collisions with other ships)

2. Bad weather reduces the likelihood that the broadcasted AIS signal will be received correctly.

3.3.2.1 Context as uncertain information source - context-for problem

The statement Bad weather reduces the likelihood that the vessel master will disable the AIS

transmission (1) can reasonably be only interpreted as evidence or constraint on the true state of

the world.

The logical relationship can be written as a material implication: (C =Wb) =⇒ (X = t). Note,

that this corresponds to a belief in X = t, conditional on C = Wb. This context will provide no
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constraint on X in the event that the weather is good. Furthermore uncertainty must be included:

the captain is less likely to disable the AIS; this relationship is by no means certain. As such the

truth table associated with the above logical expression can be encoded in the focal set defined

over ΩC ×ΩX :

F1 =
Wb × t

Wg ×ΩX

 .

The relationship between the context C and the variable of interest X can be then represented by

the belief function mc such that

mCX (F1)= γ1

mCX (ΩC ×ΩX )= 1−γ1

for some value of γ1 ∈ (0,1), which represents the degree of belief in the hypothesis that this

relationship holds.

Treating context as evidence is the most natural interpretation of such information. In general,

it could be argued that any relevant context of a situation can be interpreted in this manner. For

instance, we previously discussed how context might affect quality in this particular scenario (Bad

weather reduces the likelihood that the broadcasted AIS signal will be received correctly (2)); we

could interpret this instead as direct evidence on the AIS being broadcasted (C =Wb) =⇒ (X = t).

Note that this is the same logical expression as in the case of the statement (1).

In many reasoning systems where the reporting models and quality of the source are not

modelled explicitly, this could be the default method. The logic behind this approach is rooted in

the probabilistic thinking model - a reduction in our belief in the hypothesis that the AIS is not

being broadcasted can be treated as a belief in its converse. However, this approach fails to take

advantage of the power of evidential reasoning, which allows for explicit modelling of ignorance.

3.3.2.2 Context and information quality - context-for source

The alternative way in which context can be utilised for inference in this model is by affecting

the source quality. Once again we reinterpret the statement Bad weather reduces the likelihood

that the broadcasted AIS signal will be received correctly (2) and this time represent it to support

the belief in Q = l. This is represented by the logical expression (C =Wb) =⇒ (Q = l) and hence

encoded in the mass function defined over ΩC ×ΩQ :

mCQ(F2)= γ2

mCQ(ΩC ×ΩQ)= 1−γ2

where the focal set F2 corresponds to the truth table of the above logical expression:

F2 =
Wb × l

Wg ×ΩQ

 .

The XQRC model allows distinguishing between context-for source and for the problem. By

that, it allows explicitly encoding the independent behaviours of the source (here the AIS sensor)
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and the relevant agent with the situation of interest (here the ship captain). Both may impact

the reception of the AIS signal, which in both cases is caused by the context (here the weather).

The contextual variable here lies within the context of the problem, and as such, can act both as a

context-for problem (affecting variables within the context of the problem) and context-for source.

We could contrast this with a variable in context-of source acting as a context-for source, which

is not related to the context of the missing vessel - such as electrical malfunctions near the AIS

receiver, which may impact its quality.

3.4 Properties of contextual reasoning model

In this section, some topics associated with inference on contextual information are discussed.

These, in particular, are concerned with modularity and scalability, expressiveness and inter-

pretability or explainability.

To consider the added value of contextual reasoning, we will compare the original model where

the context-for the problem is not considered whatsoever to implementations utilising context-for

problem as well as context-for source. The rationale behind this is that utilisation of context-for

problem only corresponds simply to the inclusion of additional sources - and while it may bring

about some advantages of contextual reasoning, it will not fully exploit the added value.

3.4.1 Context-of only - contextual belief correction

In the most basic model, the context-for the problem, i.e. the weather variable is not considered at

all. We still operate in the context-of the AIS channel behaviour, which can be represented either

using Mercier et al. contextual belief correction or the XQR model as we have chosen to do.

Consider the AIS example with observations: mR(¬r)= 1 and mQ(l)=λ, mQ(¬l)= 1−λ, which

means that the AIS signal was not received and AIS loss rate is λ.

Let m1 be the joint mXQR ⊕mQ ⊕mR

m1({¬l×¬r×¬t})= 1−λ
m1({l×¬r×ΩX })=λ

This joint valuation covers the space of three variables. It can be marginalized on the variable

of interest X to finish the inference process.

m↓X
1 (¬t)= 1−λ

m↓X
1 (ΩX )=λ

3.4.2 Context-for problem

Using context-for problem only allows better inference (compared to no contextual variables); and

leverages the modularity and scalability advantages provided by valuation networks. This, to

some extent, helps the interpretability of the model.
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This corresponds to the inclusion of additional two mass functions, the joint mCX representing

the impact of weather as context-for the internal variable of interest (or alternatively, using

semantics similar to these in CBC, the conditional knowledge about X given the context) and mC.

As these masses can be marginalized to provide information on X directly, this corresponds closely

to the method that would be used to include this additional context-for variable in the absence of a

specific contextual reasoning model.

mCX ({Wb × t,Wg × t,Wg ×¬t})= γ1

mCX (ΩC ×ΩX )= 1−γ1

Combined with some observation on context mC(Wb)=µ, mC(ΩC)= 1−µ and marginalized on

X this corresponds to an additional piece of evidence on X .

(mCX ⊕mC)↓X (t)= γ1λ

(mCX ⊕mC)↓X (ΩX )= 1−γ1λ

Which can be combined with the previous result m2 = m1 ⊕ (mC ⊕mCX )↑Q

m↓X
2 (;)= γ1µ(1−λ)

m↓X
2 (t)= γ1µλ

m↓X
2 (¬t)= (1−γ1µ)(1−λ)

m↓X
2 (ΩX )= (1−γ1µ)λ

The improvement in inference is straightforward, as it is possible to leverage a greater amount

of information - in a manner similar to simply exploiting another source.

Consider that we can simply add these two masses as a module. Scalability is a major issue

evidential reasoning due to the additional memory and computational costs associated with the

growing frame of discernment; this issue is exacerbated in multi-dimensional belief functions due

to the rate at which the sizes of frames of discernment can increase. Shenoy-Shafer’s architecture

of valuation networks [51] partially addresses this problem by exploiting binary join trees, which

keep the instantaneous size of a single frame of discernment under control, as discussed briefly in

Section 2.4.5. Instead of marginalizing the joint in the previous subsection, we could add the other

contextual reasoning mass mCX instead, or possibly another source report.

This makes it possible to obtain separate inferences with and without this additional context

for the problem, which in turn makes it possible to accurately assess the impact of the context on

the solution.

3.4.3 Context-for source

Inclusion of context-for sources in addition to the context-for problem allows a greater expressive-

ness (through diffidence). As per the previous case, this corresponds to the inclusion of the masses

corresponding to the mCQ , as well as the report on contextual variable mC.
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As per the previous case,we have mass function mCQ

mCQ({Wb × l,Wg × l,Wg ×¬l})= γ2

mCQ(ΩC ×ΩQ)= 1−γ2

This can be directly combined with m1 such that m3 = m1 ⊕mCQ . In this scenario, we cannot

obtain an inference on X from context only.

mCQ ⊕m1({Wg ×¬l×¬r×¬t})= γ2(1−λ)

mCQ ⊕m1({l×¬r×ΩX ×ΩC})= γ2λ

mCQ ⊕m1({¬l×¬r×¬t×ΩC})= (1−γ2)(1−λ)

mCQ ⊕m1({l×¬r×ΩX ×ΩC})= (1−γ2)λ

Combined with the same observation on context as before, and marginalized on X

m↓X
3 (;)= γ2µ(1−λ)

m↓X
3 (¬t)= (1−γ2µ)(1−λ)

m↓X
3 (ΩX )=λ

Expressiveness An interesting property of this approach to contextual information exploitation

is the increased expressiveness. In particular consider the marginal on X : m↓X
3 and compare it

to the same marginal prior to the introduction of context-for source: m↓X
1 . The relation between

the two has been shown through a sequence of conjunctive combination operations, however it

can also be shown that there does not exist a proper mass m such that m⊕m↓X
1 = m↓X

3 . Note that

m1(ΩX )= m3(ΩX )

Proof. For any two mass functions m1 and m2

By the conjunctive rule of combination:

(m1 ⊕m2)(Ω)= ∑
Ω=A∩B

m1(A)m2(B)= m1(Ω)m2(Ω).

Therefore (m1 ⊕m2)(Ω)= m1(Ω) ⇐⇒ m2(Ω)= 1.

Also by CRC: If m2(Ω)= 1 and m2 is a proper mass function then: mJ = m1.

Therefore no proper mass function exists satisfying m1(Ω)= (m1 ⊕m2)(Ω) and m1 6= (m1 ⊕m2)

�

An interesting point to note is that the normalized m↓X
2 is a discounted m↓X

1 . Thus as expected,

this particular simple example of contextual reasoning implements the discounting operation

(contextual discounting since it only affects the source report R =¬r and would have no effect on

mass assigned to R = r).
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Context-for source as diffidence Canonical decomposition and decomposition of belief func-

tions [25] can be used to support interpretability. Consider the difference between m1 and m3

We have shown that there does not exist a proper bba m such that m1 ⊕m = m3. We can find

the pseudo bba m3−1 such that m3−1 ⊕m1 = m3 which is one way of evaluating the "impact" of

valuation mCQ . The commonality function is:

q2−1(Ω)= 1

q2−1(¬t)= 1−γ2µ(1−λ)

q2−1(;)= 1

from which we naturally obtain the pseudo-bba m2−1

m2−1(Ω)= 1

m2−1(¬t)=−γ2µ(1−λ)=−m2(;)

m2−1(;)= γ2µ(1−λ)= m2(;)

The negative mass can be interpreted as a diffidence mass as referred to in [85] or belief absorption

[25] and the mass on an empty set corresponds to inconsistency or conflict. For Dubois et al. [85]

diffidence represents bias or doubt. In this case, we observe a mass function inducing diffidence,

where it can corresponds to negative evidence on source quality and as such as a form of doubt

about the information this source provides. Overall the combination m1 ⊕m2−1 corresponds to

transfer of mass from m1(¬t) to m2(;).

An interesting remark is that the overall information available about the variable of interest

is reduced, seemingly conflicting with the principle of information monotonicity in uncertain

information fusion. To recall Dubois [1] states that given two sets of non-disagreeing (consistent)

agents with providing less information than the other, fusing the less informative set should not

provide a result more informative than fusing the other.

If we consider the two sets of agents, or in this model the set of valuations, to be the AIS report

only A1 = {m,mR} and the set of AIS report and contextual information A2 = {m,mR ,mC,mCQ}

they seem non-conflicting. It is, however important to note that they are both non-informative in

the absence of meta-information on the source quality. When the two sets are augmented with

the quality valuation mQ , which places a non-zero mass on Q = l, the set A1 remains consistent,

whereas set A2 does not. Specifically (∩A2) (;) 6= 0. As such, despite the set A2 containing more

information than A1 (as A1 ⊂ A2), it is acceptable that its fusion result will be less informative

without violating the information monotonicity rule. However, in an implementation without

conflict propagation, i.e. normalizing after every step in the valuation network, this conflict will not

be visible at the final node. Furthermore, despite inconsistencies within the set A2, the normalized

result of inference on X will be n-consistent [86] for any n, meaning that inconsistencies in the

knowledge base do not propagate into the output.
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3.4.4 Combined models

Finally, we will consider models including both context-for source and context-for problem in

different forms

Context-for both source and problem We may also consider the case where both context-for

source and context-for problem are taken into account, m4 = m3 ⊕ (mC ⊕mCX )↑Q :

m↓X
4 (;)= (1−λ)µ[γ2 + (1−γ2)γ1]

m↓X
4 (t)= γ1µλ

m↓X
4 (¬t)= (1−λ)[1−µ+µ(1−γ1)(1−γ2)]

m↓X
4 (ΩX )=λ[1−µ+µ(1−γ1)]

Treating context-for source as context-for problem Furthermore, let us recall how in

absence of the contextual model, we could consider all contextual rules as evidence on X or

as context-for problem. As such, the statement Bad weather reduces the likelihood that the

broadcasted AIS signal will be received correctly can be interpreted as C → X .

Thus consider the mass function mC×X
D capturing this knowledge:

mC×X
D ({Wb × t,Wg × t,Wg ×¬t})= γ2

mC×X
D (ΩC ×ΩX )= 1−γ2

Thus let m5 = m1⊕⊕mC×X
D and m6 = m1⊕mC×X

D ⊕mCX , corresponding to the cases where the

context-for source is interpreted as context-for problem.

With this, we have a total of six possible models, as displayed in Table 3.2.

Table 3.2: The six reasoning models

Mass Description

m1 No context-for
m2 Context-for problem only
m3 Context-for source context only
m4 Both CF-source and CF-problem
m5 CF-source interpreted as CF-problem
m6 As m5, plus CF-problem

3.4.5 Interpretability

There are several ways in which the methods laid out in this chapter help interpretability and

explainability of the results. One of the most obvious ones is the modularity and scalability

discussed earlier. The modular nature of the model means that it is possible to compute and store

an inference on the variable of interest at different stages of the computation and use that to track

the changes in the marginal.
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Consider λ= 0.2, µ= 0.6, γ1 = 0.5 and γ2 = 0.3. The belief masses m1, . . . ,m↓X
6 computed with

these parameters are displayed in Figure 3.8 and in Table 3.3.

For conciseness from this point onward, mn refers to m↓X
n unless specified otherwise. The

relatively non-intensive computation of the intermediary masses allows straightforward analysis.

It can be easily seen that the introduction of context-for source acts as a discounting operation

(m1 → m3), whereas using context to place constraints on the variable of interest is tantamount

to the introduction of another information source (m1 → m2). Combining both (m4) increases the

belief in X = t. Although it makes sense provided one understands the model (due to conflict

reduction), it may seem counter-intuitive at first as a (contextual) discounting operation increases

the degree of belief in some hypothesis.

The final mass m5 represents treating the contextual information on quality as constraining

the variable of interest instead. It is of interest as it represents a more classical approach to

information aggregation, and as discussed earlier, this could be the default method in some

systems not fully utilising the evidential framework ability to model ignorance. As such, the

ignorance m5(Ω) is the lowest.
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Figure 3.8: Ternary plot showing the relationship between different contextual models for λ= 0.2,
µ= 0.6, γ1 = 0.5 and γ2 = 0.3
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Table 3.3: Masses m1 through to m5, unnormalized and normalized

m1 m2 m3 m4 m5 m6

; 0 0.24 0 0.144 0 0.312 0 0.144 0 0.312 0
t 0 0.06 0.079 0 0 0.06 0.087 0.036 0.0421 0.078 0.113
¬t 0.8 0.56 0.74 0.656 0.77 0.488 0.71 0.656 0.7664 0.488 0.709
Ω 0.2 0.14 0.18 0.2 0.23 0.14 0.203 0.164 0.1916 0.122 0.1773

Table 3.4: Discord and nonspecificity for normalized and unnormalized masses m1, m2 and m6

Unnormalized Normalized

NS(·) m(2)(;) NS(·) m(2)(;)

m1 λ 0 λ 0
m3 λ C; λ

1−K 0
m5 λ(1−γ2µ) C;+2λµγ2(1−γ)(1−γ2µ) λ(1−γ2µ)

1−K
2λµγ2(1−γ)(1−γ2µ)

(1−K)2

Decomposition of belief functions We have discussed how the transfer of mass associated

with the inclusion of external conflict can be interpreted as a diffidence function. However, we can

continue with the decomposition-based approach for a better understanding of the results.

Similar analysis can be performed for the changes from m1 to m4 by computing m4−1 and then

performing canonical decomposition to view the individual components. These can be shown to be

m3−1 as computed earlier (the component induced by mCQ) and a simple support function on t

induced by mCX .

Difference between context-for source and problem interpretation Consider the two

interpretations mCQ and mC×X
D of the same "opinion" on the impact of context again. The former

affects the quality and implements contextual reasoning as discussed throughout this chapter;

the latter can be thought of as direct inference. Consider the difference between m3 = m1 ⊕mCQ ⊕
mC(Wb) and m5 = m1 ⊕mC×X

D ⊕mC(Wb), i.e. the interpretations of the same piece of contextual

information as either context-for source or problem. We can use the uncertainty quantification

methods from Section 2.3 to discuss the difference between the two approaches in more detail.

By inspection we can see that the only difference between m5 and m3 is some mass being

transferred from the universal set Ω (m3) to t (m5). By definition this implies an increase in

discord and reduction in ambiguity. Table 3.4 shows the nonspecificity (NS(m)=∑
m(A)log2|A|,

which becomes NS(m)= m(Ω) when |Ω | = 2) and m(2)(;) values for normalized and unnormalized

masses m1, m3 and m5. Note that in unnormalized case a significant proportion of auto-conflict is

due to the original mass on the empty set. For clarity let K = m(;)= (1−λ)µγ2 and C; = 2K −K2

There exist some interesting albeit expected relationships. Particularly it can be seen that

between m1 and normalized m3 there is no increase in m(2); which acts as a measure of internal

conflict; in the unnormalized case this is equivalent to the explicit conflict m(;) instead. However,

an increase in ambiguity can be seen, as we know m3 to be less informative than m1. On the

contrary, in the case of m5, the ambiguity decreases, but at the cost of increasing the internal
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conflict. In the unnormalized case, the measure is composed of both m(;) and the additional

internal conflict.

This brings us to another important result from the decision making perspective: since m3

remains a simple support function on ¬t, the only non-universal focal set which can have a

non-zero belief mass is ¬t - assuming one of the usual decision making approaches (such as TBM

maximisation of pignistic probability [31]), no vacuous decision and λ,γ2,µ< 1, m3 will always

yield the decision X =¬t. In the case of m5 however there exist values of λ,γ2,µ which result in

the decision X =¬t.

3.4.6 Further examples of source behaviour and contextual reasoning models

In this section, additional source reasoning models exhibiting more complex behaviours are

discussed. First of all we consider a report provided by an UAV which is generated using one of

two sensors with different properties. The context affects the choice of the sensor, as well as the

reasoning. In addition, we also discuss two human intelligence examples - a report obtained by

questioning a witness and a report provided by a trained analyst.

3.4.6.1 Vessel detection and classification

The following example is very loosely based on the typical sensors available to an aerial UAV.

Consider an aerial UAV used for marine surveillance, running a detection and classification task

using two sensors (e.g. EO and IR). We assume that the classification task exploits data from

one or the other but not both - for example, for some reason, the construction does not allow

simultaneous usage of both sensors. The two modes of operation can be referred to as mode 1 and

mode 2. On top of the different operational models, let there be a chance of a false negative in

mode 1 and a chance of false positive in mode 2. Context variables such as time of day and weather

can affect either or both mode selection and error rate.

Let the variable of interest X denote the vessel type and be defined on the frameΩX = {c, f , o,n}

denoting cargo, fishing, other and none. Let the report be produced on the same frame so that

ΩR = ΩX . The different modes of operation are described as follows: in mode 1, it is possible

to distinguish all the different types with a chance of false negative, whereas in mode 2, it is

possible to distinguish cargo from others; however, a chance of false positive exists. This model

describes a typical situation where a high-quality sensor can be used in good conditions, but a

less reliable sensor is available when the conditions are subpar.This implies total of 4 different

behavioural models - h11 (mode 1, normal), h12 (mode 1, erratic), h21 (mode 2, normal) and h22

(mode 2, erratic). Therefore the quality-behaviour variable, Q takes its values in the frame of

discernment ΩQ = {h11,h12,h21,h22}

Furthermore, it is reasonable that there should be a relation between C and X . Some possible

relationships could be due to ships, in general, less likely to be in the surveyed location in bad

weather, fishing ships less likely to be at sea at night. This makes this model consistent with the

generalized model shown in Figure 3.6. The relationship between the variables Q, R and X is
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determined by the conditional mass assignment mS which follows from Equation 3.2 provided Γ

from Table 3.5.

Table 3.5: Multi-valued mapping Γ describing the interpretation of each value of the report R
given the hypothesis H

Γ
Q ∈ΩQ

h11 h12 h21 h22

R ∈ΩR

c c c c {c,n}
f f f { f , o} { f , o,n}
o o o { f , o} { f , o,n}
n n {c, f , o,n} n n

The context variables C1 and C2 which refer to weather (C1) and the time of day (C2) are

defined on the frames ΩC1 = {g,b} and ΩC2 = {d,n}, denoting good, bad, day and night respectively.

As such, we denote the following relationships between the variables:

C1 = d →Q ∈ {h11,h12}

C1 = n →Q ∈ {h21,h22}

C2 = g →Q ∈ {h11,h21}

C2 = b →Q ∈ {h12,h22}

These can be encoded using valuations mC1Q and mC2Q . For simplicity sake, let us assume

that only C1 has an effect on X such that

C1 = d → X =¬ f

and this relationship is modelled by valuation mCX . The model using these four valuations

corresponds to the valuation network shown in Figure 3.9

X

R

Q

C2C1

mC1Q mC2QmCX

mS X in

mR

mC1 mC2

Figure 3.9: Valuation network for inference on the report provided by the aerial UAV for vessel
detection and classification model
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3.4.6.2 Human intelligence examples

In general, contrary to physical sensors, human intelligence cannot be physically modelled. Some

behaviour models could be generated by analysts for human intelligence reports, e.g. accuracy

regarding the frame of discernment, likelihood of truth-telling etc. For instance, provided a

witness report or other kind of human intelligence source, an analyst could elicit a set of potential

behaviour models, potential probability distribution and/or set of variables affecting the selection

of the model. However, when the source report accessible to us is already a "full analyst report",

there is little processing that can be done.

In this case, it is assumed that the frame of discernment of the agent report is consistent with

the frame of discernment of variable of interest. Otherwise (if the agent reports on some other

variable), some relationship between the two must be derived lest the report is insignificant to the

problem at hand. Although the ’behaviour model’ of the analyst is unknown it seems reasonable

to treat her as a rational agent reporting directly on a variable of interest. Therefore, the only

natural way to model the quality of the agent in this situation is via Shafer’s discounting model.

One key problem with an "analyst" type of source is that, whatever its report, it is a result of

another unknown inference process. This means that there is going to be a risk of double counting

as it cannot be easily verified whether the information used to produce the analyst report is or is

not overlapping with the information available to the other VBS. Some discussion on this topic

takes place in a later section. Here we discuss simple human intelligence examples, one including

a witness report undergoing appropriate modelling and the other being a simple report provided

by an analyst.

HUMINT example 1: Simple witness report Consider a witness reporting on a type of ship

she or he has spotted. Let the witness report on the frame ΩR = {c, f , o} and the frame of interest

be ΩX = {c, f , o,n}, refering to cargo, fishing, other and none.An analyst may read the witness

statement and come to the following conclusions:

1. It is possible that the witness is entirely correct and truthful ΓA = A for all A ∈ΩR ∩ΩX

2. There is some chance that the witness is lying either about the type of the ship or about

having seen the ship at all ΓA =¬A (note that the set ¬A includes none for every A in ΩR)

3. There is a chance that the witness is truthful, but has misclassified a tanker (which belongs

to the other class) as cargo Γc = {c, o},ΓA = A if A 6= c

4. There is a chance that regardless of what the witness says, he or she does not actually

describe the vessel of interest ΓA = {ΩX } for all A ∈ΩR

And the analyst provides some belief distribution on Q ∈ {H1,H2,H3,H4} corresponding to the four

behavioural hypotheses above. Using these four behaviour classes, inference can take place as per

the previous examples
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HUMINT example 2: Analyst report This is an example of a more complex analyst report

coming with justification. Consider the following report: "The images taken by the UAV have been

analysed, and a vessel has been certainly spotted in area XYZ. There is strong evidence that it is

a cargo vessel (60%). We can verify that it certainly is not a fishing vessel.". The key difference

between this and the previous one is that some information about the inference process is provided.

As such it makes sense that this source could be readily combined with the witness statements

discussed earlier, whereas double-counting could occur if it were to be combined with the UAV

reports. However, if new evidence is obtained regarding the quality of the UAV report, it should

also affect the quality of the analyst report in question (assuming that this evidence has not been

available to the analyst).

3.5 Dependence relationships between sources

Another area of interest when discussing source behaviours is there potential inter-dependency.

In this section, we discuss possible scenarios where data cross-contamination may occur, namely

when the sources to be combined are not independent. This section is laid out as follows. First,

we consider trivial examples with consonant belief assignments provided by the reports - i.e. one

of the reports is a strictly less informative variant of the other. Different combination methods,

taking into account the dependencies and otherwise, are compared. At the next stage, we consider

a more complex case where the strict information content ordering no longer holds. We propose

a method of idempotent combination of masses using an appropriately built evidential network

exploiting the conjunctive rule of combination only. This method is easier to implement than the

cautious rule, as the cautious rule cannot directly be used in a valuation network, but at the cost

of being less than or equally informative. We extend this concept to the sources where partial

dependency may or may not exist. Furthermore, we comment on the general fundamental property

that the result of fusion should be more informative than either of the sources and discuss whether

it should be applicable in all the cases, in particular when the sources are known to be dependent.

3.5.1 Consonant sources

Here the basic examples of interdependent reports are considered. To begin with, consider 2

sources providing reports R1 and R2 reporting variable of interest X . The most typical example of

double counting of information occurs when the same piece of information is taken into account

twice for inference resulting in bias and overly confident result. This can be generalized to the

case where R2 is not necessarily identical to R1, but it is conditionally independent from X given

R1. This general model is shown in Figure 3.10. Note that this model includes a dashed and a

dotted line. The dashed line represents the "true" model, i.e. the process by which this report is

actually generated. In a fusion scenario, the knowledge of conditional independence of R2 from X

given R1 means that for inference X is conditionally independent on R2 given R1. If the purpose is

to make inference on X , R2 could be safely ignored. As such, we must assume that it is not known
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which of the two reports is the original or alternatively which of the two is a better approximation

of X. As such, for the purpose of inference on X, the model with the dotted line is considered.

X

R1 R2

Figure 3.10: Two reports R1 and R2 such that the report R2 is conditionally independent on X
given R1

Let us illustrate this first with a simplified version of the AIS example used throughout

this chapter. In this trivial model the frame of the variable of interest remains unchanged

ΩX = {On,O f f } but the frame of discernment of the report is set to be the same as the frame of

the variable of interest - both R1 and R2 are now defined on the frame ΩX and Ri =On ↔ X =On,

Ri = O f f ↔ X = O f f . This means the report can be treated as a perfect source with no frame

alignment.

In the most simple example where the two sources are identical, we can consider R2 to be

inference on X using the same model relating R1 and X . In other words, R2 is not a real report,

but rather a result of some reasoning process based on R1. If the two were to be combined, the

result would be overly confident and clearly biased. As such, only one of the reports can be used

for the combination using the conjunctive rule. The selection of the source plays no effect as the

information they provide is identical.

This becomes more complicated when the general case is taken into account, and the informa-

tion provided by R2 is not necessarily identical to that provided by R1. This could be interpreted

as R2 being the inference on X using a different behaviour model. This is illustrated in the first

part of this section using two simple examples. First, we consider one where the two reports

are consonant and secondly one where they are not. Furthermore, it is shown that both of these

examples can be modelled using the XQR source model

In the first example, consider the second report, R2, being a more cautious interpretation of

the first report, e.g. due to Shafer discounting.

The following R1 corresponds to R = of f in the original model from Section 3.3.2. To keep the

results concise, we change the meaning of λ to refer to the probability of correct transmission

rather than loss rate in this example.

mR1 =
λ R1 = of f

1−λ R1 =Ω

Consider now the report R2 which is the outcome of Shafer discounting of the initial report
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using discounting rate µ. As such we obtain the following mass on R2.

mR2 =
µλ R2 = of f

1−µλ R2 =Ω

Since R2 is conditioned on R1 consider the joint distribution induced by R1 and R2 on Ω×Ω.

Since R2 is a less committed interpretation of R1 it is only informative if R1 is informative.

mR1×R2 =


λ(1−µ) R1 = of f ×R2 = of f

λµ R1 = of f ×R2 =Ω
1−λ R1 =Ω×R2 =Ω

At this point, let us discuss the different methods of combining the two non-distinct bodies

of evidence. As we know and as is shown later in this section, Dempster’s conjunctive rule of

combination results in a mass function more committed than either of the two sources, a behaviour

which is incorrect for non-distinct bodies of evidence. The disjunctive combination rule, on the

contrary, produces an under-committed result. One straightforward solution is to simply choose

one or the other. Furthermore, Dubois and Prade [23] proposed variations of conjunctive rule (and

by extension, other set-operation based rules), which can be used if the relationship between the

two dependent mass functions is known, i.e. if the joint mass function can be obtained from the

marginals. Finally, we have the cautious rule (Equation 2.26), which can be applied even when

the relationship between the sources is not known. The comparison of all these rules is shown in

Table 3.6

Table 3.6: Combination of the two dependent sources using a variety of combination rules: conjunc-
tive rule of combination (CRC), disjunctive (DRC), Dubois-Prade conjunctive and disjunctive rules
for dependent sources and cautious rule of combination; numerical results provided for λ= 0.8
and µ= 0.7

mR1 mR2 CRC DRC DP-C DP-D Cautious

of f
λ λµ 1− [(

1−λµ)
)
(1−λ))

]
λ2µ λ λµ λ

0.8 0.56 0.912 0.448 0.8 0.56 0.8

Ω
1−λ 1−λµ (1−λµ)(1−λ) 1−λ2µ 1−λ 1−λµ 1−λ
0.2 0.44 0.088 0.552 0.2 0.44 0.2

It is clear that for this example, all the combination rules, bar the disjunctive rule of combina-

tion, can be generalized as a weighted conjunctive combination rule mα
1 ⊕mβ

2 where the superscript

corresponds to Shafer discounting rate. This, in turn, naturally corresponds to the source model

discussed earlier (with one behaviour model (perfect source) on some report variable inducing R1

and the other inducing R2. This is useful as it makes it possible to perform a fusion of dependant

sources without the implementation of alternative combination rules.

The reason why this is possible in this case is that the secondary source R2 is entirely driven

by R1 and, as such, does not contain any information not already present in R1. The cautious rule

of combination can be interpreted as an implementation of the inclusion-exclusion principle in
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terms of confidence and diffidence components of belief functions: confidence components of the

two belief functions are combined with the diffidence equal to their intersection, as such, in the

case where R1 contains R2, this is simply equivalent to the selection of one over the other.

3.5.2 Non-consonant reports

Unfortunately, and as expected, it can be shown that this trivial result does not necessarily extend

to cases where the two sources provide unique information. The following example can be used to

illustrate this. Consider the same source 1 inducing report R1 as per the previous example. The

second dependent source R2 is obtained by moving a proportion of mass α from of f to on. Hence

the joint mass

mR1×R2 =


λα R1 = of f ×R2 = on

λ(1−α) R1 = of f ×R2 = of f

1−λ R1 =Ω×R2 =Ω

Table 3.7: Combination of the two dependent sources using a variety of combination rules: numeri-
cal results provided for λ= 0.8 and α= 0.25

m1 m2 CRC DRC DP-C DP-D Cautious

; 0 0 αλ2 0 αλ 0 λ2α
1−λ+λα

0 0 0.16 0 0.2 0 0.4

on
0 αλ αλ(1−λ) 0 0 0 λα(1−λ)

1−λ+λα
0 0.2 0.04 0 0 0 0.1

of f
λ (1−α)λ 1− ... (1−α)λ2 (1−α)λ (1−α)λ λ(1−λ)

1−λ+λα
0.8 0.6 0.76 0.48 0.6 0.6 0.4

ΩX
1−λ 1−λ (1−λ)2 1− (1−α)λ2 1−λ 1−λ+αλ (1−λ)2

1−λ+λα
0.2 0.2 0.04 0.52 0.2 0.4 0.1

We can see some significant differences between the different combination rules and fur-

thermore see that it is not necessarily possible to replace the rules with a series of conjunctive

combinations. This brings up the question of the optimal way to discount or otherwise model the

reliability of the sources in such a way that they can be combined using conjunctive combination

rules without overstating the evidence. By the optimum method, it is implied to retain the maxi-

mum amount of information from each source (as it is trivial to perform this kind of combination

in a suboptimal way by simply ignoring all but one source).

For one the two reports R1 and R2 can be considered two interpretations of the same source

report, consistent with the partially reliable source model. In order to be able to combine them

when the exact relationship is unknown a different approach is required.

3.5.3 Idempotent combination of evidence using VBS

In this section it is shown that it is possible to combine two pieces of evidence in an idempotent

manner using consecutive conjunctive combinations, which can be implemented in VBS. This
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X

m1 m2

QR1 R2

mR1 mR2mQ

Figure 3.11: A valuation network implementing idempotent combination of reports R1 and R2

result is noted by Pichon et al. in [87], where it is stated that the weighted average of several

sources is a special case of the behaviour-based correction model. We consider the two reports, R1

and R2 to be two interpretations of a single source report.

Consider the valuation network displayed in Figure 3.11. We have the two reports represented

by variable nodes R1 and R2 and defined in valuations mR1 and r2. X is, per usual, the variable of

interest. The variable Q represents the "modes of operation" of the singular source. Here let it be

defined Q ∈ {1,2}, corresponding to selection of either of the two reports and driven by the valuation

mQ . Consider X ∈ΩX = {X ,¬X }, R1 ∈Ω1 = {X1,¬X1} and R2 ∈Ω2 = {X2,¬X2}. The masses m1 and

m2, defined on the frames of discernment R1 × X ×Q and R2 × X ×Q respectively represent the

following relations:

R1 = X1 ↔ X = X if Q = 1

R2 = X2 ↔ X = X if Q = 2

Now it can be shown that this combination (the inference on X) is idempotent if mQ is dogmatic.

General solution Let us show the general solution of the most basic realization of such a

network.

The mass functions m1 and m2 have their entire mass assigned to a single focal set F1 and F2

respectively such that

F1 =


1× X1 × X

1×¬X1 ×¬X

2×Ω1 ×ΩX

 F2 =


2× X2 × X

2×¬X2 ×¬X

1×Ω2 ×ΩX


Note that for sake of saving space the notation used includes Cartesian products of the sets when

appropriate, e.g. 1×ΩX = {1× X ,1×¬X }.

Let the masses mR1 and mR2 be defined as follows

mR1(θ)=


r1 if θ = X1

r̄1 if θ =¬X1

rω1 if θ = {X1,¬X1}

mR2(θ)=


r2 if θ = X2

r̄2 if θ =¬X2

rω2 if θ = {X2,¬X2}
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And the mass on Q:

mQ(θ)=


s1 if θ = 1

s2 if θ = 2

sω if θ = {1,2}

Which after combination yields the following marginal on X

(3.13)

m(X )=r1r2 + s1(r1 r̄2 + r1rω2 )+ s2(r̄1r2 + rω1 r2)

=r1r2 + s1r1(1− r2)+ s2r2(1− r1)

=s1r1 + s2r2 + sωr1r2

m(¬X )=r̄1 r̄2 + s1(r̄1r2 + r̄1rω2 )+ s2(r1 r̄2 + r̄1rω2 )

=s1 r̄1 + s2 r̄2 + sω r̄1 r̄2

m(ΩX )=s1rω1 + s2rω2+
+ sω(rω1 rω2 + r1 r̄2 + r1rω2 + r̄1r2 + r̄1rω2 + rω1 r2 + rω1 r̄2)

Proof of idempotence In this section, we show that this combination is idempotent for n = 2

provided that mQ is dogmatic.

Proof. Consider the dogmatic distribution mQ such that s2 = 1− s1 and sω = 0. In this case

Equation system 3.13 simplifies to:

(3.14)

m(X )=s1r1 + s2r2 + swr1r2

=s1r1 + s2r2

m(¬X )=s1 r̄1 + s2 r̄2

m(ΩX )=s1rω1 + s2rω2

Which is a weighted sum, which is idempotent by definition.

�

Reduced informativeness in non-dogmatic case In the event that the mass mQ is not

dogmatic, i.e. sω 6= 0 the result from Equation 3.13 holds. If the masses are identical, the process is

no longer idempotent, but some of the mass is moved to the universal set (or to supersets of larger

cardinality in the general case discussed later).

Consider the equal report masses mR1 and mR2 such that r1 = r2 = r, r̄1 = r̄2 = r̄ and rω1 = rω2 =
rω.

Equation 3.13 becomes:
m(X )=s1r+ s2r+ swr2

m(¬X )=s1 r̄+ s2 r̄+ sw r̄2

m(ΩX )=(s1 + s2)rω+
+sω(rω+2(rr̄+ rrω+ r̄rω))

Since sω 6= 0, s1 + s2 < 1 and m(X ) < r. Now consider the extreme scenario where s1 = s2 = 0

and sω = 1. Now we have m(X )= r2, m(¬X )= r̄2 and m(ΩX )= (rω)2 +2(rr̄+ rrω+ r̄rω)= 1− r2 − r̄2.
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As such for two identical reports mR we have:

r2 ≤m(X )≤ r

r̄2 ≤m(¬X )≤ r̄

rω2 +2(rr̄+ rrω+ r̄rω)≥m(ΩX )≥ rω

Thus this combination method is idempotent if and only if either the mass mQ or the mass r is

dogmatic and simple (in the generalized case). Also, in the extreme case (sω = 1), it degenerates to

pointwise multiplication with the remaining mass being assigned to the empty set.

Generalization to a larger frame of discernment Consider X ∈ΩX = {X1, X2...XN }. Let F
be the set of all focal sets in 2ΩX . Two reports R1 and R2 are determined by valuations r and r̂ and

a "selector" variable Q is defined on ΩQ = {1,2} such that 1 is associated with R1 and vice versa. Q

is determined by valuation mQ such that mQ(1)= s1, mQ(2)= s2 and mQ(ΩQ)= sω as per previous

paragraph. It can be shown that for any focal set F ∈F

(3.15) m(F)= s1r(F)+ s2 r̂(F)+ sω
∑

F=F ′∪F ′′
r(F ′)r̂(F ′′)

The exact same proof can be used here to show that this combination is idempotent if mQ is

dogmatic.

Proof. Let r(F)= r̂(F)∀F ∈F . Furthermore let mQ(1)+mQ(2)= 1 and hence sω = 0 From Equation

3.15:

m(F)=s1r(F)+ s2r(F)

=(s1 + s2)r(F)

=r(F)

�

3.5.3.1 Discussion and interpretation

It has been mentioned several times throughout this section that the problem of possibly inter-

dependent sources is a special case of the source model (see Section 3.5.1) where the two reports

are interpreted as behaviours of the same source. To show that this is true, consider that the BBC

model requires a multi-valued mapping Γ for every behaviour hypothesis in ΩQ and every possible

source report in ΩR to the true state of the world in ΩX .

Consider the original AIS example modeled using the BBC model as per Section 3.3.2. Let the

report be mR(Rec)= 0.8, mR(¬Rec)= 0.2 (which could be reasonable for data gathered over some
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short period of time). Now assume that the two hypotheses we are concerned are H2 and H3 and

the distribution is such that mQ(H2)= mQ(H3)= 0.5. The inference is simple but for reference:

M⊕m↓R×X
Q

rec× on

¬rec×ΩX


= 0.5 M⊕m↓R×X

Q

rec×ΩX

¬rec× of f


= 0.5

Where M is the mass function induced by the multi-valued mapping Γ.

From here it is straightforward to compute the marginal on x: x(on) = 0.4, x(of f ) = 0.1,

x(ΩX )= 0.5. Now consider an alternative interpretation, where we have two independent experts

who have access to the AIS receiver and make their inference based on that. They provide the

following masses r and r̂, which are the results of applying H2 and H3 to the mass r

r :

on : 0.8

ΩX : 0.2
r̂

of f : 0.2

ΩX : 0.8

Applying Equation 3.15 with s1 = s2 = 0.5 results in x(on) = 0.4, x(of f ) = 0.1, x(ΩX ) = 0.5

which is the same result as using the previous method, showing the two interpretations to be

equivalent.

It naturally follows that being consistent with the source model, this approach could be applied

to sources providing different behaviour models, as discussed through the earlier sections of

this report. Furthermore, it stands to reason that this would be consistent with context-aware

approaches.

In [82] it has been suggested that the BBC model and, by extension, the XQR model is a special

case of Haenni’s [88] remark that the disjunctive rule can be recovered by forming an evidential

network with two binary frames representing the reliability of the two sources and a categorical

mass function inducing the disjunctive combination. The approach to combination proposed here

is, too, an extension of Haenni’s framework where the mass function relating the reliabilities of the

two sources is not necessarily categorical. As we have discussed before, if sω = 1, the disjunctive

rule is induced, and the network is simplified to the one which yields Haenni’s result.

Comparison with the cautious rule Let us compare this approach to using the cautious rule

of combination. The key advantage from the implementation point of view is that it can be used

directly in the BFM, where combination rules other than the conjunction are not supported.

The two approaches should be compared from a more theoretical rather than entirely implementation-

oriented perspective. The underlying principle of the cautious rule is that if the two sources are

equally reliable, one source claims that the target is in the set A and the other that it is in the set

B we should be certain that it indeed lies within the intersection A∩B. The cautious rule selects

the least informative element satisfying the above condition.

On the contrary, utilizing the metaknowledge model for combination can be interpreted as

a probabilistic combination of the sources - source A takes precedence with some probability;

otherwise, source B takes precedence. The vacuous mass on source selection corresponds to a

disjunctive combination. Furthermore, some degree of total agreement (pointwise multiplication of

the masses) is transferred to the combination outcome regardless of the relative weights assigned
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to sources. As such, it could be interpreted that, in general, provided two sources claiming that the

target is in sets A and B respectively, we know for certain that it is plausible that the target is in

the disjunction A∪B, with some probabilities assigned to sets A and B respectively. Assignment

of parameters sn and sω determines the degree to which mass is transferred to the sets A, B and

A∪B.

In information fusion, in general, it is usually assumed that provided two sources, the combi-

nation of them should be not less informative than either one. This is often relaxed for conflicting

sources, and rules such as the disjunctive rule of combination are used. However, it could be

argued that this should not necessarily apply to sources that are not independent. In fact, if both

sources are otherwise equal, they should have similar information content. It is interesting to

consider that in such a scenario, lack of information could be considered information itself - if two

sources provide consonant beliefs, both being equally reliable and trustworthy, it is not necessarily

optimal to commit to the more informative one.

Consider an example of two experts providing information, one of them being more cautious

than the other - either one of them is overly cautious or the other is overly bold - but it is

unknown which one it is. This is essentially the first example in this section, with consonant

belief assignments, which we will now use to compare the approach outlined here to the other

combination rules. The results were previously shown in Table 3.6, where all the combination

rules for dependent sources defaulted to either of the two masses. Applying Equation 3.15 to this

problem with weights s1 = s2 = 0.5 yields mJ(of f )= 0.68 and mJ({on, of f })= 0.32, which is the

only result where the information content of the joint is greater than the less-informative report

but less than the more-informative report. As such, it could be argued that it is the only case

where the extra (meta)-information provided by the second source is leveraged (which could be

interpreted as "Source 1 is overconfident") without ignoring the first report entirely. Shifting the

weights makes it possible to make this report more or less informative.

This method of combination is not more informative than cautious rule of combination for

any set of inputs . In general wJ(A) ∈ [w(A), ŵ(A)] for any A in mJ where mJ is the result of

combination. In comparison w∧(A)= min(w(A), ŵ(A)) where m∧(A) is the resultant mass produced

by the cautious combination rule. As such wJ(A)≥ w∧(A) for any A and hence m∧ vw mJ , i.e. mJ

is less informative than m∧ under w-ordering.

It also makes sense that the information content of the joint mass could be improved when

considering the scenario where the sources may or may not be dependent. The behaviour of

the cautious rule is such that it allows for overlap of information between the sources, but it

will extract information from both nevertheless, whereas the approach outlined here performs

more of an either-or combination. Allowing a hypothesis that the beliefs are indeed independent

would mean that the combination is no longer idempotent and as such, it would be down to

appropriate metaknowledge selection to ensure that no double counting of evidence takes place.

This is discussed in the next section.
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3.5.4 Possibly independent sources and context-aware independence

Let us discuss a scenario where it is unknown whether two pieces of information are or are not

independent. For instance, a human intelligence source may provide some information, and the

reasoning model for it may not be available. As an example, consider an agent providing a report

on the frame of discernment from the earlier vessel identification example Ω= {c, f , o} which is

consistent with the frame of the variable of interest. Furthermore, let there be another report

R providing information on the same frame of discernment. Now there exists a possibility that

this information was already included in the analyst report (and may have been disregarded on

purpose due to the unknown reasoning model - as such information content analysis of the report

may not be sufficient) or that it was not available at the time the report was generated. As such, it

stands to reason there could be two models - one with this piece of information was included (and

the sources are dependent) and one without.

Another interesting concept is that of a metainformation source, namely a piece of information

affecting the behaviour of the source, which often cannot be expressed in the same frame of

discernment Ω. This section, and some other more complex relationships between information

sources, and their relation to the XQR model, are discussed.

3.5.4.1 Possibly independent information source

First, consider the simple scenario where a report is produced by some source that may or may

not be independent. Consider R on ΩR =Ω.

Possibly independent information source - some information source is providing evidence that

the actual value of X is not A. This information can be readily represented as a valuation on X (a

separate report, R2). However, a double-counting problem occurs as it is unknown whether this

piece of information has already been included in the analyst report R1.

One apparent solution is that briefly described at the end of the previous section - using the

generalized metaknowledge model, we can independently model the hypotheses that R1 and R2

are dependent and that they are independent. In the former case, we can split it further into

two more hypotheses using selection variable to allow for idempotent combination. This can be

formalized using two quality variables: dependence D = {Dep,¬Dep} and selection S = {1,2}, the

operation of latter was discussed in detail in the previous section. The Cartesian combination

of the two defines the joint frame D ×S = {1×Dep,1×¬Dep,2×Dep,2×¬Dep}. However, the

selection variable is irrelevant when the reports are independent, and this can be mapped to the

following XQR model hypotheses

1×Dep → H1

2×Dep → H2

ΩS ×¬Dep → H3

where H1 and H2 correspond to the appropriate hypotheses from the previous section and H3

corresponds to the simple conjunctive combination of the two reports.
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Consider we assume a 50% probability that the reports are independent D(¬Dep)= 0.5 and

use equal weights S(1)= S(2)= 0.5. As such we obtain the following distribution on the hypotheses:

Q({H1,H3})= 0.25, Q({H2,H3})= 0.25=, Q(H3)= 0.5. Note that in this case there is no difference

for the combination process between mass assigned to Q({H2,H3}) and Q(H2) (this is analogous to

normal discounting process where no information on reliability implies non-reliability). Let report

R1 be determined by the mass r(o)= 0.5, r({o, f })= 0.2, r({o, c})= 0.2, r(ΩX )= 0.1 and the report

R2 by mass r(¬c = {o, f })= 0.8, r(ΩX )= 0.2 . The marginal on X using the aforementioned quality

descriptor variables is then m(o)= 0.455, m({o, f })= 0.39, m({o, c})= 0.07, m(ΩX )= 0.085

Let us take a step back and once more compare these results to these obtained using other

combination methods - Dempster’s rule, the cautious rule and for the different valuations on D

and S

Table 3.8: Comparison of XQR model-based combination for different values of D and S (assuming
s1 = s2) with combination using Dempster’s, cautious and disjunctive rules

r1 r2 Dempster ⊕ Cautious ∧
Generalized metaknowledge

HD
S

H0.6
0.5 H0

0.5 H0.5
0

o 0.5 0 0.66 0.58 0.455 0.25 0.33
{o, f } 0.2 0.8 0.28 0.24 0.39 0.5 0.42
{o, c} 0.2 0 0.04 0.12 0.07 0.1 0.02
ΩX 0.1 0.2 0.02 0.06 0.085 0.15 0.23

Where HD
S denotes the VBS used in this section, with S(1)= S(2)= S and D(¬Dep)= D. Note

that in the case where D = 0 this corresponds to the idempotent case discussed previously, and

when S = 0, this becomes the weighted conjunctive-disjunctive rule, i.e. mass assigned to every

focal set is the weighted sum of the results of the combination using Dempster’s and disjunctive

rule respectively. Furthermore, unsurprisingly the result for H0.5
0.5 is the weighted sum of the result

for H0
0.5 and Dempster’s rule.

3.5.4.2 Metainformation and context-aware fusion

The source of information takes the following form: evidence which typically points at c is actually

pointing at o. It could hypothetically be driven by some piece of information telling us that, for

example, tanker (other) types are likely to be misclassified as cargo.

Similarly to the previous case, there could be two behaviour hypotheses corresponding to the

cases where this extra information has already been included in the source and the case where it

has not. However, since this source does not provide information on X directly, the combination

is less straightforward. The key difference here is that the source in question is meaningless in

the absence of another report - it does not directly provide information on the variable of interest

and, as such, is not a report in a sense used throughout this work. It would best be described as a

contextual variable in this case, as it places some constraints on the focus but does not intervene

directly. This also means that usual combination rules - whether the one discussed in the previous

section, the cautious rule or the conjunctive rule cannot be applied directly.
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Let the source be interpreted in such a way that mass assigned to the focal sets c and {c, o}

should be redistributed to the hypothesis o1. This could be modelled as a mapping Λ : 2ΩX → 2ΩX

such that Λ(θ)= o if θ = c or θ = {c, o} and Λ(θ)= θ otherwise.

Using the same logic as before we can reason that there should be two modes of inference: one

where this piece of contextual information has already been taken into account and one where it

has not. Let us denote the former hypothesis with H1 and the latter with H2. This corresponds to

the dependence variable D from the previous case. The mapping Γ from report-behaviour space to

focus space can be then derived:

Γθ(H1)= θ ∀θ ∈ΩX

Γθ(H2)= o θ = c

Γθ(H2)= θ θ 6= c

Consider the initial report R1 as per previous example: r(o) = 0.5, r({o, f }) = 0.2, r({o, c}) = 0.2,

r(ΩX )= 0.1 and the assumed degree of dependence Q(H1)= d(Dep)= 0.6 Q(H2)= d(¬Dep)= 0.4.

The dependence value is chosen to reflect the information content of the previous example,

which included d(Dep)= 0.5 and r2(ΩX )= 0.8 This yields the following resultant mass function

m(o)= 0.58,m(o, f )= 0.24,m(o, c)= 0.12,m(ΩX )= 0.06 - although this is the same as the result of

cautious combination in the previous example this is coincidental and this result does not hold as

parameters are varied.

3.6 Summary

This chapter addressed the challenge of problem modelling, and more specifically, source modelling

with valuation network through two lenses. On the one hand, we have considered the challenge

of modelling partially reliable sources and the role that contextual information can play in the

design of accurate models. It has been shown that it is possible to align the different existing

definitions of context in light of context-of and context-for. Subsequently, it is possible to frame

the pproblem of context in a way consistent with contextual correction of belief functions and

behaviour-based correction model for partially reliable sources. The introduction of context as a

variable in a variant of the behaviour-based correction model has the natural benefit of increased

explainability associated with the transparency-by-design of valuation networks, but also it is

shown to improve the expressiveness of the model. On another, we have considered the problem of

non-independent sources. Some existing literature on the problem was discussed, in particular

combination methods for belief functions that take into account interdependencies between

the sources, such as the cautious rule and Dubois-Prade rule non-independent sources. This is

compared to using Dempster’s rule only by considering the degree of inter-dependency between

two sources as part of the behaviour-based correction model. Some questions remain open-ended.

1A more interesting variant would be the case where this has no effect on the mass assigned to the focal sets {c, f }
and {c, f , o}, but it does not seem possible to implement in VBS and would pose other significant problems
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Particular areas of interest which could be investigated in more detail include a more formal

investigation of non-independent sources. The notion of meta-independence has been proposed in

[87], but was not discussed in much detail. A more in-depth investigation into source independence

as well as contextually conditional source independence is one of the key areas of further work.

The question of conflict between sources was briefly mentioned; however, especially in light of

other notions discussed in this chapter, it deserves a more in-depth discussion, as a conflict

between the sources is an indicator of either incorrectly modelled sources (where their reliability

is overestimated) or greater issues such as an incorrect model of the problem (e.g. non-exhaustive

frame of discernment as per Zadeh’s example). As this chapter addresses the intricacies of source

modelling and the modelling of relationships between them, it is an area that could be addressed

further. The problem of interpretation of temporal reports, where a single source is sequentially

sampled is relevant to the work in this chapter and has not been addressed at all.
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4
PROVENANCE OF INFORMATION, CONFLICT AND UNCERTAINTY

Provenance refers to the origin of something. In the context of multi-source information

fusion, this term may be employed to refer to tracking the source of information, conflict

or uncertainty. The first concept discussed here is the one that most intuitively comes to

mind when considering the issue of provenance in fusion, namely the origin of the information.

Identifying the origin of and handling conflict is a major issue in information fusion, with several

authors discussing methods of conflict management as well as computing the relative contribution

to the conflict. Finally, in some information fusion systems, it can be useful to identify the relative

impact of individual sources on the overall uncertainty.

This chapter is structured as follows. First, the notions of explainability and interpretability

are recalled, and the relation between this and the previous chapter is established. Subsequently,

the theoretical foundations of provenance are introduced, focusing on the provenance of infor-

mation, establishing the expected behaviours of a generalized provenance measure. In the next

section, some provenance of information measures in the belief function framework are proposed

and compared. This is followed by a discussion of measures of the provenance of conflict and

nonspecificity.

4.1 Relation to contextual reasoning, explainability and
interpretability

As discussed in the previous section, two main reasons for context exploitation exist - adaptability

and explainability. The explainability provided by context exploitation can be further augmented

by provenance measures, i.e. quantifying the relative contribution to the belief (or decision) of

individual sources, which can be either source reports or pieces of contextual information. It

has also been shown that the context-aware partially reliable source model allows improved

expressiveness through the inclusion of what essentially are negative belief masses. As with
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this approach individual sources can increase overall uncertainty, in such an information fusion

system, the provenance of uncertainty will actually be important.

4.2 Theoretical foundations of provenance

4.2.1 Provenance of information

Information fusion is a specific aggregation process that aims to extract truthful knowledge from

incomplete, uncertain or conflicting sources. In general terms, we could consider the outcome of

the information fusion process as a type of knowledge base with multiple sources contributing

towards it.

Now, for a certain piece of information within that knowledge base, we may be interested in

tracking the origin of that particular piece of information - for example, if we believe that a patient

suffers from a specific disease, is that belief-driven by a doctor’s opinion, patient’s self-assessment

or a blood test? As such, we may interpret the provenance of information as the process of tracking

the origin of a specific piece of knowledge within our knowledge base.

From this, we can discuss two very closely related concepts - the provenance of belief and the

provenance of decision. The difference between belief and information is very subtle, and for the

purpose of this discussion, we will treat belief as a more refined form of information. For instance,

the provenance of information could be identifying the source, which gives us the information

on possible distributions of seats in parliaments following an election - a wide array of possible

outcomes. On the other hand, the provenance of belief would involve identifying the sources driving

the belief in one specific outcome, e.g. one specific party winning by a landslide. Do note that these

distinctions are blurry at best, and they are largely affected by granularity and "level" of data or

information. However, it is important to remember that what is considered high-level information

under one implementation or use case may become low-level data in another case.

Finally, we can discuss the provenance of the decision. Whilst the concept may be more

complicated, it is easier to draw a line between itself and the other two. Going back to the scenario

with identifying the disease troubling a patient, consider that a decision must be made regarding

the further course of treatment. Whilst this decision could be a simple function of our degree of

belief in the possible diagnoses, it is likely there will be other considerations such as side effects or

cost.

4.2.2 Mathematical formalisation of information fusion and decision making

In this section, some mathematical terms are defined in such a manner that they may be applied

regardless of the uncertainty formalism chosen for information fusion. This can be complemented

with the mathematical definitions from [1].

Consider a decision making problem where an action is taken under uncertainty and it

has some consequence dependent on the state of the world. Let Ω = {ω1...ωn} be the frame of

discernment, i.e. the set of all possible worlds and C = {c1..cn} be the set of possible consequences.

Finally the set A = {a1...an} is the set of all possible actions. Thus a :Ω→ C In addition let us
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assume that there exists a utility function mapping the effect of each consequence to a real-valued

variable u : C→R

In [1] a general setting for representation of information items is proposed, such that Ti

represents an information item, which may be a subset of possible worlds, a plausibility relation, a

fuzzy set, a mass assignment and so forth. This framework was summarised in Chapter 2.

Let T = {T1...Tn} be the set of possible information items of a certain format. Again, according

to [1] a n-ary fusion operation is a mapping f n : T n → T . When it is not ambiguous we replace f n

by f (see1).

We may also define a knowledge base K ⊆ T, a set that contains all the information items

based on which a decision is made. Additionally to account for different fusion mechanisms we

define a set F = { f1... fn}. There exist multiple decision making formalisms which belong to the set

D, d ∈D : T →A

We may define a combine-and-decide operation g as a composition of a fusion operation f and

a decision operation d such that d ◦ f :Kn →A - a mapping from a subset of the knowledge base to

an action.

Furthermore let us, as per [1] further the information item T as having the following features:

its support, S(T) ⊆Ω, its core C(T) ⊆Ω and an induced plausibility ordering. The support S(T)

corresponds to the set of all worlds which are not impossible, whereas the core C(T) corresponds

to the set of all worlds which are fully plausible. This definition can be generalised to different

frameworks for representing information items, such as sets, plausibility relations, Dempster-

Shafer mass assignments and others.

Furthermore, we can define two additional terms which allow us to compare the relative

informativeness of information sources: information ordering and imprecision index

Information ordering is a partial preorder relation (reflexive and transitive): T v T ′ means

that T provides at least as much information as T ′ - it is more precise or more specific i.e. if T v T ′

then S(T) ⊆ S(T ′) and C(T) ⊆ C(T ′). This coincides with set inclusion and fuzzy set inclusion,

but its meaning is less obvious for belief functions and plausibility relations. Note that for this

ordering to be meaningful, a degree of mutual consistency is required.

Imprecision index is a measure I I(T) of how much information is contained in an information

item - depending on the uncertainty representation model used, it can be reduced to some index of

non-specificity. From this, it is possible to define information monotonicity as a property of the

fusion operator f

Definition 4.1. Let information monotonicity be a property of the fusion operator f , which can

be enforced only when the sources of information do not contradict one another

It can be defined as follows If ∀iTi v T ′
i and ∃ j : T j < T ′

i then f (T1, ...Tn)< f (T ′
1, ...T ′

n) if S(T1)∩
S(T2)...∩S(Tn)=;

1Note the change from Dubois’ article where the arity of the fusion operator is denoted by subcript
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4.2.3 Generalised measures for the provenance of decision, belief and
information

In this chapter contribution measures are proposed to quantify the provenance of decision, belief

and information.

The first contribution measure, quantifying the provenance of decision, can be defined as a

multivariate mapping from a subset of knowledge base , an element in the knowledge base and an

action to a real-valued variable. The purpose of this contribution is to assess the degree to which a

single element in the knowledge base contributes to the selection of a particular action when a

subset of the knowledge base is combined and used to make a decision.

(4.1) c : 2K×K×A→R

Furthermore, we may also consider a simplified case where the decision making is limited to

identifying the most likely element in the frame of discernment. In this case, d : T →Ω and the

following measure quantifies the provenance of belief.

(4.2) c : 2K×K×Ω→R

Finally in order to quantify the provenance of information d : T → 2Ω:

(4.3) c : 2K×K×2Ω→R

Now we can propose the properties that a provenance measure should satisfy:

Proposition 4.1 (Preference). Given fusion operator f and decision method d, knowledge base K,

where K∗ ⊆K, k1,k2 ∈ K∗ and possible distinct actions a1,a2 ∈A if

d ◦ f (K∗)= a1

and

d ◦ f (K∗/k1)= a2

and

d ◦ f (K∗/k2)= a1

then

c(K∗,k1,a1)≥ c(K∗,k2,a1)

This can be understood as follows: if removing a piece of information k1 is sufficient to change

the decision from a1 to something else, but removing k2 does not have this effect, the contribution

of k1 to a1 must be greater than contribution of k2 to a1.

Proposition 4.2 (Non-degeneracy). Given knowledge base K, where K∗ ⊆K and k1 = k2

c(K∗,k1,a)= c(K∗,k2,a)∀a ∈A,K∗ ∈K : k1,k2 ∈ K∗
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Proposition 4.3 (Inclusion). Given fusion operator f which enforces information monotonicity and

decision method d, knowledge base K, where K∗ ⊆K with k1,k2 ∈ K∗ such that k1 v k2 and the

sources are not contradicting then

c(K∗,k1,a)≥ c(K∗,k2,a)

Proposition 4.4 (Vacuous insensitivity). Given knowledge base K and a vacuous information

item kV ∈K then:

c(K∗,kV ma)= 0∀a ∈A

4.2.4 Provenance of conflict

The notion of conflict is strongly related to that of (in)consistency in classical logic. In the belief

function framework, conflict is defined as the inconsistency of the conjunctive combination of

two pieces of information. In a logical framework, formulas are considered conflicting if inclusion

in a knowledge base causes it to become inconsistent, i.e. there does not exist an interpretation

satisfying both of these formulas.

More formally, if we consider information items Ti to be formulas in some propositional

language, the knowledge base K is a finite set of logical formulas. A belief base K is inconsistent if

there exists a formula α such that K `α and K `¬α. Some measures quantifying the degree of

inconsistency are based on the concept of minimal inconsistency sets [89].

Definition 4.2 (Minimal inconsistent sets). Given an inconsistent belief base K , its minimal

inconsistent subsets MI are defined by:

MI(K)= {K ′ ⊂ K |K ′ `⊥ and ∀K ′′ ⊂ K ′,K ′′ 6` >}

i.e. they are inconsistent subsets of the knowledge base, such that removal of any single element

makes it consistent. As such, we can state that any elements in K ′ are in conflict. Furthermore,

we can consider measures quantifying inconsistency to be quantifying conflict.

As such, similarly to the previous section, consistency measure is a mapping from a subset of

the knowledge base to a real valued variable:

(4.4) φ : 2K →R

. and conflict between elements or subsets of the knowledge base can be defined as:

(4.5) φ̂ : f (k1,k2)→R

. where k1,k2 are disjoint subsets of K and f is some fusion operator. This measure has some

desirable properties (as per [90]): 1. Bounded 2. Extreme measures 3. Symmetry (φ̂) 4. Imprecision

monotonicity 5. Vacuous insensitivity (ignorance is bliss) 6. Insensitivity to refinement

and the provenance of conflict is a multivariate mapping from a subset of the knowledge base

and an element in the knowledge base to a real-valued variable

(4.6) κ : 2K×K→R
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Again, the purpose of this contribution measure is to assess how much a particular element of the

knowledge base contributes to the conflict when some subset of this knowledge base is combined.

As per previous case consider the following properties:

Proposition 4.5 (Preference). Given a knowledge base K, where K∗ ⊆K, k1,k2 ∈ K∗, if

φ(K∗/k1)≥φ(K∗/k2)

then

κ(K∗,k1)≤ κ(K∗,k2)

Proposition 4.6 (Non-degeneracy). Given a knowledge base K, where K∗ ⊆K, k1,k2 ∈ K∗, if

φ(K∗/k1)=φ(K∗/k2)

then

κ(K∗,k1)= κ(K∗,k2)

Proposition 4.7 (Inclusion). Given fusion operator f which enforces information monotonicity,

knowledge base K, where K∗ ⊆K with k1,k2 ∈ K∗ such that k1 v k2

κ(K∗,k1)≥ κ(K∗,k2)

Proposition 4.8 (Vacuous insensitivity (ignorance is bliss)). Given knowledge base K and a

vacuous information item kV ∈K then:

φ̂(v,kV /v)= 0

4.2.5 Origin of uncertainty

Finally, we consider tracking the origin of uncertainty in the information fusion system. The

concept of uncertainty refers to several different notions, as outlined in Chapter 2 Origin of

uncertainty is quite similar to the origin of the conflict, as it can be argued that conflict within

the information is a form of uncertainty as discussed in more detail in Section 2.3.2. As such

particular focus here is placed on the non-conflicting types of uncertainty, fuzziness (vagueness)

and nonspecificity. In the majority of information fusion systems inclusion of additional sources

reduces uncertainty. However, there are some exceptions to this rule. In Dempster’s rule of

combination, a highly conflicting source can increase the size of the universal set due to conflict

redistribution. As discussed in the previous section, more complex relationships between variables,

such as contextual reasoning, may also increase uncertainty. Information about the quality of the

sources may reduce the degree of certainty associated with the overall inference.

4.3 Origin of information and decision in belief functions
framework

As in the remainder of this work, the main focus throughout the rest of this chapter will be on

implementations under the belief functions framework.
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4.3.1 Simple contribution measures and the problem with preference

A natural method of assessing the contribution of the individual source to the final belief in a

proposition is to use one of the common measures within the belief function framework, such as

the belief, plausibility, commonality or similar as the measure of contribution. Although generally,

they are a good indication of relative contributions of the belief sources, it can be shown that

they do not always satisfy all the proposed properties, even when selected in conjunction with

the appropriate decision method and combination rule. For example, consider the most natural

candidate, the belief measure Bel used in an information fusion system exploiting Dempster’s rule

of combination and the maximum of belief rule for singleton selection. The Bel is considered the

most natural candidate as the greater a belief in a hypothesis from a single source of information,

the more it will contribute to the overall belief in that hypothesis following information fusion. In

other words, if we consider several sources of information, the one with the greatest belief in the

hypothesis can be expected to contribute the most to the overall belief in that hypothesis. Other

possible candidates, such as plausibility and commonality measures by definition, do not satisfy

the vacuous insensitivity property (Proposition 4.4).

It is straightforward to show that there exist cases where the preference property is not

satisfied, as we prove below:

Proof. Consider two mass functions m1 and m2 defined on the frame of discernment Ω= {ω1...ωn}

within a knowledge base K, such that m1 is a simple support function with weight 1−α for

some ω ∈Ω and m2 is a simple support with weight 1−β for a focal set F such that ω⊂ F. Let

m̂ = ⊕
m∈K,m 6=m1,m2

m and mJ = ⊕
m∈K

m = m̂⊕m1 ⊕m2

By definition of belief measure

Belm1(ω)=α
Belm2(ω)= 0

.

For Bel to be a contribution measure satisfying the preference property using the maximum of

belief decision and Dempster’s rule of combination, if:

argmax
i

BelmJ (ωi)=ω

and

argmax
i

Belm̂⊕m2(ωi)=ω

then

argmax
i

Belm̂⊕m1(ωi)=ω
.

Now consider m̂ with mass distribution such that mass γ is placed on ω̄ ∈Ω such that ω̄ 6=
ω,ω̄ 6∈ F and the remaining 1− γ is distributed among focal sets G = {G1,G2...Gn} such that

F ∩G =ω,∀G ∈G.

By Dempster’s rule of combination:
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Belm̂⊕m2(ω)∝β(1−γ)

and

Belm̂⊕m2(ω̄)∝ (1−β)γ

Hence if β> γ then argmaxi Belm̂⊕m2 (ωi)=ω and similarly if α< γ then argmaxi Belm̂⊕m1 (ωi)=
ω̄.

Thus for α<β the preference property is not satisfied �

In less formal terms, this can be associated with the property of Dempster’s rule, as well as

the conjunctive rule of combination by which the impact of a mass m1 on the resulting belief

in a hypothesis can be equally driven by the mass assigned to that hypothesis as well as some

of its supersets (provided that they are not included in m2). This implies that in general unary

measures cannot fully capture this.

It is important to note that the preference property is difficult to satisfy for all possible cases,

and it will be a recurring problem throughout this chapter. However it would not seem reasonable

to dismiss it in general, but rather it can be useful to treat it as a sort of benchmark as it is done

throughout this chapter. In general we can consider a situation with two partially conflicting

sources m1 and m2, where the hypotheses ω1 and ω2 are both strongly supported by m1, such that

ω1 is slightly more likely than ω2. However ω1 is deemed not plausible by m2 and ω2 is weakly

supported. By the definition of preference, m2 should have a greater contribution. However, it is

unlikely to be able to find a contribution measure that will satisfy all possible cases. Although

Dempster’s conflict redistribution is part of the problem, the above result holds even in the case of

the unnormalised conjunctive combination rule.

4.3.2 Generation of explanations in the theory of evidence

There exists some, albeit limited, work on explainability in the context of belief functions. Strat

and Lawrence introduced the concept of sensitivity spaces for the provision of explanation abilities

in systems using belief functions [91] [92]. This work was later expanded on by Xu and Smets [93].

In this section, the existing literature is discussed, and some of the notions are extended in line

with requirements for a contribution measure, as outlined earlier in this chapter.

4.3.2.1 Sensitivity spaces

The method proposed for assessing the impact of individual bodies of evidence on the final belief in

some proposition involved utilization of first derivatives of belief and plausibility measures with

respect to the discounting rate (reliability).

For a hypothesis A and BoE i with reliability r i

(4.7) áBel i(A)= δBel(A)
δr i

∣∣∣∣
r i=1
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and

(4.8) àPl i(A)= δPl(A)
δr i

∣∣∣∣
r i=1

.

These two measures are used to generate sensitivity spaces, which explain the marginal impact

of each BoE on the hypothesis of interest. By extension, they can also be used as contribution

measures.

The notion of preference we have proposed is closely aligned with how these derivatives

are used to assess the impact of a piece of evidence, as removing a single body of evidence is

tantamount to setting its reliability r i = 0. This was discussed to a greater extent by Xu and Smets

[93], where they show that computation of this derivation for unnormalised belief functions is

equivalent to simply removing the body of evidence of interest. While in the majority of situations,

the preference property as defined earlier is satisfied when an appropriate measure is selected

given the decision-making method (e.g. sensitivity of belief for a maximum of belief), there exist

exceptions to that behaviour, in particular when one of the masses is strongly inconsistent.

Strat and Lowrance considered the overall impact of a body of evidence on the overall inference

for a particular hypothesis to be the distance from the origin on the B̂el− P̂ l space, i.e.

(4.9) Impi =
∣∣∣(àPl i(A), áBel i(A)

)∣∣∣=√àPl i(A)
2 + áBel i(A)

2

while this captures the overall impact quite well, it does not consider the direction of that

impact and as such it is unsuitable to be used as a contribution measure. A natural extension

to make it suitable for use as a contribution measure is to consider its scalar projection onto the

direction corresponding to maximum contribution, B̂el = P̂ l, as per Fig 4.1 Let~d denote the vector

(4.10) ~di(A)=
[ áBel i(A)àPl i(A)

]

and we can consider the scalar projection of ~di onto �Bel i = P̂ l i to be a contribution measure. For

convenience let ~p denote the unit vector parallel to �Bel i = P̂ l i. Thus we have the contribution

measure:

(4.11) di = ||(~di ·~p)~p||

4.3.3 Distance-based contribution measures

Consider a scenario where two bodies of evidence m1 and m2 are combined using one of the combi-

nation rules. The identification process using one of the decision rules identifies the hypothesis

A ⊆Ω as true or most likely to be true. We propose a measure quantifying the relative contribution

of an individual BBA to the decision. One possible method of constructing a provenance measure

is to exploit the geometric interpretation of belief functions. As such, Jousselme’s distance is used

to define such a measure. Other distance metrics could be used here instead, but this distance is
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Figure 4.1: Sensitivity of belief and plausibility to discounting of a mass, illustrating projection of
Impi onto �Bel i = P̂ l i

not only a true distance measure but also, regardless of its criticisms, relatively well understood

and straightforward to implement. This measure has been proposed in [94] and further discussed

in [95].

Given a mass assignment m(S) and a proposition A let mA(S) be a mass assignment function

such that:

(4.12) mA(S)=


m(S)∑
S∩A 6=; m(S) , if S∩ A 6= ;

0, otherwise

Using the definition of a plausibility measure this can also be written as

(4.13) mA(S)=


m(S)
Pl(A) , if S∩ A 6= ;
0, otherwise

This plausibility conditioned mass assignment can be understood as the distribution of uncer-

tainty under the assumption that A is fully plausible.

If the mass assignment m(S) is the outcome of a fusion process m = m1 ⊕m2, the distance

dJ(mA,m1) is a measure of similarity between the contributing mass function m1 and the resul-

tant mass function m conditioned under the assumption that A is plausible. It can be interpreted

as a measure of the contribution of m1 to the final belief that A is true.

Thus we propose a contribution metric

(4.14) C(m1,m|A)= 1−dJ(mA,m1)
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Figure 4.2: Illustration of the triangle formed by the three masses

In the case where we want to compare relative contribution of several masses it is also

appropriate to normalize this measure

(4.15) Ĉ(m1,m|A)= C(m1,m|A)∑
mi∈M\m1 C(mi,m|A)

This measure can be shown to satisfy non-degeneracy and inclusion. Due to the inherent

properties of distance measures, it cannot satisfy the vacuous insensitivity property.

Non-degeneracy Follows from triangle inequality �

For the discussion of inclusion we use a very strong form of information monotonicity in order

to reduce the internal conflict within the belief functions. Namely:

Definition 4.3 (d-commitment). Mass m1 is more d-committed than m2 (m1 <d m2) if m2 can be

obtained from m1 via Shafer’s discounting

By definition, this is a stronger commitment than specialization and hence pl-commitment or

q-commitment.

Satisfaction of this property can be easily proven for ||Ω= 2|| and experimentally verified for

larger frames of discernment

Inclusion Consider masses m1 and mα such that mα is obtained from m1 through Shafer’s

discounting with discounting factor α. Drawing from the geometrical interpretation of belief

functions, all the masses m1 ⊕mα lie on a straight line between m1 and m2
1 = m1 ⊕m1. Similarly

all for all possible values of α, mα lies on the straight line between m1 and mv, where mv(Ω)= 1.Let

~m1, ~mv and ~m1
2 denote the position vectors for the corresponding masses.

As such we can consider a triangle 4m1mvm2
1. The distance from any point on ~m1mv to any

point on ~m1m1
2 is always greater than the distance from m1 to any point on ~m1mv if the angle

ω=∠(mvm1m2
1) ∈ [π2

3π
2 ]. Furthermore let us denote unit vectors ~md and ~md, corresponding to the

directions from m1 to m2
1 and to mv respectively. See Figure 4.2 for illustration For ω ∈ [π2

3π
2 ] we

need:

(4.16) 〈md,mr〉 ≤ 0
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. Since Jac is used as the weighting matrix, we have

(4.17) 〈m1,m2〉 =
∑

A,B⊆Ω
m1(A) m2(B)

|A∩B|
|A∪B| = ~m1

T Jac ~m2

with Jac(A,B)= |A∩B|
|A∪B|

Thus we have:

〈md,mr〉 = ( ~mv − ~m1)Jac
(
~m1

2 − ~m1
)=

=
[
−m1(A) −m1(B) m1(A)+m1(B)

]
1 0 1

2

0 1 1
2

1
2

1
2 1




m2
1(A)−m1(A)

m2
1(B)−m1(B)

m2
1(Ω)−1+m1(A)+m1(B)


=1

2
(m1(A)−m1(B))

[
m1(A)−m2

1(A)+m2
1(B)−m1(B)

]
+1

2
(m1(A)+m1(B))

[
m2

1(Ω)−−m1(Ω)
]

(4.18)

Thus for 〈md,mr〉 ≤ 0 it is sufficient that:

(4.19)
1
2

(m1(A)−m1(B))
[
m1(A)−m2

1(A)+m2
1(B)−m1(B)

]≤ 0

and

(4.20)
1
2

(m1(A)+m1(B))
[
m2

1(Ω)−−m1(Ω)
]≤ 0

From the properties of Dempster’s rule of combination we know that m2
1(Ω) ≥ m1(Ω), which

satisfies Inequality 4.20. Furthermore we know that if m1(A)≥ m1(B) then m2
1(A)≥ m2

1(B) and

m2
1(A)−m1(A)≥ m2

1(B)−m1(B). Thus if m1(A)≥ m1(B) then m1(A)−m2
1(A)+m2

1(B)−m1(B)≤ 0

and if m1(A)≤ m1(B) then m1(A)−m2
1(A)+m2

1(B)−m1(B)≥ 0 thus satisfying Inequality 4.19 and

by extension satisfying Inequality 4.16.

This result can be directly applied to the case of mass conditioned on the plausibility of A

provided that m1(A)≥ m1(B) �

Vacuous sensitivity In the belief functions framework, a vacuous element is a basic belief

assignment such that all of the mass is assigned to the universal set v : m(Ω)= 1

For the vacuous insensitivity property to hold,

C(v,m|A)= 1−dJ(mA,v)= 0 ∀m, A

which implies:

dJ(mA,v)= 1 ∀m, A

which is not satisfiable for any m, A �
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4.3.3.1 Performance of distance-based contribution measures

In [94] and [95] the properties of this measure were investigated. Some of the results presented in

these papers are recalled here.

In [94] the rationale of this proposed metric was evaluated by investigating its suitability for

sensitivity analysis.

In order to verify the rationality of the proposed metric, we perform the following simulations

Monte Carlo simulation of fusion of biased and unbiased random BBAs We consider

two sources of information providing information in the form of mass assignment functions m1

and m2 over the same frame of discernment Ω. Source 1 provides a mass function biased in favour

of the proposition A, whereas Source 2 provides a randomly generated unbiased mass assignment

function.

Algorithms for generation of mass assignment functions The mass functions are obtained

by generating a vector ~x of 2N random numbers in the interval [0,1]. In order to generate the

unbiased mass assignment function the values xi are normalised so that
∑

i∈2N xi = 1. The ith value

of the normalised vector is then associated to the focal elements ωi so that m(ωi)= xi. In order to

generate the biased mass assignment function the vector~x is normalised so that
∑

i∈2N xi = 1−b,

where b is a bias coefficient. The elements of this vector are then associated to the focal elements

ωi such that m(ωi)= xi i 6= 1 and m(A)= x1 +b.

Experimental setting Two sets of experiments are performed

• The degree of reliability r of S1 is varied and S2 is assumed to be fully reliable (r = 1). This

is performed for discrete but varying values of the bias factor b = 0.4 and b = 0.7 and the

size of the frame of discernment N = 3 and N = 5

• Both S1 and S2 are assumed to be reliable (discounting factor d1 = d2 = 0) and the bias

coefficient is varied for frame of discernment N = 3 and N = 5

In each case, the mass functions m1 and m2 are combined using the Dempster-Shafer rule of

combination, and the plausibility conditioned distance is evaluated in order to determine which

of the two sources of information has a more significant contribution to the final belief in A. For

each experimental setting, 5000 Monte Carlo realizations are performed. The performance is

evaluated by comparing the rate of identification of m1 as the main source of contribution (the %

of realizations where the plausibility conditioned distance from m1 is smaller than that from m2)

to the identification rate of the singleton A using the maximum of pignistic probability (BetP) and

maximum of plausibility (Pl) criteria (see Section 2.2.4.2).

Impact of varying discounting factor In this section, we study the impact of varying the

discounting factor. The simulation described above is performed for reliability values between

0 and 0.8 for N = 3 and between 0 and 0.5 for N = 5 Figures 4.3 and 4.4 show the results for
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Figure 4.3: Contribution of m1 to belief in ω1 using N = 3 and b = 0.4

bias coefficient b = 0.4 and frame of discernment N = 3 and N = 5 respectively. The identification

rate of m1 as the key contributor to Bel(A) is defined as the proportion of Monte Carlo realisa-

tions where the plausibility conditioned Jousselme’s distance dJ(mA(S),m1(S)) is smaller than

dJ(mA(S),m2(S)). Similarly the identification rate of A is the proportion of realizations where

A is deemed the most likely proposition based on the maximum of pignistic probability (Pbet) or

the maximum of plausibility (Pl) criteria It can be seen that unless the reliability value r is very

small, the rate of contribution of m1 to A tracks the rate of identification of A relatively closely.

It is important to note that for very small reliability m1(Ω)→ 1 as m1 becomes a vacuous belief

function, whereas the identification rate of A tends to 1
N .

Figures 4.5 and 4.6 show the results for bias coefficient b = 0.7 and frame of discernment N = 3

and N = 5 respectively. Here we can observe that as the discounting factor is increased, the rate

of identification of A decays slower than the rate of contribution of m1 to A. This phenomenon

can likely be explained by the dictatorial property of Dempster-Shafer fusion, where a more

concentrated BBA has a larger impact on the fusion result.

It is important to note that in all of these cases, the identification rate of m1 as the main

contributor to A tracks the identification rate of A relatively closely when the reliability of m1 is

large. These experiments show that the plausibility conditioned distance on A does correlate with
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Figure 4.4: Contribution of m1 to belief in ω1 using N = 5 and b = 0.4

the identification rate of A.

Impact of varying bias In the second setup, we study the impact of varying the bias coefficient

b, while the discounting factor, or reliability, is kept constant, and both sources of information

are assumed to be fully reliable. 5000 Monte Carlo realizations are performed for each value of b.

Figures 4.7 and 4.8 show the results for the frame of discernment N = 3 and N = 5 respectively.

Since the reliability of m1, r1 = 1 and is kept constant, as b → 0 m1 becomes a randomly generated

unbiased BBA and hence the identification rate of itself as the key contributor to the belief in A

tends to 0.5. As per the previous experiment, the identification rate of A tends to 1
N .

It can be observed that for both values of N, despite the different behaviour as b → 0, the

identification rate of m1 as the key contributor to A tracks the identification rate of A rather

closely.

Sensitivity analysis for the fusion of two BBAs In this section, we study the applicability

of plausibility conditioned distance as a tool for sensitivity analysis of the final fusion outcome

with respect to the discounting factor. Here we consider a fusion of two semi-reliable sources

of information S1 and S2 generating mass assignments m1 and m2 listed in Table 4.1 with a
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Figure 4.5: Contribution of m1 to belief in ω1 using N = 3 and b = 0.7

relatively small degree of conflict (K = 0.192).

The contribution of a source of information to the final degree of belief in a proposition is

quantified using the dual of plausibility conditioned distance

(4.21) ci = 1−dJ(mA,mi)

Fusion of BBAs m1 and m2 was performed using the Dempster-Shafer rule of combination,

and ci was computed for each of the mass assignments for reliability values in the interval [0,1]
without recomputation of the fusion result. Subsequently, in order to verify the actual contribution

of each of the BBAs to the fusion outcome, the fusion process was performed again while keeping

the reliability of one of the mass assignments constant and varying the other in the interval [0,1].

The resulting joint BBAs were then used to compute the values of Bel(A). The results of this

process are shown in Figure 4.9.

From Figure 4.9 we can see that the gradient of the contribution of m1 to A around its initial

reliability is significantly larger than that of the contribution of m2 to A. Similarly the rate of

change of Bel(A) as the reliability of m1, r1 is varied is much larger than when r2 is varied,

showing its sensitivity to the variation of r1. It is important to note that the computation of the

contribution metric does not require recomputation of the fusion result and, as such, is much less
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Figure 4.6: Contribution of m1 to belief in ω1 using N = 5 and b = 0.7

computationally intensive, which can have a significant impact when the frame of discernment is

large or when a large number of sources of information are fused.

Table 4.1: Mass assignments and initial reliability of sources S1 and S2

S1 S2
m(A) 1 0
m(B) 0 0.4
m(B,C) 0 0.4
m(A,B,C) 0 0.2
Initial reliability r 0.3 0.8

These results have shown that this distance-based contribution measure can be adequately

used both for the identification of the key contributing source as well as for sensitivity analysis.

In [95] the behaviour of this measure was further investigated in light of the decision quality

indicator q(ω̂) as defined in Equation 2.34

Behaviour of the contribution measure in light of the quality indicator The quality

indicator can be used to assess the performance of a contribution metric as follows. Given a set of
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Figure 4.7: Contribution of m1 to belief in ω1 for different values of b using r1 = r2 = 1 and N = 3

contributing masses, the relative contribution of each of them can be computed. This particular

BBA can then be removed from the set, the joint mass can be re-evaluated, and thus, the change

in the quality of a decision can be computed. The correlation between the relative contribution of

the mass and its effect on the quality of a decision can be used as a performance metric.

4.3.4 Generation of BBAs

In order to generate sets of realistic basic belief assignment, the following method was used.

1. The perturbation method

Given a seed BBA and perturbation parameter p ∈ [0,1] each focal element of the seed BBA

is discounted by p, and the mass is randomly redistributed across all the other focal sets.

This produces a family of BBAs with relatively low conflict and identical focal sets (see

Algorithm 1)

2. The diverging method

Given a seed BBA and perturbation parameter p ∈ [
0, 1

n
]
, in order to generate n BBAs, each

focal element of the seed BBA is discounted by i× p and the mass is randomly redistributed
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Figure 4.8: Contribution of m1 to belief in ω1 for different values of b using r1 = r2 = 1 and N = 5

across all of its supersets, where i denotes the iteration of the algorithm. This produces a

family of BBAs with decreasing informativeness (see Algorithm 2)

Conjunctive combination The behaviour of the contribution measure under conjunctive com-

bination is investigated using various seed BBAs and perturbation coeffcients in both generation

methods described in the previous section. The quality indicator q(Â) (see Equation 2.34) is

used as a benchmark. This means, that aside of investigating the impact of the contribution

Ĉ(m1,m|A) on ∆Q(A), we also look at the correlation between normalized ˆqm1(A) and ∆Q(A),

where ˆqm1 A = qm1 (A)∑
mi∈M\m1 qmi (A) and m1 denotes the BBA being removed from the set. This is justified

as the quality indicator is calculated using only the removed BBA and as such exhibits similar

behaviour to traditional measures such as the belief and plausibility measure, whilst also scaling

similarly to the contribution measure. For the sake of clarity, the quality indicator is referred to as

benchmark when used in this context throughout the rest of this chapter.

Throughout the simulations, the contribution measure exhibited a significant correlation with

the change in quality indicator in almost all the cases whilst also usually outperforming the

benchmark. However, the type of seed BBA used, as well as the method of generating the BBA

family, would significantly affect both strength and type of the correlation.
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Figure 4.9: Sensitivity analysis of the final fusion outcome with respect to the reliability of
information sources

input : seed BBA min
output :perturbed BBA mout
parameter : p - perturbation rate
l = size(min);
for i = 1: l do

mtemp1(i)= min(i)× (1− p);
Generate an array r[l] of random numbers summing up to 1;
for j = 1: l do

mtemp2( j)= min(i)× p× r( j)
end

end
mout = mtemp1 +mtemp2

Algorithm 1: Generation of perturbed BBAs

4.3.4.1 Strongly biased seed BBA

In this section, the behaviour of a strongly focused seed BBA is discussed. An example of such

a seed is displayed in Table 4.2, where Ω denotes the universal set regardless of the size of the

frame of discernment. Both linear and logarithmic models are fitted to the data, and the coefficient
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input : seed BBA min
output :perturbed BBAs mout[n]
parameter : p - perturbation rate, n - number of BBAs
l = size(min);
for k = 1: n do

for i = 1: l do
mtemp1(i)= min(i)× (1− p×k);
o = number of supersets of min(i) ;
Generate an array r[o] of random numbers summing up to 1;
for j = 1: k do

if mtemp2( j) is superset of min(i) then
mtemp2( j)= min(i)× p×k× r( j)

end
end
mout[k]= mtemp1 +mtemp2

end
end

Algorithm 2: Generation of diverging BBAs

of determination R2 is used to assess performance. A typical response is shown in Fig 4.10, where

such a BBA with frame of discernment cardinality n = 4 (i.e. Ω= {A,B,C,D}) is used to generate a

family of 12 BBAs under divergent generation scheme with perturbation rate = 0.06. The goodness

of fit measures is displayed in Table 4.3.

Table 4.2: Highly focused seed basic belief assignment used

A B Ω

0.1 0.8 0.1

Table 4.3: Coefficients of determination R2 (focused BBA, divergent mode)

Metric Linear Logarithmic
Contribution Ĉ(m1,m|A) 0.859 0.94248

Benchmark 0.8375 0.93256

There are two key points established by these results. First of all, there exists a strong

logarithmic relationship between the contribution measure and the quality indicator under

this configuration. This can be explained by the general Dempster-Shafer behaviour - the more

concentrated BBAs can disproportionately dominate the fusion process, whilst the impact of the

more divergent BBAs is much smaller. This is in line with the well understood dictatorial property

of Dempster’s rule of combination.

In addition to that, our contribution measure has a slight advantage above the benchmark,

albeit it is rather small.

91



−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

·10−8

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Change in quality indicator ∆q(ω̂)

C
on

tr
ib

ut
io

n
m

ea
su

re
Ĉ
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Figure 4.10: Change in quality of decision when a single body of evidence is removed under
Dempster-Shafer rule of combination combination, using highly focused seed BBA, divergent mode

Figures 4.11, 4.12 and Table 4.4 display the corresponding information for simulations per-

formed with Algorithm 1. Here the size of the frame of discernment is irrelevant as this algorithm

does not populate focal sets, which are initially set to be empty. With a low perturbation rate, the

correlation is nearly linear, as every BBA has a very small impact on the combination result by

itself; as the perturbation rate is increased, the correlation becomes logarithmic as less informative

and more conflicting BBAs are introduced into the fusion process. In all of these cases, Ĉ(m1,m|A)

outperforms the benchmark.

Table 4.4: Coefficients of determination R2 (focused BBA, perturbation mode)

Metric
Perturbation p = 0.2 p = 0.9
Linear Log Linear Log

Contribution Ĉ(m1,m|A) 0.983 0.991 0.465 0.971
Benchmark 0.982 0.992 0.438 0.962

4.3.4.2 Seed BBA with singletons only

The second type of seed BBA to be investigated is a BBA with singletons only, i.e. a probability

distribution (see Table 4.5). Note that if the divergent mode of generation is used, the non-singleton

focal sets are populated; otherwise, the entire family of BBAs generated consists of probability

assignments. As per Table 4.6, both generation methods result in significant linear correlation

and a slight improvement over the benchmark.
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Figure 4.11: Change in quality of decision when a single body of evidence is removed under
Dempster-Shafer rule of combination, using highly focused seed BBA, high perturbation

Table 4.5: Basic probability assignment used as the seed BBA

A B C
0.2 0.3 0.4

Table 4.6: Coefficients of correlation r and determination R2

BBA family type Divergent Perturbed
Coefficient r R2 r R2

Contribution Ĉ(m1,m|A) -0.941 0.886 -0.984 0.969
Benchmark -0.928 0.862 -0.980 0.959

4.3.5 Randomly generated seed BBAs

In this section, we investigate the behaviour of the contribution measure in Monte Carlo sim-

ulations using randomly generated seed BBAs. The coefficient of linear correlation r is used

as a performance metric in this case, where r = −1 corresponds to a strong correlation as per

the previous section. Larger (less negative) values of the correlation coefficient imply a weaker

correlation and hence worse performance of the contribution metric as a predictor for the change

in the quality of the decision. Finally, a positive correlation metric means that removing a BBA

with high relative contribution increases the decision quality - a counter-intuitive behaviour that

should not be taking place.
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Figure 4.12: Change in quality of decision when a single body of evidence is removed under
Dempster-Shafer rule of combination combination, using highly focused seed BBA, low perturba-
tion

Table 4.7: Mean µ and standard deviation σ of r for the Monte Carlo simulation with randomly
generated BBAs

µ σ

Ĉ(m1,m|A) -0.8652 0.1425
Benchmark -0.4532 0.3511

Figure 4.13 - shows an example of a histogram generated with this kind of Monte Carlo

simulation. 500 initial seed BBAs were generated by distributing the entire mass among 10

randomly selected focal sets in the frame of discernment of cardinality n = 6. Families of 6 BBAs

were generated from each seed, using the perturbation generation method with p = 0.2. Table 4.7

shows the means and standard deviations for the correlation coefficients obtained. It can be seen

that in this particular configuration, Ĉ(m1,m|A) strongly outperforms the benchmark. However, it

is important to note that these results can vary very strongly with the properties of the seed BBA.

It was also noted that there is a very strong correlation ( r > |0.95|) between the computed

coefficient of correlation r and the coefficient of determination R2. Thus, it can be argued that the

counter-intuitive behaviour seen on the right-hand side of the histogram can be associated with a

poor fit of the linear model rather than unpredicted behaviour.

These results show that in the majority of cases, there is a strong correlation between a BBA’s

contribution level and its impact on the quality indicator. In addition to that, in many cases, the

contribution measure proposed outperforms the benchmark. The importance of the benchmark
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Figure 4.13: Monte Carlo histogram using Ĉ(m1,m|A) (top) and benchmark (bottom)

chosen stems from it being based on the contributing BBA only, similar to measures such as belief,

plausibility and probability transformations. The contribution measure behaves differently, as its

value is driven by the relationship between the contributing BBA and the target BBA.

It can be argued that the performance difference between the contribution measure proposed

and the benchmark was relatively small. It can be, however, argued that this is due to two reasons.

First of all, Jousselme’s distance may not be the best dissimilarity measure for this application;

its occasionally counterintuitive behaviour may negatively impact the results. Additionally, all

the tests have been performed using Dempster’s rule of combination. Dempster’s rule has many

weaknesses, and whilst experts’ opinions differ on its overall usefulness, there exists a general

consensus that it cannot be applied blindly to any combination of BBAs. This caveat was not

properly followed whilst performing the simulations presented in this chapter, and it is very likely

that it may have affected the results, in particular in the context of Monte-Carlo simulations

described in subsection 4.3.5.
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4.4 Information fusion as cooperative game theory - Shapley
value

The problem of information fusion can be considered from the perspective of a cooperative game.

In the most simple approach, the sources can be considered to form a single coalition. We consider

a set N of N players who cooperate. A game can be given by the characteristic function v : 2N →R

with v(;)= 0. The payoff achieved by a coalition S ⊆N is denoted by v(S).

The Shapley value [96] is a game theoretic method of distributing the gains to the individual

players or assessing each player’s contribution to the overall payoff. It is given by

(4.22) φi(v)= ∑
S⊆N {i}

|S|!(N −|S|−1)!
N!

(v(S∪ {i}−v(S)) .

It can be interpreted as the average marginal contribution of each player to every possible coalition

over each possible permutation.

The importance of Shapley value stems from the fact that it possesses a number of significant

properties, some of which are of particular relevance to this problem.

Efficiency ∑
i
φi(v)= v(N )

Symmetry If i and j are equivalent players (v(S∪ {i})= v(S∪ { j})∀S) then:

φi(v)=φ j(v)

.

Linearity
φi(v+w)=φi(v)+φi(w)

Null player If player i is null (it contributes nothing to any coalition, i.e. v(S∪ {i}) = v(S)∀S)

then:

φi(v)= 0

.

We may consider the individual sources contributing to an information fusion problem to be

agents in a cooperative game. Several possible payoff functions may be used, such as the degree of

belief in a hypothesis Bel, plausibility Pl or the pignistic probability PBet. Using Shapley value

with one of these payoff function results in a provenance measure satisfying all four properties.

Consider the set of n masses M. Using the belief measure we have the following provenance

measure:

(4.23) φi(Bel)= ∑
S⊆M {i}

|S|!(N −|S|−1)!
N!

(Bel(⊕S∪ {i})−Bel(⊕S))

where ⊕ denotes the Dempster’s rule of combination.
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Non-degeneracy Follows directly from symmetry �

Inclusion Using the same commitment definition from Definition 4.3 we consider masses m1

and mα such that mα is obtained from m1 through Shafer’s discounting with discounting factor α

From the definition of Shafer’s discounting and the belief measure, we know that for any A

Bel1(A)≥ Belα(A).

From Equation 4.23, ShapBel(A)(m1)≥ ShapBel(A)(mα) if Belm1⊕m ≥ Belmα⊕m. This is always

true when there is zero conflict between m and m1. �

Vacuous sensitivity Directly follows from the null player property, provided that the payoff

function is selected such that the null player property is satisfied (i.e. v(mΩ)= 0). �

Usage of Shapley value for explanations in an evidential network The proposed Shapley

value-based contribution measure has a significant advantage over the distance-based approaches

and simple contribution measures - it can be applied directly in evidential networks. Some

examples of evidential networks were discussed in the previous chapter. To recall, it is a graphical

model consisting of variables and valuations (mass functions), which can either represent the

relationships between variables or observations. When considering explanation generation in

an evidential network, we may be interested in the contribution of observation to inference on

a particular variable. This can be very difficult to do using distance-based measures or simple

contribution measures. Consider the following valuation network, with variables A,B,C defined

on ΩA = {true, f alse}, ΩB = {true, f alse} and ΩC = {true, f alse} respectively

A

CB

v

m1 m2

Figure 4.14: Valuation network

Here m1 and m2 are observations on B and C respectively and v denotes the logical relationship

between A, B and C (with the example below). Let A be the variable of interest, and consider

that we are interested in contribution of m1 to A = true. Neither the distance-based contribution

measure, nor the simple contribution measures such as belief or plausibility measures can be

applied directly, since the frame of discernment of m1 is different to that of variable A. One

intuitive workaround is to make inference on A using m1 as the sole observation (i.e. excluding

m2):

m1A =
(
m↑A×B×C

1 ⊕v
)↓A

And consider that mass to be the contributing mass. This will work in cases when B and C

contribute independently to A, i.e. when it is possible to split vA×B×C into vA×B
1 and vA×C

2 . However,
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this is not the case if we consider a mass v, which cannot be separated in such a manner. For

example, the logical relation:

A = true ⇐⇒ B = true∧C = true

induces the mass v:

vA ⇐⇒ B∧C




A = true×B = true×C = true

A = f alse×B = f alse×C =ΩC

A = f alse×B =ΩB ×C = f alse


= 1

which means that inference on A obtained using only m1 or only m2 will always have zero mass on

A = true - even if both m1 and m2 assert both B and C to be true. Thus even with m1(B = true)= 1

and m2(C = true)= 1 we still have m1A(ΩA)= 1.

Going back to the properties which need to be satisfied by a contribution measure this is not

necessarily a problem as it does not contradict the preference property - both masses would have

the same degree of contribution, as they are both necessary for the decision to be made. Regardless

that does not always seem intuitively correct. In particular let us consider the scenario when

we have an additional observation on C, m3 such that m3(C = f alse) = 0.4, m3(C =ΩB) = 0.6.

Furthermore let the two original masses be discounted by different factors - 0.8 and 0.6 respectively,

such that:

m1(B = true)= 0.8 m2(C = true)= 0.6

m1(ΩB)= 0.2 m2(ΩC)= 0.4

It is now reasonable that the contribution of the two masses should be different. In particular,

m2 is in conflict with m3, and its inclusion increases the plausibility of A. We can compute the

Shapley value with 1−Pl(A = true) as the payoff. This value is used instead of taking plausibility

directly in order to satisfy the condition that the null player (a vacuous mass function) receives zero

payoffs. As such, we consider the cost to maximum plausibility induced by the mass rather than

the plausibility itself. With this in mind we obtain: ShapPl(A)(m1)= 0, ShapPl(A)(m2)= 0.0633,

ShapPl(A)(m3)=−0.1467, identifying the additional contribution of m2 associated with conflict

redistribution.

Another issue with such evidential networks is that it would be reasonable to assume that

the contribution of the more informative mass (m1) should be greater than that of the other, even

though they are both necessary. One argument is that either of them can be considered to be a

set of constraints on the possible values of C, and as such m1 allows a greater maximum value of

m(C)= true. Unfortunately, in this case, the contribution of the two masses is the same. Finding

an appropriate method for the generation of such explanations in expert systems is still an area

that needs to be researched further.

4.5 Contribution measures - the preference property

The preference property has been proposed as a desirable property of a contribution measure. It

makes sense intuitively as a natural way of identifying the most significant contributor to the
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decision - if removal of one body of evidence causes the decision to change and another does not,

it implies that the former must have had a more significant impact on the decision than latter.

However, it can be shown that for all discussed contribution measures, there exist sets of basic

belief assignments for which this property does not hold.

In this section, we investigate two things. First of all, we compare the different contribution

metrics with combination and decision methods to assess the proportion of cases where the

preference property holds. Second of all, we investigate the properties of basic belief assignments,

which may result in the preference property not being satisfied.

4.5.1 Dempster’s rule of combination and maximum of belief decision making

First of all, let us narrow our considerations to the most common case - utilizing Dempster’s rule

of combination and the maximum of belief rule for decision making. Using the belief measure as

a contribution metric should intuitively satisfy the preference property; however, in subsection

4.3.1, it was shown that there exists a set of belief functions for which this is not the case. Let us

investigate these behaviours in more detail through Monte-Carlo simulations.

The procedure is performed as per Algorithm 3.

output :Results log
parameter : n - number of MC iterations, p - size of frame of discernment, decision

making formalism D, method of combination, set of contribution measures C
l = size(min);
for i = 1: n do

for k = 1 : 2 do
Generate a random number s between 1 and 2p

Randomly generate a BBA mk with s focal elements
end
Combine m1 and m2 using the selected method of combination. Let mJ denote the
result

Using the selected decision making formalism D, make decisions on m1, m2, mJ :
d1 = D(m1), d2 = D(m2), dJ = D(mJ)

if (d1 == d2 OR (d1 6= dJ AND d2 6= dJ)) then
Go back to BBA generation step;

else
Note the key contributor mA such that D(mA)= DJ . Denote the other mass mB
for every c in C do

Compute cA = c(mA,mJ ,dJ) and cB = c(mB,mJ ,dJ)
if cA ≥ cB then

Log preference property satisfied for c;
else

Log preference property not satisfied for c;
end

end
end

end
Algorithm 3: Monte-Carlo simulation for computing the proportion of cases where preference
property does not hold
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First of all, let us look at the relative accuracy of the different contribution measures (here the

Shapley value using belief and plausibility, the distance-based contribution measure Cd (Equation

4.14), the derivative-based contribution measure di (Equation 4.11) and belief, plausibility and

pignistic probability values themselves). It seems reasonable that as the maximum of belief is

used as the contribution measure, belief-based Shapley value and the belief measure itself will be

most accurate. This expectation is supported by the results. Running the simulation at 800000

iterations, we obtain the failure rates as shown in Table 4.8.

Shap(Bel) Shap(Pl) Distance-based Derivative-based Bel Pl BetP
32934 250084 51931 61305 32934 250044 71381
4.11% 31.3% 6.4% 7.6% 4.11% 31.3% 8.9%

Table 4.8: Proportion of cases where the preference property is not satisfied for the different
contribution measures using Dempster’s rule of combination and maximum of belief decision

Unsurprisingly belief-based Shapley value, as well as the belief measure itself, outperform

the other measures in this scenario, closely followed by the distance-based contribution measure.

Pignistic probability performance is a bit worse, and plausibility-based approaches perform very

poorly.

The second question we need to answer is: what properties of the basic belief assignments

result in the preference property not being satisfied? The discussion in section 4.3.1 implies

that one possible cause of this behaviour can be considerable overlap between the two masses

or inclusion of one within the other, relative similarity of the two belief masses, small but non-

zero conflict and low specificity of one of the two masses. In the following section, we study the

behaviour of the distance-based contribution measure in detail in comparison to the Bel measure.

The similarity of the belief mass functions can be measured using the geometrical distance dJ

(Equation 2.28). The conflict between the mass functions is typically defined as the mass on the

empty set of the conjunctive combination of the masses (Equation 2.18). The specificity of a belief

mass, which characterizes its relative precision, is defined as follows [97]:

(4.24) Spec(m)= ∑
A⊆Ω

m(A)
|A|

Finally, we require an approach to the assessment of relative inclusion of one belief assignment

within another. In order to avoid attempting to find the "optimal" method of measuring this

property, the following simple subsumption measure will be used:

(4.25) SA⊆B = ∑
A⊆B

m1(A)m2(B)

Now in order to analyze the behaviour correctly, the data generating algorithm (Algorithm

3) needs to be modified slightly. A set of features to be logged is included as a parameter: here

we use the distance dJ(m1,m2) , the conflict m1 ⊕m2(;), the inclusion of 1 in 2 and vice-versa

(S(m1,m2) and S(m2,m1)) and the specificities Spec(m1) and Spec(m2). Furthermore, in order to
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Figure 4.15: Bivariate hexagonal binning showing density of bba pairs satisfying and not satisfying
the preference property for Bel as a function of the distance and the conflict between them, using
maximum of belief decision making and Dempster’s combination

keep the dataset balanced, rather than performing a Monte-Carlo simulation for a specific number

of iterations, a target value n is passed, and the simulation runs until it has logged n positive

(where the preference property was satisfied) and negative (where the preference property was

not satisfied) instances.

As per the previous section, the best "performance", where performance refers to the rate of

satisfaction of the preference property, is obtained using either the Bel-based Shapley value or the

Bel function itself (as with maximum of belief decision making their performance is identical). A

matrix of scatter plots showing the distribution of cases satisfying and not satisfying the preference

property is shown in Figure 4.17. This can be compared with similar behaviour but using the

distance-based measure as the contribution metric as per Figure 4.18.

The distance between the two BBAs and the conflict between them are some of the most

significant predictors of the behaviour. Unfortunately, it is difficult to see it on a scatter plot due to

the density and downsampling of the results would make the outliers more difficult to see. In order

to circumvent this, bivariate honeycomb graphs are used, a technique drawing from hexagonal

binning and choropleth mapping. The Figures 4.15 and 4.16 respectively show this relationship

for the contribution measures Bel and distance-based Cd.

Conflict and distance histograms in Figures 4.17 and 4.17 can be helpful in analysis of this. In

the case of Bel being used as a contribution measure, it can be clearly seen that the preference

property is almost always satisfied when there is no conflict between the two masses and when

the distance between the masses is large. In Figure 4.15, an area where the preference property

is unlikely to be satisfied can be seen when the distance between the masses is small (∼ 0.2)
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Figure 4.16: Bivariate hexagonal binning showing density of bba pairs satisfying and not satisfying
the preference property for distance-based measure as a function of the distance and the conflict
between them, using maximum of belief decision making and Dempster’s combination

regardless of the conflict (as long as it is non-zero) and when distance is in the ∼ 0.2−∼ 0.5 range

and conflict is in the ∼ 0.4−∼ 0.5 range. When both distance and conflict are medium and similar

∼ 0.2−∼ 0.4, the satisfaction of the preference property is not explained by these two parameters.

A closer look at the data points within this area does not reveal much more. However, it can be

seen that in this case, the preference property is less likely to be satisfied than not (satisfied in

35% of cases). A close look at the histogram of the distance values reveals that there remains a

correlation between the satisfaction rate and the distance, with the satisfaction rate decreasing

with distance, but, again, it is not sufficient to determine whether a BBA couple satisfies this

property based on these parameters only. Finally, the histogram in Figure 4.19 shows that the

relative inclusion of one BBA in the other can be used to predict with some degree of accuracy

whether the preference property is satisfied regardless of the conflict and distance values.

It is interesting to note how different this behaviour is when Cd is used as the contribution

measure (Figures 4.16 and 4.18). In particular, it is noteworthy that a large proportion of cases in

which it is impossible to tell by distance and conflict only whether or not the preference property

will be satisfied for Bel lies within the region which is very likely to be satisfied for Cd (conflict

greater than ∼ 0.25 and distance between ∼ 0.35 and ∼ 0.5). On the other hand, while the cases

with low conflict virtually always satisfy the preference property for Bel, this is not the case for

Cd. In fact, when the cases without conflict are disregarded, Cd performance is much closer to

that of Bel as a contribution measure, even though Bel determines the decision.

Another interesting difference between the behaviour of Bel and Cd with regard to the

preference property is the impact of SA⊆B. This is visualized in Figures 4.20a and 4.20b. In

102



F
ig

ur
e

4.
17

:S
et

of
sc

at
te

r
pl

ot
s

fo
r

de
ci

si
on

m
ak

in
g

us
in

g
m

ax
im

um
of

be
lie

f,
co

m
bi

na
ti

on
us

in
g

D
em

ps
te

r’s
ru

le
an

d
th

e
be

lie
fm

ea
su

re
be

in
g

us
ed

as
th

e
co

nt
ri

bu
ti

on
m

ea
su

re

103



F
igure

4.18:Set
ofscatter

plots
for

decision
m

aking
using

m
axim

um
ofbelief,com

bination
using

D
em

pster’s
rule

and
the

beliefm
easure

being
used

as
the

contribution
m

easure

104



Figure 4.19: Histogram of bba pairs satisfying and not satisfying the preference property for Bel,
where 0.2< dJ(m1,m2)< 0.45 and 0.1< mJ(;)< 0.4 for different values of SA⊆B

(a) Bel as contribution metric (b) Cd as the contribution metric

Figure 4.20: Histogram of bba pairs satisfying and not satisfying the preference property for
different values of SA⊆B

particular, it can be seen that the performance of Cd is affected by SA⊆B significantly more than

that of Bel.

4.5.2 Dempster’s rule of combination and other decision-making approaches

The next step is to analyze corresponding results when other decision-making approaches are

used. It is clearly not viable to attempt to analyze every single decision-making method in as

much detail as in the previous section. As such, the main focus in this section will be placed

on decision making using the pignistic probability. However, some results for a maximum of

plausibility and maximum of probability methods will also be presented. First of all let us compare

the overall performance of different contribution measures for Bel (as presented in Table 4.8) to

the corresponding performance rates for the other decision-making approaches as presented in

Tables 4.9). These are obtained using an appropriately modified procedure from Algorithm 3.

There are some interesting insights to be gained from this data. First of all, as expected, the

behaviour with regard to the preference property of Shapley-based measures is identical or very

similar to that of the measures on which they are based. We can see that for all the decision-making

methods, the distance-based contribution measure Cd is the second-best - it performs almost as
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good as the "best" measure, although it is always slightly lagging behind either Bel or BetP. This

suggests it may be useful in cases where a more complex decision-making method is employed, or

the same explanation method needs to be applied regardless of the decision tool used.

4.5.3 Other combination rules

It is worthwhile to consider the situation where combination rules other than Dempster’s are used

- although the former is the most popular, it is not necessarily suitable in every case. The most

likely most common alternatives are Smets’ conjunctive rule and Yager’s rule. The disjunctive rule

of combination is occasionally used in case of highly conflicting but potentially reliable sources,

but its usage in real applications is less common. The Proportional Conflict Redistribution rules

proposed by Dezert and Smarandache for DsmT are also relatively well-known in particular for

decision-making purposes.

Table 4.10 shows the failure rates using the different combination rules. Some interesting

things to note are that the distance-based contribution measure performs very well for DSmT - it

is the second-best measure regardless of the decision method used. Its behaviour is slightly worse

for the conjunctive-disjunctive combination, albeit still acceptable. Finally, when the disjunctive

rule of combination is used, its performance is very poor - however, BetP performs surprisingly

well in this final case.

4.6 Contribution to conflict

The first step towards discussion of contribution to conflict has to be to define what conflict actually

is in the belief function framework and how is it different to uncertainty in general. Within the

belief functions community it is common to separate the conflict into two forms - the internal and

external conflict, Daniel[98], Liu [99], Destercke and Burger [90] as well as Pichon et al. [100]

discuss this in more detail.

The notion of conflict follows from the logical notion of consistency. Generally, a consistent

theory is such that it does not entail a contradiction. This can be applied to the information

provided in the form of sets. If only a single set provides information, it is inconsistent if and only

Decision Shap(Bel) Shap(Pl) Distance-based Cd Bel Pl BetP
Bel 4.11% 31.3% 6.4% 4.11% 31.3% 8.9%
Pl 20.9% 26.8% 19.5% 20.9% 26.7% 18.6%

BetP 17.2% 25.2% 15.3% 17.2% 25.2% 14.1%
Ignoring cases with no conflict

Bel 4.9% 25.3% 6.1% 4.9% 25.3% 8.1%
Pl 20.7% 22.4% 18% 20.7% 22.4% 16.6%

BetP 16.3% 20.7% 13.2% 16.3% 20.7% 11.7%

Table 4.9: Proportion of cases where the preference property is not satisfied for the different
contribution measures and various decision making methods using Dempster’s rule of combination
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if this set is the empty set ;. The consistency measure for sets only has two values - a set is either

fully consistent or inconsistent, with no room for fuzziness.

This is not the case with belief functions, but the notion can be naturally extended. A mass

assignment modelling the empty set only (m(;) = 1) can be naturally associated with the total

inconsistency. However, there are several possible definitions of the totally consistent mass

assignment, drawing from logical and probabilistic approaches [101] [102] [103].

Definition 4.4 (Logical consistency). A mass assignment is logically consistent if and only if⋂
E∈F 6= ; (where F is the set of focal sets)

This definition means that for a mass function to be logically consistent, its non-zero focal

sets must have a non-empty intersection. It is shown in [90] that this means that such a mass

considers at least one state of the world as fully plausible.

Definition 4.5 (Probabilistic consistency). A mass assignment is probabilistically consistent if

and only if m(;)= 0

This definition is consistent with logic-based interpretation of belief function and with the orig-

inal formulation as part of the Dempster-Shafer Theory. These two definitions of total consistency

induce two alternative consistency measures from the set of all mass functions to [0,1] for belief

functions, satisfying both the minimum and maximum values

(4.26) φpl(m)=max
ω∈Ω

pl(ω)

and

(4.27) φm(m)= 1−m(;)

DSmT PCR6
Decision Shap(Bel) Shap(Pl) Distance-based Cd Bel Pl BetP

Bel 1.7% 14.9% 3.7% 1.7% 14.9% 4.2%
Pl 10.1% 13.1% 9.2% 10.1% 13.1% 9.1%

BetP 8.1% 12.4% 7.1% 8.1% 12.4% 6.9%
Dubois-Prade (Conjunctive-Disjunctive)

Bel 2.0% 15.6% 4.4% 2.0% 15.6% 4.5%
Pl 10.3% 12.9% 10.4% 10.3% 12.9% 9.1%

BetP 8.5% 12.3% 8.5% 8.5% 12.3% 7.0%
Disjunctive rule

Bel 8.2% 7.1% 23.6% 8.2% 7.1% 4.3%
Pl 13.9% 7.0% 22.4% 13.7% 7.0% 7.5%

BetP 12.2% 6.3% 22.7% 12.2% 6.3% 5.9%

Table 4.10: Proportion of cases where the preference property is not satisfied for the different
contribution measures and various decision making methods using Dempster’s, Dubois-Prade or
PCR rules of combination
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This can be extended to conflict between sources by considering the inconsistency resulting

from information combination. Again, for sets, we either have a total conflict (A∩B =;) or no

conflict.

Total conflict is the straightforward case where the disjunctions of all focal elements of the two

masses have an empty intersection. Let Di =∪A∈F〉 denote this disjunction, where F〉 denotes the

set of all focal elements with non-zero mass of the mass assignment function mi. Then we have:

Definition 4.6 (Total conflict). m1 and m2 are in total conflict if D1 ∩D2 =;

There exist multiple measures for internal conflict of belief functions as well as that between

belief functions. The traditional measure of conflict between two mass functions is the mass on

an empty set following the conjunctive combination of the two masses m1 ⊕ m2(;). This was

criticized by Liu [104], who pointed out the existence of masses which may be fully consistent with

one another but still result in a significant mass assigned to the empty set through conjunctive

combination. It was proposed to use a pair of values - the mass on the empty set and the geometric

distance (Equation 2.28) to accurately assess the overall conflict between mas functions. The

concept of using a pair of values was also subsequently discussed by Daniel [98] who suggested

taking a minimum of several possible conflict values. Pichon et al. proposed a number of measures

to quantify this external conflict [100], based on the notions of N-consistency

(4.28) φN (m)= 1−mN (;)

with mN denoting the combination of m with itself N times

(4.29) mN = mN−1 ∩m

which in a way can be considered to follow from the concept of auto-conflict (1-consistency) [103]

(4.30) m2(;)= m∩m(;)

One such measure which is relatively straightforward and of interest to us is:

(4.31) κπ(m1,m2)= 1−φπ(m1 ∩m2)

. In [90] a consistency measure based on plausibility contour was proposed satisfying the proposed

axioms along m(;):

(4.32) φπ = maxx∈Xπ(x)

where π(x) is the plausibility function restricted to singletons. This measure is one of the many

measures we can use to quantify internal conflict.

4.6.1 Conflict contribution measures

The definitions and properties of a contribution measure of conflict do not specify whether it is

the internal or external conflict that is concerned. When we consider the contribution to internal

108



conflict, we are concerned with how the internal conflict changes when another body of evidence is

included in the fusion process. This can be expected to correlate with the external conflict between

the said body of evidence and the remainder of the knowledge base in the majority of cases.

In the previous section, we have discussed two main avenues of assessing the impact of a

single body of evidence on the fusion process - these are the approaches based on the Shapley value

and taking the derivative with respect to the discounting factor. The former was done for conflict

by Ben-Abdallah, and Jousselme [79], whereas the latter was used for conflict and uncertainty

through consonance and specificity in the original work by Strat and Lowrance [92]. However,

this consonance measure is not a real conflict measure, and it does not satisfy the axioms from

[90]. With the breadth of possible measures for the conflict, we have various possible contribution

measures for quantifying conflict brought by a particular body of evidence. In general, with one of

these approaches, correctly identifying the key contributor is significantly easier than in the case

of analysis of the decision, as the preference property is no longer that difficult to satisfy.

In fact for Proposition 4.5 to be satisfied we have: If

φ(K∗/k1)≥φ(K∗/k2)

then

κ(K∗,k1)≤ κ(K∗,k2)

Consider the method based on taking the derivative of the measure of interest with respect to

discounting factor. Then we have κ(K∗,k1)= dφ(K∗)
dα1

and by definition of the discounting process

φ(K∗,α1 = 1)=φ(K∗/k1), as such it is simple to see that the preference property is satisfied for all

cases where the derivative dφ(K∗)
dα is constant with respect to α.

Given the breadth of possible conflict measures, it is a daunting task to try to analyze all or

even the majority of them. As such, we only discuss a few in greater detail. First of all, we must

consider the Shapley value with auto conflict m2(;) as the payoff function, which was proposed by

Ben-Abdallah2[79].

(4.33) Shapκ(m)= ∑
S⊆N

= |S|!(N −|S|−1)!
N!

(κm(S∪U{i})−κm(S)))

with κm(S) = ∩ j∈Sm j(ω). As per the definition of Shapley value we have
∑

i∈N φi(κ) = κm(N .

Clearly we can replace the payoff value with another conflict measure, such mJ(ω) or the

plausibility-contour based conflict 1−φπ (Equation 4.31) . We can also apply all of these measures

easily to the derivative-based approach d
dα .

Therefore we are concerned with six measures of contribution of the individual body of evidence

to the overall conflict. These are the Shapley values for auto-conflict Shapm2(;), mass on the

unnormalized joint empty set ShapmJ (;), and contour function conflict Shapκπ as payoff functions.

Furthermore we have the derivatives of the three measures with respect to discounting rate of the

mass of interest: dm2(;)
dα , dmJ (;)

dα and dκπ(m)
dα

With this in mind, we can have a look at the behaviour of these six measures. Consider

the following scenario where a vessel type is to be identified. The frame of discernment is Ω =
2At the time of writing, this was only published in a CMRE report
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{Tanker,Cargo,Fishing}. We have four bodies of evidence with different degrees of internal

inconsistency and conflict between one another

m1(T))= 0.6 m2(T,C)= 0.7

m1(Ω)= 0.4 m2(Ω)= 0.3

m3(T)= 0.4 m4(F)= 0.7

m3(C)= 0.3 m4(Ω)= 0.3

m3(Ω)= 0.3

Clearly, m1 and m2 are both fully internally consistent with different degrees of nonspecificity.

The mass function m3 is in partial conflict with the other two due to its own internal inconsistency

or internal conflict. Finally, m4 is in conflict with all the other masses.

Combining these four masses conjunctively results in the following joint mass function: m(T)=
0.57, m(C) = 0.19, m(T,C) = 0.1, m(F) = 0.1, m(Ω) = 0.04 with m(;) = 0.7468 pre-normalizaton.

Computing the conflict contribution measures we have: These results highlight the differences in

Table 4.11: Conflict contribution measures for masses m1 to m4

Shapm2(;) ShapmJ (;) Shapκπ
dm2(;)

dα
dmJ (;)

dα
dκπ(m)

dα
m1 0.02 0.129 -0.04 -0.193 0.110 -0.3
m2 0.006 0.084 0 -0.191 0.059 -0.16
m3 0.203 0.148 0.197 0.122 0.13 0.1
m4 0.156 0.385 0.135 0.29 0.51 0.21

the behaviour of the six measures. In particular, we can see the main difference between using the

Shapley index and the derivative is that the former considers the average of all the combinations

(coalitions) involving the mass of interest, whereas the latter considers changing the mass of

interest only and keeping the other contributors constant. This difference is particularly striking

when considering the difference between m3 and m4. We can see that for the auto conflict m2(;)

the main contributor is identified as m3 using the Shapley value, but m4 taking the derivative.

Similar behaviour is observed with κπ. As discussed before, d
dα satisfies the preference property as

long as it is constant with respect to α, which is the case for conjunctive combination. We can verify

it for this example as m2
∩i=1,2,4(;) = 0.3 and m2

∩i=1,2,3(;) = 0.265, showing that m4 is a greater

individual contributor to conflict. However, from the Shapley value, we know that it is the greater

contributor across all the possible coalitions - the latter measure is useful, despite not satisfying

the preference property in this example.

4.7 Contribution to uncertainty

As discussed at length in Section 2.3.2 it is not straightforward to distinguish between the notions

of "conflict" and "uncertainty". In general, for the purpose of this section, "uncertainty" means

"ignorance" or "non-specificity," i.e. lack of information. As such, we are not looking at the overall

uncertainty, which combines both inconsistency and second-order uncertainty, but rather attempt
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to separate the two and consider them independently. Furthermore, in most information fusion

applications, sources will not contribute to uncertainty (ignorance); each non-conflicting source

will either reduce the overall uncertainty or keep it unchanged [1] - in other words, new sources

can bring in new information, but not take it away. When dealing with belief functions, there are

two main situations when we may consider a body of evidence to increase the overall uncertainty.

The first case is when we consider conflicting sources and a method of combination other than

Dempster’s rule where this conflict is interpreted in such a manner that it increases uncertainty.

Some obvious examples are the disjunctive rule of combination (where it is assumed at least one

of the sources is correct and the result of the combination is the knowledge that both sources can

agree on) or Yager’s rule, where conflict is interpreted as uncertainty. Another example of a body

of evidence increasing overall ignorance is that of contextual information, the case which has been

discussed in Chapter 3 or more generally a body of evidence which is used to reason about the

behaviour of another source can increase the second-order uncertainty regarding a variable of

interest.

In this section, we look at some measures of nonspecificity or ignorance and discuss how they

can be used to construct appropriate contribution measures using the method discussed in the

previous sections. The measures are then applied to the two scenarios where individual bodies of

evidence increase second-order uncertainty - non-Dempsterian combination rules and valuation

networks with source correction model.

4.7.1 Measures of second-order uncertainty

A number of measures for the quantification of second-order uncertainty have been proposed.

Traditionally we have the Hartley functions as a measure of uncertainty, which has been gen-

eralized by Higashi and Klir [105] who proposed the measure of U-uncertainty, also satisfying

the properties of Shannon’s entropy for possibility distributions and by extension to basic belief

assignments describing ordered possibility distributions. This has been extended by Dubois, and

Prade [102] to any basic belief assignment

(4.34) N(m)= ∑
A∈F

m(A)log|A|

Whilst this is arguably most commonly used and most correct measure of nonspecificity we may

use another one to continue considering the geometric interpretation of the belief function, i.e. the

distance to the vacuous mass function mv(Ω)= 1. From 2.28 we have:

(4.35) d(m1,mv)=
√

1
2

(−→m1 −−→mv)TJac(−→m1 −−→mv)

and hence we have the uncertainty measure

(4.36) U(m)= 1−d(m,mv)

In general, the advantage of the latter is that it is bounded between 0 and 1, whereas the former

is not. However, it is dependent on the size of the frame of discernment. As such, despite not being

a proper nonspecificity measure, it can be useful nevertheless.
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Similarly to the conflict measures, we can obtain four possible measures of the contribution of

the particular body of evidence to overall nonspecificity or uncertainty, using either the derivative

with respect to the discounting factor d
dα or the Shapley value. We need a payoff function for

Shapley value such that it is 0 for the empty coalition; in this case, the measure used must be

such that v(mv) = 0, where mv denotes the vacuous belief function. For this reason, it is easier

to use measures of specificity rather than nonspecificity. Therefore we have −ShapN(mv)−N (m),

−Shapd(m,mv)(m), dN
dα and dU

dα

4.7.2 Example: combination methods facilitating nonspecificity

Recall the vessel identification example from the previous section. Now we consider combining

these mass functions with Yager’s combination rule or Dubois-Prade conjunctive-disjunctive rule.

We do not consider the disjunctive rule itself as although it may be used for conflict handling

purposes, it makes little to no sense to use it for combination of multiple mass functions. Thus

we have mY , the result of combination using Yager’s rule and mDP , the result of conjunctive-

disjunctive combination:

mDP (T))= 0.14 mY (T)= 0.144

mDP (C)= 0.048 mY (C)= 0.05

mDP (F)= 0.025 mY (F)= 0.025

mDP (T,C)= 0.1 mY (T,C)= 0.025

mDP (T,F)= 0.34 mY (Ω)= 0.75

mDP (F,C)= 0.11

mDP (Ω)= 0.238

Table 4.12: Specificity and nonspecificity contribution measures for masses m1 to m4

Yager’s Combination Conjunctive-Disjunctive Combination
−ShapN(mv)−N −Shapdv

dN
dα

dU
dα −ShapN(mv)−N −Shapdv

dN
dα

dU
dα

m1 -0.267 -0.09 0.11 0.018 -0.19 -0.14 0.09 0.11
m2 -0.018 -0.071 0.08 0.01 -0.01 -0.06 0.07 0.07
m3 -0.35 -0.057 0.1 0.048 -0.25 -0.09 0.05 0.1
m4 -0.19 0.072 0.7 0.32 0.11 -0.07 8 (!) 0.7

We can see significant differences between the various measures. Some of the arguments

discussed with respect to conflict apply here, too, in particular regarding the difference between

Shapley value and derivative and how the former takes into account the average of all the coalitions,

rather than focusing just on the body of evidence of interest. However, as mentioned earlier, a

major issue is that for Shapley value, we require the payoff function to be 0 for the empty coalition,

which in this interpretation corresponds to the vacuous mass function. For that reason, we need to

convert the nonspecificity measures into specificity measures and then re-interpret the results as

contributions to nonspecificity. With both Yager’s and conjunctive-disjunctive combination, each

body of evidence individually increases the nonspecificity (or rather removing any individual piece

of evidence reduces the overall nonspecificity, whether using the Hartley measure or distance to

112



the vacuous mass function). Whilst this is captured by the d
dα family of measures, it is not the

case for the ones based on Shapley value. In fact, in the case of Hartley measure with Yager’s

combination and distance-based measure with conjunctive-disjunctive fusion, the mass m4, which

clearly has the greatest impact on the uncertainty of this combination, is not even correctly

identified as the key contributor. Whilst Shapley’s value has been shown to be a good method of

correctly attributing the origin of the conflict, it is not really suitable for tracking non-specificity,

at least not in the way discussed here.

4.8 Discussion and summary

In this chapter, we have discussed the notions of the provenance of information, conflict and

uncertainty in a framework-agnostic manner and then applied these concepts to the belief functions

framework. Several propositions have been put forward to be satisfied by contribution measures,

including a preference property. By this property, the contribution of a source is greatest if

removing it from the knowledge base has the greatest impact - in the case of contribution to

decision or knowledge, it is the only one to change the decision to be made or the state of the world

assumed to be true, and in the case of conflict and uncertainty, it has the greatest impact on some

uncertainty or conflict measure.

This proposition seems trivial at first glance, but a deeper investigation showed that in the case

of decision-making, it is actually quite difficult to satisfy. A number of Monte-Carlo situations were

performed to investigate the impact the relationship between properties of the mass functions in

question has on the likelihood that the two preference property is satisfied for the decision making

based off these functions for a particular contribution measure and decision-making paradigm.

The rationale for this was that if some relationships can be found, it may be possible to select

appropriate contribution measures given the properties of bodies of evidence and the contribution

measure. Furthermore, this rate of satisfaction of preference property could be used as one of the

possible benchmarks of the different contribution measures.

The existing literature on the problem was reviewed, and some existing measures based on

sensitivity spaces were discussed. A novel approach based on the geometric interpretation of belief

functions was proposed, discussed in detail and compared to existing solutions. The purpose of this

approach was to aim towards a contribution measure independent of the method of combination

used, and although it was outperformed by other measures in different settings, it showed one of

the best performances across the board, something that other measures lacked.

Furthermore, several contribution measures were discussed to track the origin of conflict

and nonspecificity in belief functions, based on Shapley’s value or the sensitivity to discounting

approach. It was shown that it is much easier for the preference property to be satisfied in

this context, but also that it is not necessarily the best benchmark and that even measures not

satisfying it can be very useful in some cases.

There are extensive areas where further work can be carried out. In particular, it may be

worthwhile to revisit the properties the contribution measure should satisfy. While in some cases,

the notion of "greatest impact" can be self-explanatory, in others, it is not. In particular, if we
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consider more complex valuation networks, source correction models and such, it may be very

hard to agree on what is meant by the greatest impact of a particular body of evidence. This is a

major difficulty with tracking uncertainty as well. While in some cases, the uncertainty can come

from conflict redistribution, in others, it may be due to source correction or source self-doubt.
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5
SITUATION AWARENESS USING CONCEPTUAL GRAPHS

H igher-level information fusion or modelling of situations will be discussed in this section.

Dealing with information concerning more than one entity is a problem at higher levels

of information fusion. At the Data and Information Fusion Conference organised by The

Los Alamos National Laboratory in Santa Fe, New Mexico, in August 2019, one of the main topics

of discussion was the identification of the key current challenges in information fusion. It was

generally agreed that these are: handling uncertainty, defining and dealing with soft information

and handling high-level situations. The first problem was addressed extensively in the previous

chapters; here, we focus on the latter two.

5.1 Modelling of situations

The model proposed by Joint Directors of Laboratories (JDL) has been in use since the inception of

the field of information fusion. Although often criticised and hence undergoing constant refinement,

it is, without doubt, the most important model employed by the information fusion community. It

is widely agreed that the JDL fusion model has gained most acceptance in the information fusion

community - with several revisions and modifications proposed by different authors[69][70].

The JDL model differentiates between a number of fusion "levels" thus providing distinction

between different processes which relate to refinement of either "objects", "situations", "threats"

and "processes". In general we are not concerned with the distinction between knowledge, data,

sensor and information fusion.

The JDL data fusion model consists of 5 levels: source preprocessing (level 0), object refinement

(level 1), situation refinement (level 2), threat refinement (level 3) and process refinement (level 4).
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5.1.1 JDL perspective

The JDL levels are not very clearly defined - to the extent that some researchers would go as

far as saying that the JDL model itself does not actually exist and rather is a very general

notion that different tasks within information fusion can be split and separated into various

levels. As Steinberg and Snidaro suggest [69], a Data Fusion model supporting the development

of fusion systems is an engineering model, and as such, its purpose is to partition the problem

space to support the development of different solutions. The previous two chapters of this thesis,

in particular, Chapter 3, addressed the problem of reasoning about an individual entity or its

properties. As such, although some information fusion practitioners would disagree and claim the

problems addressed are complex enough to consider them on Level 2 of the JDL, I am inclined to

consider the work done to this point to be within Level 1 of the JDL. For Level 2, we must consider

the problem of situation awareness for which we must not only have several targets with some

properties but some structured relationships between them.

5.1.2 Situation awareness

Situation awareness is concerned with making sense of the environmental elements and events.

Endsley [106] defines it as the perception of these elements and events, comprehension of their

meaning, projection of their future status and resolution - planning and decision-making. This

is naturally similar to the processes described in Chapter 3, where rather than being concerned

with the elements and events in the environment, we discussed the reasoning (comprehension

step) about the reports provided by sources (perception), given context-of the problem itself as

well as the contexts in which these sources operate. The key difference is that, whereas before

we focused on a particular problem entity (and its context), now we operate within the greater

context of some environment, which may contain multiple entities.

In this chapter, we are concerned with representing information about multiple entities and

the relationships between them. Again, it is assumed that this information may be provided

by partially reliable sources, furthermore as each source provides an overview of the situation

regarding multiple entities, we need to consider the situation where some information provided by

a source is true.

5.1.3 Situations and context

The relationship between situations and context has been briefly discussed in Chapter 3 of this

thesis. Recently, Steinberg addressed this relationship by defining context as a "situation that

provides information that can be used either a) to condition expectations or b) to improve the

understanding of a given inference or planning/control problem" [67]. This is consistent with the

notion of context-of, as discussed in Chapter 3. From this perspective, all information describing

the situation can also characterise the context. Consistently with earlier discussions on context,

a situation may be true within a certain context or as part of a greater situation. Furthermore,

according to Steinberg, context-of and context-for can play a significant role in fusion at any JDL
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level. Still, they are particularly relevant at higher levels, where the variables of interest are

relationships or multi-entity situations, which cannot be observed directly and must be inferred.

5.2 Conceptual graphs, information graphs and ontologies

In this section we discuss in more detail the notion of a conceptual graph first introduced in section

2.4.3.

For a specialization relation between conceptual types t1 ≤ t2 to hold the concept type t1 must

be a subtype of t2 according to the dictionary V , i.e. if t1 is a specialization of t2 any instance of

the class denoted by t1 is also an instance of the class denoted by t2.

This is extended to apply to concepts - given the order on TC concepts defined on TC×{markers∪
∗} can be partially ordered by a specialization relation. Given the two concept nodes c1 = [T1 : m1]
and c2 = [T2 : m2] the specialization relation is defined as follows:

(5.1) c1 ≤ c2 i f f

T1 ≤ T2

m2 =∗ or sim(m1,m2)≥ thres

where sim(m1,m2) is a similarity function and thres is a predefined threshold.

Consider this simple example where the conceptual type CargoShip is more specific than

Vessel. As such we have:

[Vessel: *] ≥ [Vessel: Rex] ≥ [CargoShip: Rex]

As the concepts are only partially ordered [Vessel: Rex] and [CargoShip: *] are not

comparable.

Furthermore a specialization relation is defined between graphs and denoted by v. Given two

conceptual graphs A = (CA,RA,EA, lA) and B = (CB,RB,EB, lB). Let PAB denote the set of graph

isomorphisms between A and B. As such we have:

(5.2) B v A ⇔∃p ∈ PAB,



p : CA,RA → CB,RB

cA, rA → cB, rB

∀cA ∈ CA, cB ≤ cA

∀rA ∈ RA rB = rA

This brings us to the concept of specialisation set, an operator Π which denotes the set of all

more specialised graphs of a graph so that

(5.3) B ∈Π(A)⇔ B v A

The basic information fusion model for conceptual graphs follows almost exclusively from the

ideas presented in [107], as the model for uncertain information fusion presented in that paper

is the foundation on which the extensions proposed throughout here are built. The methodology

for soft information fusion, where semantic information is combined, utilises the notion of a

knowledge model. This model is formally expressed as a conceptual graph with all concept nodes in
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the form [ConceptType:*]. Throughout this chapter, such a graph is referred to as the model

and denoted by M.

Any conceptual graph A associated with observation is provided in a form consistent with the

model, such that A <M or A ∈Π(M)

The information fusion process for conceptual graphs representing observed situations can be

defined using fusion operator ⊗ compliant with a model M such that:

⊗ :Π(M)×Π(M)→Π(M)(5.4)

(A,B)→ A⊗B

Different fusion operators can implement various fusion strategies [108], and these can be

specified in accordance with the requirements, context, level of importance of different items or

other factors.

5.2.1 Uncertainty management

A relatively straightforward method for uncertainty management was proposed in [107], where a

reliability rating (which can be interpreted as the probability that a source is fully reliable) was

proposed. It is based upon the assumption that if two sources of information A and B provide their

observations, four cases need to be considered: both sources are reliable (in this case, we know

A⊗B about the event), one of the two is reliable but the other isn’t (our knowledge is either A or B

and the other one is discarded) and finally neither is reliable and our state of knowledge defaults

to the model M

5.2.2 Motivation

From the above, it can be seen that although some work on uncertainty representation in this

context has been done, there are several areas that should be investigated further. In particular, we

could argue that in semantic fusion, the assumption that the entirety of information provided by a

source is either true or false is going to negatively impact the outcome of the fusion process. Given

that a single source (or a statement) can provide multiple pieces of information simultaneously,

it is reasonable to assume that a source may be correct regarding some of its assertions and not

about the others.

This makes it necessary to discuss some methods of representing the combination of partially

conflicting data as well as of modelling partial reliability of sources. Finally, we discuss the issue

of dealing with modality in semantic information.

5.3 Uncertainty management for partial conflict resolution

A significant portion of the content presented in this and the next several sections has been

previously published in [109]
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5.3.1 Set-based approach

We propose a set-based approach to partial conflict resolution by allowing the conceptual type

as well as the relation type to be labelled with a non-empty set of non-subsumptive hypotheses.

Note that set subsumption (defined below) is different to graph subsumption. For simplification

and to make this approach more consistent with existing methods of uncertainty management,

we assume that no two conceptual types, which are not a specialisation or generalisation of one

another, may have a common specialisation.

For the conceptual type we have a non-subsumptive set of pairs lG(c)= {(type(c),marker(c))},

such that type(c) ∈ TC and marker(c) ∈markers∪∗.

We define a non-subsumptive set as a set such that no two elements within are a generalisation

or specialisation of one another. This can be formally defined as follows: A set S of concept labels

si is considered subsumptive if there exists a pair {s1, s2} ∈S such that s1 ≤ s2

A similar extension is proposed to aggregate conflicting information regarding relation type;

however, as our approach is restricted to unordered relation types, it is unnecessary to worry about

subsumption. Thus we let r be labelled by a non-empty subset of relation types lG(r)⊂ Tr, lG(r) 6= ;
This makes it possible to embed the most basic uncertainty model in the conceptual graph

model itself. To illustrate its usefulness, let us consider this simple scenario of investigating the

behaviour of a suspicious cargo vessel Rex. Consider the maritime type hierarchy as shown in

Figure 5.1.

Entity
Destination

Vessel
Activity

Turkey

...
Italy

Figure 5.1: Excerpt from a maritime concept vocabulary

Now consider conflicting reports regarding the destination of some vessel. For instance, consider

that the AIS reports state the destination of the vessel is the port in Iskenderun, but the kinematic

analysis of the vessel’s behaviour suggest it is heading towards Mersin. In this case, the only

option of modelling this using a standard conceptual graph requires a loss of information. The

representations without and with the direct embedding of uncertainty are shown in Figures 5.2

and 5.3 respectively.

CargoVessel:Rex hasDestination Turkey: ∗

Figure 5.2: Conceptual graph representation without uncertainty modelling

Similarly, let us consider the case where fewer specifics are provided - say that kinematic

destination analysis only suggests that the real destination is Turkey. Meanwhile, the entry in the

AIS field states that the destination is Italy. Again, using the standard conceptual graph approach,
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CargoVessel:Rex hasDestination
{Turkey:ISKENDERUN,
Turkey:MERSIN}

Figure 5.3: Conceptual graph representation with uncertainty modelling

the only method of representing this is in conceptual graph form is as shown in Figure 5.4. By

allowing uncertainty, we obtain a more informative representation as shown in 5.5.

CargoVessel:Rex hasDestination Destination

Figure 5.4: Conceptual graph representation with uncertainty modelling

CargoVessel:Rex hasDestination
{Turkey:∗,
Italy:∗}

Figure 5.5: Conceptual graph representation with uncertainty modelling

5.3.2 Uncertain information fusion

Furthermore let us look into information fusion using conceptual graphs incorporating uncertainty.

First of all let us briefly discuss the fusion strategy

The fusion strategy used throughout this section is strongly based on the method proposed

in [107]. However, there are some changes required to handle uncertainty. We incorporate the

concepts of conjunctive and disjunctive fusion used widely in the information fusion community

[12] [1] which distinguish between two approaches to dealing with partial conflict. In general,

disjunctive fusion is based on the assumption that the reliability of the sources is unknown (some

of the sources may be unreliable), whereas under conjunctive fusion, we assume that all the

sources are reliable. Note that this is a guideline rather than a rule, and in some cases, we may

prefer to use conjunctive fusion even if we know that some of the sources may be unreliable.

The original fusion process by which the nodes and relations of the two graphs are combined

to generate the fused graph has been defined as follows:

• For each conceptual type, the most generic common subtype of the two initial concept is

selected, e.g. Destination:∗ ⊗ Turkey:∗ → Turkey:∗

• For markers the markers are considered compatible if either:

1. One of the markers is * in which case the other marker is kept

2. For strings, one marker is included in the other (and the longest is kept)

In cases when markers are in a hard data form (e.g. timestamps, locations), the exact method

of the combination needs to be proposed on the case by case basis. The markers will be
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considered compatible if they are of the same type, and some similarity function is below a

specified threshold. The method of combination will vary as well.

This is extended with concepts of the disjunctive and conjunctive combination of concepts.

• Disjunction: for each conceptual node labelled with a set of non-subsumptive conceptual

types, the union of sets is selected. If the result is a subsumptive set, the conceptual types,

which are specialisations of other members of the set, are removed.

• Conjunction: for each conceptual node, the intersection of labelling sets is selected as the

new label. For this intersection, each conceptual type is considered a set of all its subtypes.

This cannot be performed if the resulting intersection would be an empty set.

This can be illustrated with simple examples. Consider the following extension to the earlier

type hierarchy for maritime entities.

Vessel

Fishing

Cargo

...
Pleasure craft

Trawler
Sleiner

...
Longliner

Figure 5.6: Excerpt from a maritime concept vocabulary

1. Simple disjunctive fusion: {Trawler:∗, Longliner:∗} ∪ {Longliner:∗, Cargo :∗}

→ {Trawler:∗, Longliner:∗, Cargo ship:∗}

2. Simple conjunctive fusion: {Trawler:∗, Longliner:∗} ∪ {Longliner:∗, Cargo

:∗} → Longliner:∗

3. Conjunctive fusion with supertypes as sets of types:

Longliner:∗ ∩ {Fishing:∗, Cargo:∗} → Longliner:∗
since Fishing:∗ ≥ Longliner:∗

From this, we can define an overall fusion operator ⊗ where the conceptual types of G1 and

G2 are combined using conjunctive fusion unless it would result in an empty set, in which case

disjunctive fusion is used instead.

5.3.3 Multi-source aggregation scenario using uncertain information fusion

Now, consider this simple scenario of information aggregation regarding the vessel Marcel proper-

ties with three conflicting sources of information. The type hierarchy used is the maritime domain

type vocabulary first described in Figure 5.1 and expanded on in Figure 5.6. The basic knowledge

model is defined as per Figure 5.7.

The following free sources provide information
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Vessel: Marcel hasDestination Destination:*

Figure 5.7: Basic knowledge model of the topic of interest

1. A maritime enthusiast tweets "The cargo vessel Marcel has been spotted heading towards

Turkey."

2. The AIS field for activity of Marcel is "Fishing" and destination is "Italy."

3. The kinematic analysis of the behaviour of Marcel suggests that it is a fishing vessel en

route to a port in Turkey

All three sources are obviously conflicting - if we try to combine them directly, we either end

up with inconsistent knowledge or converge back to the model. Let us assume that, for the time

being, we do not know the reliability of any of the sources.

First, we consider only sources 1 and 2. The corresponding graphs are in Figures 5.8 and 5.9.

Cargo: Marcel hasDestination Turkey:*

Figure 5.8: Graph G1generated from the first source

Fishing: Marcel hasDestination Italy:*

Figure 5.9: Graph G2 generated from the second source

These two sources are in full conflict - there is no possible method of representing them on a

single graph without information loss. As such, we use a disjunctive fusion approach as discussed

in the previous section. The outcome of this combination process is shown in Figure 5.10.

Note that the following fusion result is questionable as it allows the existence of statements

not supported by any source (what happens here is that we have two variables that are not

independent but no means of modelling their interdependence in a single graph). Whether this

triple is acceptable or not is largely dependent on our interpretation of the partial reliability of

the original statements (i.e. whether we assume that the statement "Marcel is a cargo vessel en

route to Turkey" can partially support a statement "Marcel is a cargo vessel en route to Italy").

While this makes sense in this scenario, in general, it is an issue that needs to be addressed at the

fusion strategy level.

{ Fishing: Marcel
Cargo: Marcel } hasDestination

{ Italy:*
Turkey:*}

Figure 5.10: Graph G1 ⊗G2 generated using disjunctive fusion of both concepts in G1 and G2

If we want to make sure that every statement which can be generated from the graph is fully

supported by at least one of the sources, we can instead find the most specific generalisation for
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one of the elements of the triple (i.e. in this case, defaulting one of the two concepts to the type

used one in the model). In this case, some information loss still occurs as we have no knowledge

anymore regarding the specialisation of Vessel in the former case or Destination in the latter.

We can now combine this with G3.It is reasonable to use either disjunctive or conjunctive

fusion. In the former case we would obtain G1 ⊗G2 ⊗G3 =G1 ⊗G2. As per the fusion strategy we

laid out in the earlier section we use conjunctive fusion, yielding G1 ⊗G2 ⊗G3 =G123 as shown in

Figure 5.11 which is arguably the most likely outcome

Fishing: Marcel hasDestination Turkey:*

Figure 5.11: Graph G123, the result of combination of the three sources G1 ⊗G2 ⊗G3 using an
appropriate fusion strategy

5.4 Partial reliability ratings

As discussed earlier, a significant issue with modelling uncertain information using the approach

used in literature is that every source has to be considered either entirely reliable or not, with no

sliding scale.

The approach proposed in the previous section, however means that reliability cannot be simply

modelled as a probability of a source of information being entirely truthful. A simple method is to

extend the probabilistic approach so that if a source is reliable, some of its information can be true.

Drawing from possibility theory, we can use two numbers to describe a source’s reliability, a

possibility of some of its information being true, and the necessity of all its information being true.

Note that although we use the same nomenclature as that used in possibility theory, the meaning of

possibility and necessity is conceptually similar but inherently different. The reason why it cannot

be considered a real possibility distribution is that there are at least three possible reliability

levels of a source: it can be fully reliable (all the information is true), partially reliable (all the

information could be true) or not reliable (no information provided) at all. However, by attaching

possibility and necessity values, we obtain the distribution on two variables only. Consider we have

a graph G provided by the source S, its reliability is modelled by the variable R. For convenience

let us denote Pos(R)≡ Pos(S)≡ Pos(G). Hence we may have a possibility distribution on {R, R̄}. In

order to model the three possible states, we choose to interpret Pos(R) as the probability that the

source is partially reliable and Nec(R) as the probability that the source is fully reliable. While

other axioms of possibility do hold, this interpretation is not coherent with the possibility theory.

To illustrate this, let us go back to the previous example but include possibility based reliability

ratings, such that Pos(G1) = 0.7,Pos(G2) = 0.6 and Pos(G3) = 0.7. The meaning of this is that

we believe, with a degree of 0.7, that at least some of the information provided by the source

generating the graph G1 could be truthful. Alternatively, this can be interpreted as a belief that

the source is fully unreliable with a likelihood of 0.3, which is consistent with the duality of

possibility theory, i.e. Pos(G1)= 1−Nec(Ḡ1).
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The result (Table 5.1) is a probability distribution on possible outcomes which is similar to

earlier work.

Graph G P(G) Concepts
G1 ⊗G2 ⊗G3 0.294 Fishing, Turkey

G1 ⊗G2 0.126
{Fishing, Cargo} ,

{Turkey, Italy}
G1 ⊗G3 0.126 {Fishing, Cargo}, Turkey
G2 ⊗G3 0.196 Fishing, {Turkey, Italy}

G1 0.084 Cargo, Turkey
G2 0.054 Fishing, Italy
G3 0.084 Fishing, Turkey
M 0.036 Vessel, Destination

Table 5.1: Semantic evidence combination results

Interestingly we can draw similarities between this and belief function theory [110] as now

we can obtain belief and plausibility values for any statement. For example the belief in the

statement that Marcel is en route to Turkey can be quantified as the sum of evidence supporting

this belief: Bel(Turkey) = P(G1 ⊗G2 ⊗G3)+P(G1 ⊗G3)+P(G1)+P(G3) = 0.588. Similarly the

plausibility measure can be obtained by summing the evidence not contradicting this statement

Plaus(Turkey)= 1−P(G2)= 0.946

Now let us revisit the concept of necessity introduced earlier. Consider we obtain a new piece of

evidence G4, which states that Marcel is indeed a fishing vessel and it comes from a more reliable

source so that we have Pos(G4)= 0.8 but also Nec(G4)= 0.3.

Fishing: Marcel hasDestination Destination:*

Figure 5.12: Graph G4 with Nec(G4)= 0.3 and Pos(G4)= 0.8

To model its reliability let us define two identical graphs GN
4 and GΠ

4 which have respective

reliabilities 0.3 and 0.8−0.3= 0.5 For simplicity, let us only combine this new piece of evidence

with G2.

GN
4 is now assumed to be entirely true, and as such, all information contained within has to be

included in the fusion result.

As such, when performing the combination GN
4 ⊗G2 only information from G2, which is not in

conflict with information from G4, remains. Conversely, the two graphs are treated equally when

combining GΠ
4 ⊗G2 and the same fusion rules as the earlier example are used. Both cases are

shown in Figure 5.13

Finally we obtain the distribution of results displayed in Table 5.2.
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Fishing: Marcel hasDestination Turkey:*

(a) G1 ⊗GN
4

{ Fishing: Marcel
Cargo: Marcel} hasDestination Turkey:*

(b) G1 ⊗GΠ
4

Figure 5.13: Graphs resulting from combination of G2 and G4 assuming that G4 is necessary
(5.13a) and that G4 is possible (5.13b)

Graph G P(G) Concepts
GN

4 ⊗G2 0.21 Fishing, Turkey
GΠ

4 ⊗G2 0.35 {Cargo, Fishing}, Turkey
G4 0.24 Fishing, Destination
G2 0.14 Cargo, Turkey
M 0.06 Vessel, Destination

Table 5.2: Semantic evidence combination results including necessity ratings

5.5 Comparison of the two models

In this section, we focus on the difference between the model for dealing with uncertainty from

[107] and the one proposed in the previous two sections, in particular highlighting the different

approaches towards dealing with conflict and incoherence. Let us consider the fusion example

provided in that paper with the following three information sources combined consecutively. For

conciseness, only the model is shown in Figure 5.14 and the pieces of information are represented

as a list of concepts.

Ship hasFlag Flag

performs Activity

Figure 5.14: Simplified model for the maritime surveillance scenario from [107], the geographical
location has been removed

The following information sources are consistent with the model Ship, Flag, Activity:

1. G1: Ship: SEAWOLF, Flag, Piracy, reliability: 0.8

2. G2: Dhow, Flag: Somali, Suspicious Activity, reliability: 0.7

3. G3: Ship: SEAWOLF, Flag, Fishing, reliability: 0.2

where Dhow < Ship; Piracy < Suspicious Activity < Activity; Fishing < Activ-

ity

Using the approach described in Section 5.3.2 the combination results are: G1 ⊗G2: Dhow:

SEAWOLF, Flag: Somali, Piracy and G1 ⊗G2 ⊗G3 = G1 ⊗G3 = G2 ⊗G3 = ¦, where ¦ rep-
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Graph G P(G) Concepts
G1 ⊗G2 0.448 Dhow: SEAWOLF, Flag: Somali, Piracy

G1 0.192 Ship: SEAWOLF, Flag, Piracy
G2 0.112 Dhow, Flag: Somali, Suspicious Activity
G3 0.012 Ship: SEAWOLF, Flag, Fishing
¦ 0.188 -
M 0.048 Ship, Flag, Activity

Table 5.3: Probability distribution on outcomes of the maritime surveillance scenario using sources
1 - 3 and the original model from [107]

Graph G P(G) Concepts
G1 ⊗G2 ⊗G3 0.112 Ship: SW, Flag:Som., {Piracy, Fishing}

G1 ⊗G2 0.448 Dhow: SW, Flag: Som., Piracy
G1 ⊗G3 0.028 Ship: SW, Flag, {Piracy, Fishing}
G2 ⊗G3 0.048 Dhow: SW., Flag: Som., {Susp. Act., Fish.}

G1 0.192 Ship: SW, Flag, Piracy
G2 0.112 Dhow, Flag:Somali, Susp. Act.
G3 0.012 Ship: SW, Fishing
M 0.048 Ship, Flag, Activity

Table 5.4: Probability distribution on outcomes of the maritime surveillance scenario using the
set-based uncertainty model for partial conflict resolution

resents the incoherent knowledge. The probability distribution on the possible outcomes (G1 ⊗
G2,G1,G2,G3,¦,M) is straightforward to compute and is shown in Table 5.3.

When the method proposed in this chapter is used instead we obtain G1⊗G2⊗G3 Dhow: SEA-

WOLF, Flag:Somali, {Piracy, Fishing}, G1⊗G3: Ship: SEAWOLF, Flag, {Piracy,

Fishing} and G2 ⊗G3 : Dhow: SEAWOLF, Flag: Somali, {Suspicious Activity,

Fishing}.

Treating the reliability ratings provided as possibility values, we obtain the distribution of

results shown in Table 5.4

Let us now consider the degree of support for a hypothesis that the ship SEAWOLF is involved

in pirate activities. Using the original method this statement is supported by graphs G1 ⊗G2 and

G1, the probabilities of which sum to P(SEAWOLF, Piracy)= 0.64. However„ by using the method

described earlier, we can instead obtain belief and plausibility values akin to the belief function

theory. The belief in this hypothesis is directly supported by graphs G1 ⊗G2 and only contradicted

by G3, resulting in Bel(SEAWOLF, Piracy) = 0.64 and Plaus(SEAWOLF, Piracy) = 0.988. This

implies that the actual likelihood of SEAWOLF being involved in piracy could be higher than that

suggested by the original model.

The key difference in the outcome is that in the original model, all the incoherent knowledge

is ignored or treated as a situation outside of the frame of discernment, whereas the approach

proposed in this chapter allows us to extract some information from it. It is important to note that

this particular example scenario is not optimal to demonstrate the performance of the model as

the third source exclusively contains information that is either conflicting or already included in

126



the other two sources. However, it is reasonable that a source deemed incoherent and excluded

from the combination process could carry valid and useful information (e.g. consider a scenario in

which the ship name is not included in G1). In that case, the original approach of disregarding

information that is partially conflicting as incoherent would result in a loss of useful data.

5.6 Modal uncertainty

Another concept that we want to briefly discuss, is how to deal with semantic descriptions of

uncertainty provided as part of the source (i.e. self-assessed). Here we propose a simple method of

doing it in the graph itself, rather than treating it as part of reliability rating.

• We allow for every concept label, defined as a pair of the conceptual type and a marker, to

have a modal parameter M(A) ∈ (0,1) associated with it.

• A concept A which does not have M(A) associated with it is treated as if M(A)= 1

• Sets of concept labels lG(c) are allowed to be subsumptive of as long as the following is true:

given concept labels A and B ∈ lG(c), if B is a specialisation of A (A > B) then M(A)≥ M(B)

This can be formalised as follows: a concept node is labelled with a set of 3-tuples: lG =
{(type(c),marker(c), M(c))}.

To illustrate this, consider the following statement, which can be modelled using the TfL

station vocabulary: "The vessel X has been spotted, most likely heading towards Turkey line,

possibly to Iskenderun port". Let us model the "strength" of these modal statements (most likely

and possibly)as 0.8 and 0.3 respectively. Therefore the uncertain concept, regarding the desti-

nation of the vessel, can be modelled as follows: {[Destination:∗], [Turkey:∗/0.8],

[Turkey:Iskenderun/0.3]}.

In order to develop an appropriate fusion strategy, it is reasonable to consider the concept of

decomposition. It makes intuitive sense that this information should be equivalent to the following

three statements

1. The vessel has some destination (possibility = 1)

2. The vessel is heading towards Turkey (possibility = 0.8)

3. The vessel is heading to the Iskenderun port in Turkey (possibility = 0.3)

These three can then be combined as per the previous section to obtain a probability distribution

on the three possible concepts. Although some loss of expressiveness occurs, this shows that the

two approaches are inherently compatible. Furthermore, an issue that needs to be considered here

is that of double-counting of evidence. In particular, should this sentence be interpreted as a set

of independent pieces of information - where the phrase "possibly to Iskenderun" supports the

hypothesis that the vessel is heading to Turkey, or should it be interpreted that "The vessel (possi-

bly) is heading to Iskenderun given that it is heading to Turkey"? Interpreting this information as

three independent statements as above and using it to obtain a probability distribution will result
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in a result where evidence may be double-counted. Alternatively, a set of probability assignments

can be obtained through an α-cut based method

We consider two modal statements to be non-conflicting if all the concept labels included

in one of them are either included or are specializations or generalizations of all the con-

cept labels included in the other statement. For example the statement {[Destination:∗],

[Turkey:∗/0.6], [Turkey:Iskenderun/0.5]} is not conflicting with the one used in

the previous example, whereas {[Destination:∗], [Italy:∗/0.4]} is. Combination of

two non-conflicting modal concepts is relatively straightforward. As they are essentially two

possibility distributions an appropriate t-conorm can be used. One simple method is to simply use

the maximum operator, e.g:

{[Destination:∗], [Turkey:∗/0.8], [Turkey:Iskenderun/0.3]}

⊗{[Destination:∗], [Turkey:∗/0.6], [Turkey:Iskenderun/0.5]}(5.5)

={[Destination:∗], [Turkey:∗/0.8], [Turkey:Iskenderun/0.5]}

The combination of conflicting modal sources is significantly more complex. Some existing

tools for conflict resolution could be used, but it is important to bear in mind that in the context

of graph-based fusion, there exists a significant risk of loss of tractability. Some of the poten-

tial methods are briefly outlined. The example {[Destination:∗]], [Turkey:∗/0.8],

[Turkey:Iskenderun/0.3]]} ⊗ {[Destination:∗], [Italy:∗/0.4]} is used for il-

lustration.

1. Keep everything: a simple method that avoids any information loss but may cause scal-

ability or tractability issues. All the conflicting information is retained, as was done in

the previous section. This would result in {[Destination:∗], [Turkey:∗/0.8],

[Turkey:Iskenderun/0.5], [Italy:∗/0.4]}. This can then be used to generate

possible graphs and obtain a probability distribution, as discussed earlier

2. Retain non-conflicting information only - a significant loss of information, but potentially

justified due to the logical inconsistency. The output would simply be [Destination:∗]

3. In case of conflict, retain information with greater modality - the conflicting subsets are

identified, and the one with the greatest modality is retained. In this case this would

result in {[Destination:∗], [Turkey:∗/0.8], [Turkey:Iskenderun/0.5]}.

The behaviour is questionable when the difference in modalities is small and would be

strongly affected by second-order uncertainty (i.e. how certain are we regarding modality

assessments)

5.7 Fusion strategies

A major downside of the fusion strategy presented in Section 5.3.2 is that it is not insensitive to

the order in which information is being combined.
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As such an alternative fusion strategy is proposed, based on the notions of specificity and

consistency. First of all let us recall the notion of consistency discussed at length in the previous

chapter. Logically a consistent theory is one that does not entail a contradiction. Here, we can

consider the degree of inconsistency or conflict between the two graphs sharing a knowledge

model to be proportional to the number of incompatible concept nodes. Equation 5.6 defines

an inconsistency measure as a ratio of inconsistent concept nodes to all concept nodes in the

knowledge model M

(5.6) φ(G1,G2)= |{c : c ∈ C1 ∧ c ∩ c2 =;∀c2 ∈ C2}|
|CM|

Furthermore, we can consider the notion of (non)specificity of a conceptual graph with embedded

uncertainty. The simplest definition is the number of possible dogmatic (non-uncertain) graphs

which are consistent with the graph of interest and only include information in the graph of

interest.

(5.7) NS(G)= |{G∗ : G∗ ∈Π(G)∧G∗ vG}|

With this in mind we can consider the example from Section 5.4. Table 5.5 shows all the

possible fusion candidate graphs - consistent with the knowledge model and with at least one

of the sources and not including any information not included in the knowledge base, and their

corresponding average consistency and nonspecificity values. Average consistency is the average

of consistencies of the candidate graph GJ and each member of the knowledge base G i. The set of

all graphs in the knowledge base is denoted as G = {G1,G2,G3}.

The purpose of the fusion procedure is to find a graph that satisfied two properties - it needs

to have the least amount of conflict possible with all the elements of the knowledge base, and it

needs to be as specific as possible. The degree of former can be expressed by the average value

of inconsistency or conflict 1
|G|

∑
i∈Gφ(G i,GJ), whereas the latter by the nonspecificity measure

NS(G).

GJ concepts 1
|G|

∑
i∈Gφ(G i,GJ) NS(GJ)

∑
i∈G φ(G i ,GJ )
|G|×NS(GJ )

Fishing, Italy 0.5 1 0.5
Fishing, Turkey 0.66 1 0.66

Cargo, Italy 0.33 1 0.33
Cargo, Turkey 0.5 1 0.5

Fishing, {Turkey, Italy } 0.833 2 0.4166
Cargo, {Turkey, Italy } 0.66 2 0.33

{Fishing, Cargo}, Turkey 0.833 2 0.4166
{Fishing, Cargo}, Italy 0.66 2 0.33

{Fishing, Cargo},
{Turkey, Italy}

1 4 0.25

Table 5.5: Nonspecificity and average consistency values for the family of candidate fusion outcome
graphs
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Furthermore, we may consider some additional constraints, e.g. the graph should not be in

full conflict with any element of the knowledge base, or we may want to limit ourselves only to

dogmatic graphs (nonspecificity of 1). At this stage, we choose not to worry about any of these

additional constraints, as they are essentially another filter on allowed fusion results and, as such

trivial to implement. In order to decide on the best fusion outcome, we want to have some ranking

function, maximising the consistency and minimising the nonspecificity. One possible example of

such a function is the following:

(5.8) R =
∑

i∈Gφ(G i,GJ)
|G|×NS(GJ)

and the graph with maximum value of R is the selected fusion outcome. Note that this is conceptu-

ally similar to the notion of Jaccard’s similarity.

Based on Table 5.5, we can clearly see that the preferred solution from the previous example is

selected again.

5.8 Reasoning and association

The basic conceptual graphs (BCG) formalism used throughout this chapter expresses knowledge

through conjunctions of positive information, does not being suitable for general reasoning. This

holds true for the uncertain graphs we have discussed in this section. Some alternatives for

reasoning in knowledge bases have been proposed, such as the polarised graphs (PG) from Chein,

and Mugnier [111] as part of their graph-based knowledge model. Sowa’s full conceptual graphs

(FG) implement negation through boxes and co-reference through lines. This allows capturing any

First-Order Logic (FOL) formula with the existential qualifier, negation and conjunction.

It is noteworthy that even though the uncertain basic conceptual graphs do not capture notions

such as if-then rules, they can still be expressed as FOL formulas. Having a set of possible values

at a conceptual node corresponds to the disjunction operator. For example consider the graph

G1 ⊗G2 from Figure 5.10. In natural language it can be interpreted as Marcel is either a cargo

vessel or a fishing vessel which has destination of either Italy or Turkey. This statement can be

written in FOL as:

∃x (Fishing(Marcel)∨Cargo(Marcel))∧hasDestination(Marcel, x) (∧I tal y(x)∨Turkey(x))

Reasoning with FOL is relatively well-understood, and the above formula could be combined with

a more general FOL knowledge base, containing formulas that cannot be captured in UGs.

5.9 Relation to belief function framework

There are two main ways in which conceptual graphs can be considered within the belief function

framework. As mentioned in the previous section, UGs can be naturally thought of as belief

functions themselves. On the other hand, we can exploit the evidential networks discussed in

detail in earlier chapters to implement the fusion and reasoning and see individual graphs as joint

valuations.
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5.9.1 Uncertain graphs as belief functions

The link between conceptual graphs when considered in an uncertain context and the belief

function framework was first brought up by Fossier et al. [107] when considering a probability

distribution on a set of graphs. However, whilst this is similar to the evidential distribution on

powerset of hypotheses, a major difference is that the combination of two graphs is considered

conjunction, rather than a disjunction as in the belief function framework.

In section 5.4 it was discussed how graphs with reliability ratings could be used to obtain a

probability distribution similar to earlier work. However, as discussed in the previous section,

each uncertain concept in a UG (or by extension uncertain relation, although they have not been

discussed) can be considered a union of several possible concept nodes (or more precisely, the label

of each concept node is considered the union of several possible labels). As such, the probability

distribution on the possible graphs can be considered to be a probability distribution on sets of

outcomes - i.e. a belief function. This result was used in section 5.4 to obtain belief and plausibility

values on hypotheses of interest. Now we look at this more generally.

An uncertain graph includes a set of concept nodes and relation nodes, labelled by sets of

hypotheses. As such, each graph can be considered to contain sets(CG ,RG) of sets (sets of labels

for each conceptual node and for every relation node). Consider a biclique graph G with concept

nodes C1 and C2 and a relation node R, labelled with sets of labels LC1, LC2 and LR respectively.

Now for each node we can consider a random variable defined on the frame of the vocabulary and

constrained so that its true value lies within the set described by the label. Let these be denoted

by XC1, XC2 and XR . Our knowledge about these can be described by dogmatic, focused belief

masses m(XC1 = LC1) = 1 etc. As such the overall knowledge of labels (not the structure) of the

graph can be described by the focal set XC1 = LC1 × XC2 = LC2 × XR = LR . If needed the random

variables for context labels can be split into two, to separate the conceptual type and the marker.

If it is the case, the focal set becomes XC1 = LC1 × X∗
C1 = L∗

C1 × XC2 = LC2 × X∗
C2 = L∗

C2 × XR = LR

with ∗ superscript denoting the marker.

Now let us recall the results of the fusion of uncertain graphs. The results of the fusion process

discussed earlier result in a probability distribution over a set of graphs. However as we have

just shown, each graph can be considered to be a focal set. Thus this result can be seen as belief

a mass distribution. Consider the results from Table 5.1. These can be rewritten as shown in

Table 5.6, where C1 and C2 correspond to the Vessel:Marcel and Destination:∗ nodes

respectively and F, C, T and I denote Fishing, Cargo, Turkey and Italy respectively. The set

ΩV = {A ∈ TC : A ⊆ Vessel} and ΩD = {B ∈ TC : B ⊆ Destination} Finally the labels are not

included as they are always "Marcel" for C1 and ∗ for C2.

This brings us to a natural extension - if we can frame a large portion of the knowledge within

a conceptual graph in a belief function framework, why would we not exploit that framework for a

combination of evidence, too? An obvious problem with this approach - and with representation as

belief functions in general - is that of scalability - on one hand, we deal with a large number of

variables, but on another with a possibly unconstrained frame of discernment for each variable.

Parts of this problem can be alleviated using valuation networks and exploiting the type hierarchy
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Graph G m(F ) focal set F
G1 ⊗G2 ⊗G3 0.294 C1 =F×C2 =T

G1 ⊗G2 0.126 C1 = {F,C}×C2 = {T,I}
G1 ⊗G3 0.126 C1 = {F,C}×C2 =T
G2 ⊗G3 0.196 C1 =F×C2 = {T,I}

G1 0.084 C1 =C×C2 =T
G2 0.054 C1 =F×C2 = I
G3 0.084 C1 =F×C2 =T
M 0.036 C1 =ΩV ×C2 =ΩD

Table 5.6: Semantic evidence combination results represented as a belief function

to reduce the size of the frame of discernment. Furthermore, local computation axioms mean that

the marginal over the entire frame does not necessarily need to be computed - as long as we can

narrow down the set of variables of interest (the variables the values of which we need to infer).

5.9.2 Representation as evidential networks

Valuation networks, discussed at length in earlier chapters are a powerful tool for reasoning

under uncertainty. One implementation is that of evidential networks, where the underlying

formalism is that of belief functions. One advantage of using evidential networks in context of

X

A B

B ⇐⇒ {B1...Bn}A ⇐⇒ {A1...An}

Figure 5.15: Evidential network for possible implementation of trivial type hierarchy

conceptual graphs is that it allows a form of implementation of type hierarchy. It is possible to

use several related variables with different frames of discernment to minimize the size of each

individual frame. For a trivial example consider a type hierarchy with two top level concepts A and

B, entailing sub-types {A1...An} and {B1...Bn} respectively. Now we can model this as a evidential

network with three variables X , A and B, defined on frames {A,B}, {A...An,¬A} and {B...Bn,¬A}

respectively. The logic governing the relations between these is straightforward: if and only if

X = A then A = {A1...An} and B = ¬B. Conversely X = B ⇐⇒ A = ¬A ⇐⇒ B = {B1...Bn}. See

visualization in Figure 5.15

Now let us recall the examples relating to the vessel Marcel. The concepts and relation in the

model can be illustrated by the evidential network in Figure 5.16. Again, it is important to keep in

mind that this kind of evidential network does not encode any information about the structure of

the graph. In order to maintain the open world assumption an "other" element has been included

in the frame of discernment for every variable. The valuation Tc1 encodes the type hierarchy

relating XC1 = Fishing to the set XC1F =¬(¬Fishing)

Let us recall the three pieces of information relating to Marcel’s type and destination. These can

be represented as focal sets F1, F2 and F3 (including only the information not already contained

132



XC1

ΩXC1 = {Fishing,Cargo,Leisure,Other}

XC1F

ΩXC1F = {¬Fishing,Trawler,Longliner,Other}

XC1L

ΩXC1L = {Marcel,Other}

XR1

ΩXR = {hasDestination,Other}

XC2

ΩXC2 = {I tal y,Turkey,Other}

Tc1

hasDestination

Marcel

Figure 5.16: Valuation network showing the concepts and relations in the model for Marcel analysis
example

in the model) and using the shorthand notation for conceptual types defined earlier:

G1 :F1 = {XC1 =C× XC2 =T}

G2 :F2 = {XC1 =F× XC2 = I}

G3 :F3 = {XC1 =F× XC2 =T}

Now we can construct the valuations to be added to the evidential network based on the

reliability ratings of these sources. However, recall that the reliability model we use distinguishes

between the possibility and necessity of graphs - i.e. a graph is possible when any of its information

is true and necessary when all its information is true. As such, bringing in the possibility values

from that example: Pos(G1)= 0.7, Pos(G2)= 0.6, Pos(G3)= 0.7 we have the set of valuations:

m1

({
XC1 =C× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

})
= 0.7

m1
( {

XC1 =ΩXC1 × XC2 =ΩXC2

})= 0.3

m2

({
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 = I

})
= 0.6

m2
( {

XC1 =ΩXC1 × XC2 =ΩXC2

})= 0.4

m3

({
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

})
= 0.7

m3
( {

XC1 =ΩXC1 × XC2 =ΩXC2

})= 0.3

Adding to the evidential network from Figure 5.16 and computing the joint on XC1 × XC2 yields

the mass function shown in Table 5.7. By inspection, it is very similar to the results in Table 5.6.

The main difference is that the results are overall less informative - whereas the assumption that

"some of the information provided by the source holds true" was only taken into account in case of
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conflict, here it is inherently included in the way the original focal sets are encoded, and therefore

the focal sets of the joint in Table 5.6 are more specific than the ones in Table 5.7.

mJ(F ) focal set F
0.294 C1 =F×C2 =T
0.196 C1 =ΩV ×C2 =T
0.126 C1 =F×C2 =ΩD
0.126 C1 = {F,C}×C2 = {T,I}

0.084
{

XC1 =C× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

}
0.084

{
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

}
0.054

{
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 = I

}
0.036 C1 =ΩV ×C2 =ΩD

Table 5.7: Evidential network joint distribution

To summarise this comparison, let us also consider the case where all the information within

a specific graph holds true. In this case, the focal set induced by the graph is the Cartesian

product of the corresponding elements only, rather than the set of all members of the joint frame

resulting in a non-empty intersection. Therefore recall the second example from Section 5.4.Here

we consider a slightly modified version of that example, where the graph considered provides

the same information as G1. This source of information has Nec(G1) = 0.3 and Pos(G1) = 0.8,

which are interpreted as the graph providing all its information with probability 0.3, some of its

information with probability 0.5 and no information with probability 0.2. This corresponds to a

mass function with three focal sets with corresponding masses:

m4 ( { XC1 =C × XC2 =T }) = 0.3

m4

({
XC1 =C× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

})
= 0.5

m4
( {

XC1 =ΩXC1 × XC2 =ΩXC2

})= 0.2

Combining the above with m2, prior to normalization we obtain the distribution shown in 5.8. A

key difference between this approach and the other fusion strategies for conceptual graphs is that

some probability is assigned to the inconsistent knowledge and as such needs to be normalized.

The existence of this conflict or inconsistency seems counterintuitive given that the purpose

of this entire work was to avoid dismissing knowledge considered inconsistent. Furthermore,

we know that this result would have been different if one of the earlier fusion strategies (not

involving valuation networks) were used. For comparison, with the same sources of information,

we would have obtained the results in Table 5.9. The two main differences are associated with

the combination GN
4 ⊗G2, which yields G4 using conceptual graphs and ; using Dempster’s

combination and GΠ
4 ⊗¬G2, which should yield simply G4, but results in a more relaxed focal set

under the belief function interpretation.
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mJ(F ) focal set F
0.18 ;
0.3

{
XC1 =F× XC2 =T
XC1 =C× XC2 = I

}
0.2

{
XC1 =C× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

}
0.12

{
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 = I

}
0.12

{
XC1 =C× XC2 =T

}
0.08 C1 =ΩV ×C2 =ΩD

Table 5.8: Belief distribution with one of the masses having a degree of necessity

These issues largely stem from whether we interpret conceptual graphs as a conjunction or as

a disjunction. The main notion introduced in this chapter was that if necessary, we may consider

only some information contained in the graph if they conflict. When we rewrite this as a belief

function, we may either consider it a union of concepts or an intersection, corresponding to the

notions of possibility and necessity, respectively. In other words, the notion of possibility and

necessity is only relevant to conceptual graphs at the moment of combination, whereas when they

are represented as valuation network, it affects the formulation of the focal sets. As such, each

conceptual graph in this example can induce at least two different focal sets. This suggests that

it may be more reasonable to change the approach proposed here and rather focus on a single

way of converting conceptual graphs into belief functions and resolve the possibility/necessity of

uncertain graphs through an appropriate combination rule.

One possible solution to the issues of conflict is the selection of another combination rule.

The conjunctive-disjunctive combination rule, where inconsistent intersections are combined

distinctively, is one such solution. This set of results is shown in Table 5.10. Note that the only

difference between this and using Dempster’s rule of combination is the focal set to which the

mass of 0.18 is assigned, corresponding to combination GN
4 ⊗G2.

mJ(F )/P(GJ) GJ concepts F (conjunction-based)
0.5 G4 : Cargo,Turkey C1 =F×C2 =T

0.3 GΠ
4 ⊗G2 :

{Fishing,Cargo},
{Turkey, I tal y}


XC1 =F× XC2 = I
XC1 =F× XC2 =T
XC1 =C× XC2 = I
XC1 =C× XC2 =T


0.12 G2 : Fishing, I tal y XC1 =F× XC2 = I
0.08 M C1 =ΩV ×C2 =ΩD

Table 5.9: Belief distribution with one of the masses having a degree of necessity with fusion
performed using conceptual graphs
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mJ(F ) focal set F

0.18


XC1 =C× XC2 =T
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 = I


0.3

{
XC1 =F× XC2 =T
XC1 =C× XC2 = I

}
0.2

{
XC1 =C× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 =T

}
0.12

{
XC1 =F× XC2 =ΩXC2

XC1 =ΩXC1 × XC2 = I

}
0.12

{
XC1 =C× XC2 =T

}
0.08 C1 =ΩV ×C2 =ΩD

Table 5.10: Belief distribution with one of the masses having a degree of necessity with fusion
performed using Dubois-Prade conjunctive-disjunctive rule

5.9.3 Existential valuations

The above approach is reasonable when we consider valuation networks representation of concep-

tual graphs in context of the knowledge model for fusion proposed before. In other words, we are

not concerned neither with the structure of the graph (which cannot be represented by valuation

networks anyway) nor the existence of certain concepts and relations.

5.10 Markov logic networks

The same problem can be analysed using Markov Logic Networks. They have been discussed

briefly in Chapter 2. To recall, they are a method of adding probabilistic reasoning to first-order

logic - a problem we have already discussed in this chapter. Typically Markov Logic Networks

handle uncertain rules with crisp evidence. Although the weights can be provided externally, in

most applications they are are learned. The evidence is provided in the form of a set of groundings

assumed to be true. However, on a more general level, the difference between a "rule" and a "body

of evidence" is largely semantic. Here we consider a situation where we treat the bodies of evidence

as uncertain rules and assign weights based on log-probability. This approach can be problematic

if weights for some rules are learned, which is discussed by Papai et al. [112]. In this case, however,

as no learning of underlying distribution takes place, we can assume this to be suitable. The

weights wi are therefore obtained using log-odds as per Equation 5.9:

(5.9) wi = ln
(

P(r i)
1−P(r i)

)
where P(r i) is the probability that the rule i with weight wi holds. In the case the "rules" are

actually provided by sources, the value of P(r) is obtained through a probability transformation. For

a binary frame of discernment P(r) = 1.5m(r), as the weight on the universal set is redistributed

equally across the two singletons.

We can define the MLN for the Marcel type-destination problem example as follows. The

knowledge base is consists of the following predicates: Cargo(vessel), Fishing(vessel), Other(vessel),
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hasDestination(vessel, location!), where "!" operator denotes mutual exclusivity and exhaustively

constraint on the variable. The domain for location is {Italy, Turkey, OtherD}. The weighted rules

are shown in Table 5.11, where · denotes a "hard" constraint.

# Rule Weight

1 Fishing(Marcel) ∪ hasDestination(Marcel,Italy) 1.32
2 Cargo(Marcel) ∪ hasDestination(Marcel,Turkey) 1.73
3 Fishing(Marcel) ∪ hasDestination(Marcel,Turkey) 1.73
4 Cargo(x) =⇒ ( ¬ Fishing(x) ∩ ¬Other(x)) ·
5 Fishing(x) =⇒ (¬ Cargo(x) ∩ ¬ Other(x)) ·
6 Other(x) =⇒ (¬ Fishing(x) ∩ ¬ Cargo(x)) ·

Table 5.11: Weighted rules for the Markov Logic Network

For such a simple case we can go ahead with exact inference. This yields the following set of

results (Table 5.12).

P(X) X
0.42 Fishing(Marcel) ∩ hasDestination(Marcel,Turkey)
0.1 Cargo(Marcel) ∩ hasDestination(Marcel,Turkey)
0.1 Other(Marcel) ∩ hasDestination(Marcel,Turkey)
0.07 Fishing(Marcel) ∩ hasDestination(Marcel,Italy)
0.07 Cargo(Marcel) ∩ hasDestination(Marcel,Italy)
0.07 Fishing(Marcel) ∩ hasDestination(Marcel,OtherD)
0.02 Cargo(Marcel) ∩ hasDestination(Marcel,OtherD)
0.01 Other(Marcel) ∩ hasDestination(Marcel,Italy)

Table 5.12: Markov Logic Network inference results

These results are consistent with the upper and lower bounds on the different worlds obtained

either through conceptual graph fusion or valuation network-based approach. Whilst this shows

how the same problem can be approached from the perspective of conceptual graphs, valuation

networks and Markov logic networks, it does not really leverage the relative strengths of the

different approaches. Typically a Markov logic network is used to allow uncertain reasoning with

a larger knowledge base consisting of rules the relative weights of which can be learnt from data.

In the example here, the rules are used to implement uncertain evidence. However, in typical

MLN applications, the evidence is considered to be certain. W,e could argue that this example is

the opposite of a typical MLN application - we have a small set of certain (hard) rules and soft

evidence, whereas usual MLN approaches work with a set of uncertain rules and hard evidence.

5.11 Discussion and challenges

This chapter addressed the challenge of the fusion of information at the higher levels of the JDL

framework. In particular, we consider the move from single-entity identification to more general

situational awareness that may include multiple related entities. The main framework used for
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knowledge representation is conceptual graphs, specifically its subset, basic conceptual graphs.

However, the existing approaches to information fusion do not support the combination of uncertain

and conflicting information. Since the combination of uncertain information and conflict resolution

is arguably the keystone of information fusion, a solution is proposed by which uncertainty is

directly embedded within the uncertain graph using an epistemic set-based approach.

As we investigate this approach further, it is reasonable to consider that there may be two

levels of likelihood associated with each information source. This notion of probability of all versus

probability of some is linked to the possibility theory, from which the terms necessity are borrowed.

Different fusion strategies are proposed, and it is shown that the result of information aggregation

can be considered a belief distribution. This link is investigated further, and a formal relationship

between the uncertain graph formalism and evidential networks is made, making it possible to

implement uncertain reasoning within the framework of uncertain graphs.

This approach bears similarity to Markov Logic Network, and, as such, we compare how the

same problem can be solved by mapping either valuation networks or Markov Logic Networks to

the uncertain graph framework. A natural area of further research is the investigation of links

between valuation networks and Markov Logic Networks, as the former can be induced by a set of

uncertain rules and constants - which are the elements defining a Markov Logic Network.
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6
MARITIME SITUATION AWARENESS SCENARIOS

In this chapter, we discuss two scenarios that can be used to highlight the three key challenges

in information fusion addressed in this thesis - exploitation of context, explanation of

results and modelling of situations with multiple uncertainty and knowledge representation

formalisms. The focus remains on JDL levels 1 and 2 with some degree of level 3 analysis through

explanations. Both scenarios address realistic situations which may be encountered in maritime

situation awareness, with an assumption of significant preprocessing of sources, i.e. the sources

are assumed to be outputs from deep learning classifiers, analyst assessments and similar, rather

than raw or barely processed data. In the first scenario, we consider the problem of illegal fishing

and demonstrate the ability to reason about large scale, multi-entity situations as well as keeping

track of a large number of possible worlds without compromising reasoning and explanation

abilities. The second scenario focuses on a single vessel but with more complex reasoning and an

in-depth analysis of the impact of source quality.

6.1 Scenario 1: multi-entity illegal fishing

The first scenario to demonstrate the notions discussed throughout this thesis is that of situation

assessment involving multiple vessels with some of them involved in illegal fishing. This scenario

focuses on the usage of both conceptual graphs and valuation networks as well as the exchange of

information between the two. The conceptual graph is used as a knowledge base, and valuation

networks are used to provide a layer for more complex uncertainty management, reasoning and

source modelling.

6.1.1 Scenario overview

This scenario consists of four vessels in international waters. A marine protected area (MPA) lies

within the region, where fishing is prohibited. The problem is identifying vessels that are involved
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in either illegally fishing in the MPA or transporting the illegal catch.

We consider four vessels "ARAMIS", "BOHUN", "CHEKHOV" and "DOROTHY", which we

will occasionally refer to as A, B, C and D. The ground truth is that vessels A and B are fishing

vessels, and A is involved in illegal fishing. Both C and D are refrigerated cargo vessels used

for transhipment, with D doing it legally and only receiving catch from B, while C receives both

"clean" catch from B as well as illegal catch from A.

The information comes from several sources, but all of it except for the context and meta-

knowledge is based on AIS transmissions. For the sake of avoiding unnecessary complexity, the

vessel identities (name, type, flag) provided by AIS are assumed to be fully reliable. Other pieces

of information provided include time from the last AIS transmission (is the AIS fresh or old), as

well as analysis of the kinematic data provided through the AIS. This kinematic analysis includes

correction and prediction based on old AIS data in case the vessel stopped transmission. From this

source, we obtain an estimation of the vessel’s current location and its activity with a focus on

events such as fishing and rendezvous.

6.1.2 Rules and sources of information

The reasoning for this scenario is relatively straightforward. The key variables of interest (defined

on a true - false frame) are whether a vessel is involved in illegal activity and whether the vessel

performs illegal fishing. Generally, the reasoning rules we have can be divided into two main

groups. On the one hand, we have certain rules which are mostly concerned with semantics (e.g. if

a vessel is illegally fishing, it must be fishing). On the other, we have uncertain rules with different

degrees of likelihood - e.g. if a vessel is fishing and it is involved in illegal activity, then it is likely

illegally fishing - even though there is a small chance that its fishing is legal and it is actually

involved in another kind of illegal activity.

As such, we have the following set of rules:

1. If a vessel is fishing and it is in an area where fishing is illegal, then it is illegally fishing

2. If a vessel is illegally fishing, then it is involved in illegal activity, and it is fishing

3. If a vessel is involved in illegal activity and it is fishing, then it is likely illegally fishing

4. If a vessel is not broadcasting its AIS, it is more likely to be involved in illegal activity

5. If a vessel is flying a flag from a country on the High-Risk list from the Paris Memorandum

of Understanding on Port Control, it is slightly more likely to be involved in illegal activity

6. If a cargo vessel is performing a rendezvous with another vessel that is involved in illegal

activity, the cargo vessel is likely to be involved in illegal activity

Contextual reasoning is included in this problem by modelling the impact of meteorological

conditions on the likelihood that a vessel is not broadcasting its AIS, as well as the rules on the

legality of fishing in different areas.

The following sources provide information describing the behaviour of the vessels:

140



1. AIS transmission - Name: ARAMIS, Vessel type: 30 (Fishing), Flag: TZ, recently received :

false, reliability = 1

2. AIS transmission - Name: BOHUN, Vessel type: 30 (Fishing), Flag: IT, recently received :

true, reliability = 1

3. AIS transmission - Name: CHEKHOV, Vessel type: 70 (Cargo), Flag: MD, recently received :

true, reliability = 1

4. AIS transmission - Name: DOROTHY, Vessel type: 70 (Cargo), Flag: GB, recently received :

true, reliability = 1

5. AIS analysis - ARAMIS is fishing, reliability = 0.6

6. AIS analysis - ARAMIS is in location X, reliability = 0.6

7. AIS analysis - BOHUN is fishing, reliability = 0.9

8. AIS analysis - BOHUN is in location Y, reliability = 0.9

9. AIS analysis - CHEKHOV has had a rendez-vous with ARAMIS, reliability = 0.75

10. AIS analysis - CHEKHOV is in location Z, reliability = 0.9

11. AIS analysis - CHEKHOV has had a rendez-vous with BOHUN, reliability = 0.75

12. AIS analysis - DOROTHY has had a rendez-vous with BOHUN, reliability = 0.75

13. AIS analysis - DOROTHY is in location Z, reliability = 0.9

For each of the four vessels, we can generate a simple conceptual graph describing the infor-

mation on its identity as provided by the AIS, similar to the one in Figure 5.14 in Chapter 5. An

example for ARAMIS is shown in Figure 6.1, which we will denote as G1A. In order to keep it

legible, we will avoid a full-scale graph containing all the entities at this stage. However, bear

in mind that these graphs for individual vessels can be connected with the relation describing a

rendezvous.

FishingVessel: ARAMIS hasFlag Tanzania :∗

performsActivity Activity

hasAttr

RecentAIS: False

hasAttr

IllegalActivity: ∗

Figure 6.1: A single vessel conceptual graph shown for ARAMIS
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6.1.3 Multi-source reasoning implementation and results

With this in mind we can consider inclusion of further sources. In order to obtain the information

of interest which we want to include in the conceptual graph we will use a valuation network

to reason about the information provided by the sources and combine it with some information

already in the conceptual graph, as well as context and metaknowledge. In this scenario we use

two valuation networks covering different areas of interest - a relatively simple one to implement

the "transitiveness" of illegal activity in case of a rendez-vous and a somewhat more complex one

to assess the likelihood of illegal activity and illegal fishing.

This valuation network shown in Figure 6.2 implements the rules 1 to 41, as well as the

contextual source model for AIS as proposed in Chapter 3, behaviour-based source correction

model for activity and location reports and contextual information on location of MPAs. The

variables of interest include IA - illegal activity, IF - illegal fishing, AIS - AIS received, IL - illegal

fishing location and F - fishing, all of which are defined on the boolean frame of discernment

ΩX I A = {true, f alse}. Furthermore we have the vessel’s location LOC defined on frame ΩLOC =
{X ,Y , Z}. The valuations mR

1 , mR
2 and mR

3 correspond to the source reports on AIS reception,

vessel’s activity and vessel’s location respectively. The valuation mQ
1 provides the loss rate of the

channel, valuations mQ
2 and mQ

3 provide the metaknowledge on sources’ reliability. Finally the

valuations mC
1 and mC

3 provide contextual information on weather and locations of MPA’s. For

simplicity we let all the uncertain implications such as mI A∩F→IF have the weight of 0.7.

XAISRAIS

QAIS CWTH

X I A X IF

XF

RACT QACT

XLOC

RLOC QLOC

CMP A

X IL
mXQRAIS mCXAIS

mCQAIS

m 6AIS→I A

mIF→I A

mI A∩F→IF

mF∩IL→IF

mMP A−IL−LOC

mXQRACT mXQRLOC

mR
1

mQ
1

mC
1

mQ
2

mR
2 mQ

3
mR

3

mC
3

Figure 6.2: Valuation network for assessment of illegal activity and illegal fishing

In the case of Vessel A, ARAMIS, we have the following source reports mR
1 (False) = 1,

mR
2 (Fishing) = 1 and mR

3 (X ) = 1. The channel is assumed to be 80% lossless and 20% lossy -
1Rule 5 is not implemented for clarity, as it has a relatively minor impact and the valuation network is sufficiently

complicated

142



mQ
1 (loss)= 0.2, mQ

1 (¬loss)= 0.8. The AIS analysis of both location and activity is 60% reliable -

mQ
2 (rel)= 0.6, mQ

2 (¬rel)= 0.4, mQ
3 (rel)= 0.6, mQ

3 (¬rel)= 0.4. Finally the weather is assumed to

be 60% good and 40% bad - mC
1 (good) = 0.6, mC

1 (bad) = 0.4 and the contextual information on

MPA’s states that X lies within an MP A with no uncertainty - mC
3 (X )= 1.

With this in mind, we can perform inference on our domain of interest I A ×F × IF. The

inference results are shown in Table 6.1. Since the results are a belief distribution, it would be

difficult to convert them back to a form consistent with the conceptual graph, which we use as the

main knowledge base. As such, we accept a minor loss of information and consider the product

of marginals for each focal set, each of which can be used to generate a conceptual graph on its

own. This belief distribution can be considered a probability distribution on a set of five possible

conceptual graphs. As such, the graph in Figure 6.1 represents the true state of the world with

probability corresponding to marginal Ω - P(G1A)= 0.1990

mJ(F ) focal set F Marginals
0.44442 IF ×F × I A IF ×F × I A

0.17687
{

IF ×F × I A,
¬IF ×¬F × I A

}
I A

0.1194


IF ×F × I A,
¬IF ×¬F × I A
¬IF ×¬F ×¬I A

 Ω

0.08358
{

IF ×F × I A,
¬IF ×F ×¬I A

}
F

0.05572


IF ×F × I A,
¬IF ×¬F × I A
¬IF ×F ×¬I A
¬IF ×¬F ×¬I A

 Ω

0.03618
{

IF ×F × I A,
¬IF ×F × I A

}
F × I A

0.03582


IF ×F × I A,
¬IF ×F × I A
¬IF ×F ×¬I A

 F

0.02412


IF ×F × I A,
¬IF ×F × I A
¬IF ×¬F × I A

 I A

0.02388



IF ×F × I A,
¬IF ×F × I A
¬IF ×¬F × I A
¬IF ×F ×¬I A
¬IF ×¬F ×¬I A


Ω

Table 6.1: Inference on Illegal fishing×Fishing× Illegal Activity for ARAMIS

For visualisation, Figure 6.3 shows the realisation of the graph corresponding to the marginals
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IF×F× I A, which is the single most likely result of this combination. Note this is the only possible

graph asserting IF, as it being true implies both F and I A being true.

FishingVessel: ARAMIS hasFlag Tanzania :∗

performsActivity IllegalFishing:∗

hasAttr

RecentAIS: False

hasAttr

IllegalActivity: True

Figure 6.3: A single vessel conceptual graph shown for ARAMIS obtained through inference on
AIS data with P = 0.44442

Meanwhile, there is no evidence of illegal activity from vessel B, and as such, only two

conceptual graphs are generated for BOHUN - the one shown in Figure 6.4 and a one more similar

to Figure 6.1, where the analysis of the AIS is assumed unreliable, and hence the activity of the

vessel is unknown (P = 0.1).

FishingVessel: BOHUN hasFlag Italy :∗

performsActivity Fishing:∗

hasAttr

RecentAIS: True

hasAttr

IllegalActivity: ∗

Figure 6.4: A single vessel conceptual graph shown for BOHUN obtained through inference on
AIS data with P = 0.9

With this in mind we can move on to analysis of the cargo vessels and the rendez-vous. For the

vessel CHEKHOV we have the basic overview graph as shown in Figure 6.5.

CargoVessel: CHEKHOV hasFlag Moldavia :∗

performsActivity Activity

hasAttr

RecentAIS: True

hasAttr

IllegalActivity: ∗

Figure 6.5: A single vessel conceptual graph shown for CHEKHOV

Through the combination of the information on the rendezvous, we obtain the set of graphs

shown in Figure 6.6. Note that as the pieces of information are not mutually exclusive and refer to

separate events, when both sources of information are assumed to be true, the two relations are
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added independently, rather than using the basic knowledge model M as it was done in earlier

examples.

CargoVessel: CHEKHOV hasRendezVous Fishing:ARAMIS

(a) Rendez-vous with ARAMIS, no rendez-vous with BOHUN (P = 0.1875)
CargoVessel: CHEKHOV hasRendezVous Fishing:BOHUN

(b) Rendez-vous with BOHUN, no rendez-vous with ARAMIS (P = 0.1875)
CargoVessel: CHEKHOV hasRendezVous Fishing:ARAMIS

hasRendezVous Fishing:BOHUN

(c) Rendez-vous with both ARAMIS and BOHUN (P = 0.5625)

Figure 6.6: Excerpt from the greater conceptual graph, showing the different possible situations
regarding rendez-vous of vessel CHEKHOV. The case when neither of the two sources is true is
not shown here, but it corresponds to 6.5 only (P = 0.0625)

Note that at this stage, for clarity, all the figures shown so far depict excerpts from the full

graph, which would include all four vessels.

The reasoning about whether a cargo vessel is involved in illicit activity is performed using a

separate valuation network, shown in Figure 6.7 which takes the inference results from before and

combines it with the implementation of rules 4 to 6. The variable XRV (N) represents the existence

of the relation ’hasRendezVous’ between the concepts corresponding to the vessel in question and

the vessel N. The variable XHR denotes the risk assessment of the vessel, which in this case is

only assessed through its flag (although it could naturally be replaced by an approach such as the

Paris Memorandum of Understanding risk assessment procedure).

XAISRAIS

QAIS CWTH

X I A

XRV (N)

X I A(N)

RRV (N)

QRV (N)

XHR

RHRQHR

mXQRAIS mCXAIS

mCQAIS

m¬AIS→I A

mXQRRV (N)

mR6

mHR→I A

mXQRHR

mR
1

mQ
1

mC
1

mR
N

mQ
N

mR
2mQ

2

Earlier inference
For every possible rendez-vous N

Figure 6.7: Valuation network for assessment of illegal activity for a cargo vessel

Considering the cargo vessel C, CHEKHOV, we have the following source reports mR
1 (True)= 1
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and mR
2 (True) = 1. The channel is assumed to be 80% lossless and 20% lossy - mQ

1 (loss) = 0.2,

mQ
1 (¬loss)= 0.8. The AIS broadcast of the flag is assumed to be fully reliable mQ

1 (rel)= 1.

For each potential rendez-vous report we obtain a separate branch. As such we have reports

mR
A(true) = mR

B(true) = 1 and mQ
A(rel) = mQ

B(rel) = 0.75. However from earlier inference we

have the belief that vessel A is involved in illicit activity m(X I A(A) = true)= 0.6186, m(X I A(A) =
Ω) = 0.3814 and no evidence supporting illegal activity by vessel B m(X I A(B) = Ω) = 1. This

makes it possible to have an overall assessment of the belief that vessel C is involved in illegal

activity - m(X I A(C) = true)= 0.55048,m(X I A(C) =Ω)= 0.44952. Performing the same for vessel D,

DOROTHY shows no evidence of illegal activity.

For the computation of probabilities of possible multi-entity worlds, we must obtain the joint

inference on illicit activity by vessel C and A as well as the rendezvous between the two, similarly

to the previous case where we considered the joint distribution on illicit activity and fishing. As

such, we have the distribution displayed in Table 6.2

mJ(F ) focal set F Marginals

0.45496 I A(C)× I A(A) I A(C)× I A(A)

0.22663
{

I A(C)× I A(A),
¬I A(C)× I A(A),

}
I A(A)

0.11702


I A(C)× I A(A),
I A(C)×¬I A(A),
¬I A(C)× I A(A)

 Ω

0.10587 ΩI A(C) ×ΩI A(A) Ω

0.09552
{

I A(C)× I A(A)
I A(C)×¬I A(A)

}
I A(C)

Table 6.2: Inference on joint belief distribution of Illegal activity (ARAMIS) ×
Illegal activity (CHEKHOV)

However, to obtain the full picture, we must combine the above with the results from Table

6.1. With no evidence on the illicit activity of vessels B and D, this shows the full picture on the

illicit activity of all the vessels (with the information on rendezvous between B and C, B and D,

and activity of vessel B, although uncertain, being independent). This combination has a total of

51 focal sets and, as such, is not displayed here in its entirety. Instead, in Table 6.3, we display the

probability distribution on the 20 marginals and by extension, the 20 conceptual graphs which

can be obtained from this combination and reasoning.

At this stage, it could be combined with the results of inference on the behaviour of vessels

B and D (as shown in Table 6.4. However, as the two distributions are fully independent, this

combination would result in 80 possible worlds, and there is no reason to list them all.

Figure 6.8 shows the full conceptual graph corresponding to the most likely inference outcome

- and also the true state of the world. Its probability is P = 0.1333. Although this probability may

seem to be low - given that we know this to be the ground truth - it is important to bear in mind

that the number of possible worlds is very large and that the other realisations do not necessarily
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Marginals (Graph) Probability

I A(C)×RV (A,C)× IF(A)×F(A)× I A(A) 0.26332
I A(C)×RV (A,C)× IF(A)×F(A)×ΩI A(A) 0.021436
I A(C)×RV (A,C)× IF(A)×ΩF(A) ×ΩI A(A) 0.11909
I A(C)×RV (A,C)×ΩIF(A) ×F(A)× I A(A) 0.069996
I A(C)×RV (A,C)×ΩIF(A) ×F(A)×ΩI A(A) 0.0056982
I A(C)×RV (A,C)×ΩIF(A) ×ΩF(A) ×ΩI A(A) 0.031656
I A(C)×ΩRV (A,C) × IF(A)×F(A)× I A(A) 0.033331
I A(C)×ΩRV (A,C) × IF(A)×F(A)×ΩI A(A) 0.0027134
I A(C)×ΩRV (A,C) × IF(A)×ΩF(A) ×ΩI A(A) 0.015074
I A(C)×ΩRV (A,C) ×ΩIF(A) ×F(A)× I A(A) 0.077773
I A(C)×ΩRV (A,C) ×ΩIF(A) ×F(A)×ΩI A(A) 0.0063313
I A(C)×ΩRV (A,C) ×ΩIF(A) ×ΩF(A) ×ΩI A(A) 0.035174
ΩI A(C) ×RV (A,C)× IF(A)×F(A)×ΩI A(A) 0.026866
ΩI A(C) ×RV (A,C)× IF(A)×ΩF(A) ×ΩI A(A) 0.044777
ΩI A(C) ×RV (A,C)×ΩIF(A) ×F(A)×ΩI A(A) 0.062687
ΩI A(C) ×RV (A,C)×ΩIF(A) ×ΩF(A) ×ΩI A(A) 0.10448
ΩI A(C) ×ΩRV (A,C) × IF(A)×F(A)×ΩI A(A) 0.0089553
ΩI A(C) ×ΩRV (A,C) × IF(A)×ΩF(A) ×ΩI A(A) 0.014926
ΩI A(C) ×ΩRV (A,C) ×ΩIF(A) ×F(A)×ΩI A(A) 0.020896
ΩI A(C) ×ΩRV (A,C) ×ΩIF(A) ×ΩF(A) ×ΩI A(A) 0.034826

Table 6.3: Marginals obtained from the inferred joint belief distribution on I A(C)×RV (A,C)×
IF(A)×F(A)× I A(A)

Marginals (Graph) Probability

RV (B,D)×F(B) 0.6750
ΩRV (B,D) ×F(B) 0.2250
RV (B,D)×ΩF(B) 0.0750
ΩRV (B,D) ×ΩF(B) 0.0250

Table 6.4: Inference of behaviour of vessels B and D. There is no evidence supporting any implica-
tion of illegal activity for either vessel

oppose this scenario - they just do not fully support it.
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As discussed in previous chapter, from distributions on graphs like this we can obtain upper

and lower probabilities (or belief and plausibility values) for various queries. Some examples of

interest we have here are:

1. Is there a vessel involved in illegal activity? Bel = 0.7771,Plaus = 1

2. Is ARAMIS involved in illegal fishing and CHEKHOV involved in illegal activity? Bel =
0.29665,Plaus = 1

3. Is a vessel flying a low risk flag involved in illegal activity? Bel = 0,Plaus = 1

It is important to bear in mind that the rules proposed here are not necessarily optimal, and

changing them would have a significant effect on the inference results. For example, we could

change rule 6 such that if a fishing vessel has a rendezvous with any other vessel involved in

illegal activity, it, too, is involved in illegal activity. This would provide evidence for suspicious

activity by BOHUN and, to a lesser extent, DOROTHY. Furthermore, note that in the reasoning

system, there is no evidence opposing the notion that any vessel is involved in criminal activity -

as such, the plausibility of illicit activity for any vessel is 1.

One possible way of implementing it with current sources would be to include a rule implying

that a vessel flying a low-risk flag is less likely to be involved in criminal activity. This would pro-

vide evidence against the illegal activity of vessels B and D but not conflict with any other sources.

Instead, let us consider a new source of information. Assume that the captain of CHEKHOV is

asked about the behaviour of the vessel and claims not to have received any illegal cargo from

ARAMIS and denies any wrongdoing. Clearly this kind of evidence has little weight, but we will

include it anyway to see how it changes the reasoning.

Let this be denoted as [Vessel:CHEKHOV] - (hasAttr) - [IllegalActivity:False]

with a reliability rating of 0.25. Since the illicit activity of a cargo vessel is not included as a source

in any reasoning, we can simply combine it as a conceptual graph, with the set of graphs listed in

Table 6.3. Using one of the fusion strategies outlined in the previous chapter, inclusion of this source

of information (in cases where it is assumed reliable) would change any marginal from Table 6.3

which includes I A(C) into one including ΩI A(C) and similarly ΩI A(C) into ¬I A(C). In other words,

to explain on the most likely example I A(C)×RV (A,C)× IF(A)×F(A)× I A(A), with P = 0.26332

(used to generate the graph in Figure 6.8 when combined with information on vessels B and D) it be-

comes eitherΩI A(C)×RV (A,C)×IF(A)×F(A)×I A(A) with its new probability P = 0.25×0.26332=
0.0658 or remains as it was with probability P = 0.75×0.26332= 0.1975. The new belief marginal

on variable I A(C) becomes m(I A(C))= 0.4129,m(¬I A(C))= 0.1124,m(ΩI A(C))= 0.4747.

6.1.4 Explaining the results

The next step is to analyse how the different pieces of information affect the inference result.

While the combination process is transparent by design, it is nevertheless interesting to observe

the relative importance of different sources of evidence, as well as the impact of individual sources

on the joint frame.
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An additional degree of difficulty arises from the fact that in this scenario, we are blending

different fusion approaches. Whilst most of the process is done through valuation networks, the

last stage involves the combination of conceptual graphs. Note that the approach we have used

is equivalent to using the conjunctive-disjunctive combination rule (with the reinterpretation of

partial conflict as partial ignorance) or Yager’s rule, equivalent for the combination of masses

with a binary frame of discernment. As such, we can use the belief function-based approaches

nevertheless.

Using the approach briefly discussed in Chapter 4, section 4.3.2.1, we visualize the impact on

each body of evidence by taking the derivative of a metric of interest - belief or plausibility of a

hypothesis (see Equations 4.7 and 4.8).

It is also possible to use sensitivity spaces to assess the impact of each BoE on the overall

solution (as opposed to focusing on individual hypotheses). This can be done using some uncer-

tainty measures existing within the theory of evidence. Here, as proposed in [92] specificity and

consonance measures are used. The specificity of the BoE m is defined as follows:

(6.1) Spec(m)= ∑
A⊆Ω

m(A)
|A|

where |.| is the cardinality operator, while the consonance is defined as:

(6.2) Consi(m)= 1
1+Ent(m)

where

(6.3) Ent(m)=− ∑
A⊆Ω

m(A) log2 Pl(A).

Thus the marginal impact of each BoE on the solution’s specificity and consonance can be charac-

terised as follows:

(6.4) áSpeci(m)= δSpec(m)
δαi

∣∣∣∣
αi=1

(6.5) áConsi(m)= δCons(m)
δαi

∣∣∣∣
αi=1

.

where αi is a discounting factor associated to mi. Sensitivity spaces obtained by plotting sensi-

tivities related to the focal set of interest can be used to explain to which extent each source of

evidence supports or negates the particular hypothesis and similarly which sources have had

the greatest impact on the decision. The sensitivities related to the properties of the entire mass

function allow greater insight into how each body of evidence affects conflict and uncertainty

within the inference outcome.

These sensitivity spaces for belief and plausibility are shown in Figure 6.9a and in Figure 6.9b

for specificity and consonance. It can be clearly seen that the single individual source contributing

to the belief that CHEKHOV is involved in malicious activity is the AIS analysis implying its

rendezvous with ARAMIS, closely followed by it flying a high-risk flag. Subsequently, we have the
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Figure 6.9: Sensitivity spaces for inference on illicit activity of CHEKHOV

sources implicating ARAMIS and thus CHEKHOV by association - the set of sources contributing

to belief in ARAMIS’ illegal activity (disabled AIS) and illegal fishing (AIS analysis describing

its location and activity as well as contextual information on MPA’s - these are jointly denoted as

IF(A)∗). The knowledge of poor weather slightly reduces the belief in CHEKHOV ’s involvement.

On contrary, we have captain’s testimony which simultaneously argues against the rest of the

sources (reduces Bel(I A(C))), while also supporting the contrary hypothesis having a negative

impact on Pl(I A(C))).

Another interesting aspect to consider is the difference between using the conceptual graph-

based approach for a combination of evidence and simply treating this new piece of semantic

evidence like any other and combining it conjunctively. We can see this yields a different sensi-

tivity space, shown in Figures 6.10a and 6.10b for belief-plausibility and specificity-consonance

respectively.

This behaviour is largely expected - with the original approach, we resolve the conflict manually,

which implies that the new piece of evidence (Captain’s testimony) is not directly disputed by

any other sources (as seen in the belief-plausibility graph, where originally the other sources

have no impact on plausibility (as they do not reduce the likelihood of the vessel’s innocence), but

it increases the overall degree of ignorance. When Dempster’s method is used, we have greater

conflict but no decrease in specificity.

Similarly, we can look at the relative contribution of each source of information to the hypothe-

ses. Let us consider the relative contributions of the sources to some of the most likely hypotheses.

As we are interested in relative overall contribution, we can use Shapley’s value for this. Similarly

to the method outlined in Chapter 4, we consider the fusion process to be a cooperative game of

multiple sources. In this case, we consider the payoff function to be the probability of a particular

solution.

As such, for the solution shown in Figure 6.8 which we consider to have the probability
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Figure 6.10: Sensitivity spaces for inference on illicit activity of CHEKHOV using Dempster’s rule
of combination exclusively

P = 0.1975
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Figure 6.11: Shapley values for contribution of the sources to the solution from Figure 6.8

P = 0.1975, we can compute the contribution of individual sources. As per the definition of

Shapley’s value, the total payoff (0.1975) is proportionally distributed among all the contributing

sources (with the possibility of negative contributions for sources arguing against this solution).

The computed Shapley values are shown in Figure 6.11.

As expected, the most significant contributions are these, which implicit both Vessels A and C.

The source providing information on the location of ARAMIS and the contextual information on

the Maritime Protected Area are equally important, as one is irrelevant to the problem without

the other. The source with the lowest impact is that Vessel C is flying a flag considered high risk

- this source affects only one variable of interest, is in agreement with most other sources, and

its modelled impact (the probability assigned to the rule that a vessel flying a high-risk flag is

engaging in criminal activity) is low. Finally, CHEKHOV captain’s testimony is the only source

of evidence that directly opposes this solution, receiving a negative value; however its impact is

quite low due to its reliability.

We can use the same approach to analyse contributions to a more general hypothesis, rather

than a specific conceptual graph solution.
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6.2 Scenario 2: Infrastructure protection and threat assessment

The second scenario to consider is that of assessment of the threat a single vessel can pose to

sensitive maritime infrastructure. This scenario has been published at the 2020 International

Conference for Information Fusion ([113]) and an extended version of the paper, a portion of

the content of which is included below, has been accepted for publication in the special issue

of Information Fusion on Explainable Artificial Intelligence. This scenario uses only a single

method of uncertainty modelling - valuation networks - but places more emphasis on an in-depth

discussion of implementation and providing explanations for the impact of the source model.

Figure 6.12 displays a high-level view of some of the variables involved in this problem as

well as their hierarchical relationships. We consider a vessel (i.e., the Target) which investigation

has been triggered by an external factor. The intent of the vessel is linked to its identity (e.g.

following the NATO standard identities) and will be assumed to be more likely malicious if some

inconsistency is observed in the AIS signal. The opportunity of the vessel is basically linked to its

current position relative to the infrastructure, while its capability depends on its classification

type (and assumed corresponding equipment) while some intelligence can confirm it regardless of

its type.

Threat

Intent Opportunity Capability
Identity

AIS consistency

AIS broadcast
Position

Kinematics
Vessel type

Intelligence

Historical

density

Maritime
route

Geopolitical
context

Type of infras-
tructure

Figure 6.12: Simplified, high-level relationships between inference targets (green) and directly
relevant or auxiliary information (cyan).

6.2.1 Threat assessment multi-source evidential network

This section covers implementation of a threat assessment model through an evidential network.

According to the BBC model introduced in Chapter 3, variables are distinguished according to

their type into focus, report and quality variables.

Table 6.5 lists the variables included in the evidential network as well as their respective

frame of discernment with some comments.

For the sake of simplicity and clarity of discussion, the model used in this example is the

conjunction of the three factors - intent, opportunity and capability. The validity and applicability
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of this model are briefly discussed alongside the results.

Table 6.5: Variables of the threat assessment evidential network

Variable Frame (Ω) Variable type Comments

THREAT {TRUE, FALSE} Focus The main target variable
INTENT {TRUE, FALSE} Focus Direct intelligence reports

can be applied at these
variables

OPPORTUNITY {TRUE, FALSE} Focus
CAPABILITY {TRUE, FALSE} Focus
AIS_T {ON, OFF} Focus True AIS broadcast

Loss rate est. by correlation
of SAR and AIS contacts

AIST_R {REC, NREC} Report
AIS_Q {LOSS, NLOSS} Quality
AIS_INC {TRUE, FALSE} Focus

Inconsistent AISAIS_INC_R {TRUE, FALSE} Report
AIS_INC_Q {REL, NREL} Quality
KIN_X {PASSING, LOITERING, STOPPED} Focus

Partial reliability model
for similar behaviours

KIN_R {PASSING, LOITERING, STOPPED} Report
KIN_Q {PERF, INACC, NREL} Quality
TYPE_X {1,2,3} Focus Vessel capability category

estimated by vessel type
Can be over or underestimated

TYPE_R {1,2,3} Report
TYPE_Q {OVER, UNDER, PERF., NREL} Quality
ID_X {F, N, H, A, S} Focus

Subset of vessel standard
identities

ID_R {F, N, H, A, S} Report
ID_Q {REL, NREL} Quality
LOCATION_X {INFRASTRUCTURE, CLEAR} Focus

Potential attack target
in vicinity

LOCATION_R {INFRASTRUCTURE, CLEAR} Report
LOCATION_Q {REL, NREL} Quality

A series of rules are provided in natural language and listed in Table 6.6 to convey the general

idea of the reasoning of the problem modelling described. However, the strength of the model is to

handle uncertainty and ignorance.

Some corresponding logical relationships are given in Table 6.7, which are modelled using

simple support belief functions, with the mass corresponding to the probability P(R) that the

relationship holds. The rules are parametrised using a set of parameters γi.

Figure 6.13 shows the constructed valuation network. Sources provide information on report

variables and quality variables describe their quality, typically the relevance or reliability. The

marginalisation is performed on focus variables, to summarise this information.

Sources description

The sources are modelled using a set of parameters, a combination of which corresponds to the

appropriate source behaviour, as discussed in Chapter 3, and are listed in Table 6.8. The AIS

reception, vessel identity, AIS consistency and location are modelled with a single parameter (loss

rate for AIS reception and reliability for others), whereas kinematics and capability estimation by

type are modelled with two parameters (reliability and accuracy for the former and tendency to

over- and underestimate for the latter). This induces two possible behaviours for AIS reception,

consistency, vessel identity and location information sources, three possible behaviours for kine-

matics (unreliable, reliable but inaccurate, reliable and accurate) and four possible behaviours
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Table 6.6: Model of solution to threat assessment expressed in natural language rules

Threat model
0 The vessel poses a threat if and only if it has malicious intent, capability and opportu-

nity

Problem domain model
1 If AIS is inconsistent then it has malicious intent
2 If AIS is disabled then it has opportunity
3 If vessel is stopped or loitering in vicinity of infrastructure then it has opportunity
4 If vessel type capability category is 1, the vessel is not capable
5 If vessel type capability category is 2 the vessel may be capable
6 If vessel type capability category is 3, the vessel is capable
7 If the vessel identity is Friend, the vessel does not have malicious intent
8 If the vessel identity is Hostile, the vessel has malicious intent
9 If the vessel identity is Suspect, the vessel likely has malicious intent
10 If the vessel identity is Assumed Friend, the vessel likely does not have malicious

intent
11 If vessel is not in vicinity of the infrastructure it does not have opportunity

Sources model
12 If AIS signal received then AIS signal broadcast
13 If AIS signal not received and channel is lossless then AIS signal not broadcast
14 If AIS is reported as inconsistent and the source is reliable then AIS inconsistent
15 If AIS is reported as consistent and the source is reliable then AIS consistent
16 If vessel reported as loitering and the source is accurate and reliable then the vessel is

loitering
17 If vessel reported as stopped and the source is accurate and reliable then the vessel is

stopped
18 If vessel reported as passing and the source is accurate and reliable then the vessel is

passing
19 If vessel is reported as stopped and the source is partially accurate and reliable then

the vessel is either loitering or stopped
20 If the vessel capability category is reported as c and the source is neither over- nor

underestimating, then its capability category is c, c ∈ {1,2,3}
21 If the vessel capability category is reported as c and the source is overestimating and

not underestimating, its capability category is ≤ c, c ∈ {1,2,3}
22 If the vessel capability category is reported as c and the source is underestimating and

not overestimating, its capability category is ≥ c, c ∈ {1,2,3}
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Table 6.7: Logical relationships in the threat assessment valuation network (not including source
models), with parametrised probability values αi. Values in brackets are the ones used in the
current implementation

Nr. Relationship R P(R)

0 THREAT = TRUE ↔ (OPP. = TRUE) ∧ (CAP. = TRUE) ∧ (INT. = TRUE) 1

1 AIS_INC = ON → INTENT= TRUE γ1 (0.7)
2 AIS_T = OFF → OPPORTUNITY= TRUE γ2 (0.4)
3 KIN_X = STOP. → OPP. = TRUE 1
3 KIN_X = LOIT. → OPP. = TRUE γ3 (0.4)
4 TYPE_X = 1 → CAP. = FALSE 1
5 TYPE_X = 2→ CAP. = TRUE γ4 (0.3)
6 TYPE_X = 3 → CAP. = TRUE 1
7 ID_X = F → INTENT = FALSE 1
8 ID_X = H → INTENT = TRUE 1
9 ID_X = S → INTENT = TRUE γ5 (0.7)
10 ID_X = A → INTENT = FALSE γ6 (0.7)
11 LOC. = CLEAR → OPP. = FALSE 1

THREATMODELTHREAT

INTENT

OPPORTUNITY

CAP ABILITY

AIS_INTENT

AIS_INC

XQR_AIS_INC

AIS_INC_R AIS_INC_SQ

ID_INT

ID_X

XQR_ID

ID_R ID_Q

TY PE_CAP

TY PE_X

XQR_TY PE

TY PE_RTY PE_Q

AIS_T_OPP

AIST

XQR_AIS_T

AIS_QAIST_R

LOC_OPP

LOC_X

LOC_XQR

LOC_Q LOC_R

K IN_OPP

K IN_X

K IN_XQR

K IN_Q K IN_R

m1 mQ
1 m2 mQ

2

m3mQ
3

m4mQ
4

m5 mQ
5

m6mQ
6

X Focus variable R Report variable
Q Quality variable val Valuation

Figure 6.13: The evidential network implementing the multi-source threat assessment reasoning

for the estimation of capability by type (perfect (neither- over or underestimated), overestimated,

underestimated, unreliable (either- over or underestimated)). Throughout the remainder of this
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Table 6.8: List of sources

Source ID Source Variable Source report

1 AIS inconsistency detector AIS inconsistency AIS_INC_R (m1)
2 Intelligence Vessel identity ID_R (m2)
3 Classifier Vessel type TYPE_R (m3)
4 Kinematic behaviour analyser Vessel kinematic KIN_R (m4)
5 AIS receiver AIS reception AIST_R (m5)
6 Location prediction Vessel position LOC_R(m6)

section, unless specified otherwise, the sources are assumed to behave as follows:

• The AIS is assumed to have 20% loss rate;

• The sources providing location, AIS consistency and vessel identity are all assumed to be

80% reliable;

• The estimation of kinematic behaviour of the vessel is assumed to be 70 % accurate and 90%

reliable;

• The estimation of capability by vessel type has an overestimation risk of 10% and an

underestimation risk of 20%.

This configuration results in the following set of quality mass functions:

mQ
1 (AIS_INC_SQ = REL)= 0.8 mQ

2 (ID_Q = REL)= 0.8

mQ
1 (AIS_INC_SQ = NREL)= 0.2 mQ

2 (ID_Q = NREL)= 0.2

mQ
3 (TYPE_Q = PERF)= 0.72 mQ

4 (KIN_Q = PERF)= 0.63

mQ
3 (TYPE_Q = OVER)= 0.08 mQ

4 (KIN_Q = INACC)= 0.27

mQ
3 (TYPE_Q = UNDER)= 0.18 mQ

4 (KIN_Q = NREL)= 0.1

mQ
3 (TYPE_Q = NREL)= 0.02

mQ
5 (AIS_Q = LOSS)= 0.2 mQ

6 (LOC_Q = REL)= 0.8

mQ
5 (AIS_Q = NLOSS)= 0.8 mQ

6 (LOC_Q = NREL)= 0.2

6.2.2 Inference results

Four different but similar scenarios involving four different types of vessels are discussed, pre-

senting each with a different probability of threat. The mass functions m j
i represent observation

i for scenario j. In all the scenarios, no report is received regarding whether the AIS signal is

consistent, and it is assumed that all the vessels satisfy the geographical constraint, i.e. they are

all reported to be in the vicinity of the maritime infrastructure.

Vessel 1: Fishing vessel Here a typical behaviour of a fishing vessel is considered. Such a

vessel has some, albeit limited, capability to do harm. It often disables its AIS and its kinematic
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behaviour can be considered to be a mixture of passing through and loitering. In this case the

information provided is on the AIS broadcast status m1
5(AIST_R = REC) = 1, vessel kinematic

behaviour m1
4(KIN_R = LOITERING)= 0.7 and m1

4(KIN_R = PASSING)= 0.3, and capability by

vessel type m1
3(TYPE_R = 2)= 1 with no identity report provided.

Vessel 2: High capability, possibly malicious vessel This vessel is identified as highly

capable by its type. It operates with its AIS enabled, stopping and loitering within the area of

interest. Given the geopolitical context, the vessel is identified as suspect. As such the observations

from the sources are: m2
2(ID_R = S) = 1, m2

3(TYPE_R = 3) = 1, m2
4(KIN_R = STOPPED) = 0.4,

m2
4(KIN_R = LOITERING)= 0.6 and m2

5(AIST_R = REC)= 1.

Vessel 3: Assumed friendly deep-sea research vessel with infrastructure repair capa-
bilities The vessel behaviour and capabilities are identical to Vessel 2 (m3

i = m2
i , for i = 3, . . . ,6)

with the only difference that this one is assumed to be friendly according to intelligence reports,

m3
2(ID_R = A)= 1.

Vessel 4: Leisure craft This is a case of a vessel which should pose no to little threat - its

intent is unknown, opportunity and capability low. The AIS is being continuously broadcast

and its kinematic behaviour and capability are typical for leisure craft. As such: capability

by vessel type m4
3(TYPE_R = 1) = 1, vessel kinematic behaviour m4

4(KIN_R = STOPPED) = 0.1,

m4
4(KIN_R = PASSING) = 0.9 and AIS reception status m4

5(AIST_R = REC) = 1 with no identity

report provided.

0

0.5

1
Threat

¬ Threat

Ves
se

l 1

Ves
se

l 2

Ves
se

l 3

Ves
se

l 4
0

0.5

1

Intent
¬ Intent

Opportunity
¬ Opportunity

Capability
¬ Capability

Figure 6.14: Amount of evidence supporting (belief, lower bound), amount of evidence consistent
with (plausibility, upper bound) and amount of evidence against THREAT (top graph) and its
three components (bottom graph), for each of the four vessels
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Inference results are shown in Figure 6.14 and can be analysed as follows. It is clear that the

only vessel which poses a significant risk is Vessel 2 - it is fully capable, most likely has malicious

intent, and there is significant evidence of its opportunity. Additionally, no evidence argues against

malicious intent, its opportunity or its capability. Vessel 1 can be considered a plausible risk (high

upper bound) due to its opportunity and degree of capability. However, there is no evidence of

it having malicious intent. It is comparable to vessel 4, which intent, too, is unknown. However,

the belief in the capability of the latter is much lower (as it is entirely driven by the likelihood of

its capability having been underestimated), and its opportunity is reduced due to its kinematic

pattern and AIS broadcast. Finally, the lowest threat is posed by Vessel 3. While it has both the

capability and opportunity, just like Vessel 2, it has been positively confirmed to be a friend and,

not pose a threat.

Interestingly, the model allows capturing a quite high uncertainty in the threat assessment

for both Vessels 1 and 2, suggesting gathering additional information for a refined assessment.

It can be argued that the threat model used underestimates the threat, as the belief in Threat

is lower than the belief in any of the factors affecting it. However, the evidence “against” is well

reflected in the threat. A more suitable model for threat assessment in this context may need

to be proposed. This conservative behaviour of the model with respect to belief in threat can be

considered to correspond to the actual threat level as discussed earlier and its plausibility to the

potential threat level.

6.2.3 Explaining the impact of source reports

Here we consider the case of Vessel 3 as discussed earlier, but with an additional piece of informa-

tion. Throughout the remainder of this section, we refer to this vessel as Vessel 3∗ to distinguish

it from the case of Vessel 3 discussed earlier. We consider a report claiming that the vessel’s

AIS is being inconsistent: m3∗
1 (AIS_INC = TRUE)= 1. This increases the support in hypothesis

INTENT = TRUE and by extension THREAT = TRUE, yielding the following inference:

m3∗(THREAT = TRUE)= 0.1442

m3∗(THREAT = FALSE)= 0.3590

m3∗(THREAT=Ω)= 0.4968(6.6)

As discussed in the previous section, the formal explanation and analysis of these results can be

done in two steps. The first one is to discuss the impact of the reports provided by the individual

sources of evidence, and the second one is to consider the impact of the source model.

6.2.3.1 The contribution of the reports

We first discount the report valuations to analyse the impact of the report itself without considering

the source model. The sensitivity spaces are generated as discussed preciously and are laid out

in Figures 6.15a and 6.15b. To consider the explanation on a higher level, we also look at the

contribution of Intent, Opportunity and Capability to Threat. This is displayed in Figure 6.16.

Finally, to close the loop, we may consider the contribution of the individual sources to inference on
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Intent as displayed in Figure 6.17. We will not discuss the inference on Opportunity and capability

in more detail as they are all driven by a single source only.
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Figure 6.15: Sensitivity spaces for the impact of the individual reports on inference on THREAT

The sensitivity spaces are spanned by the measures defined in Eq. (4.7) and (4.8) in Figure

6.15a. In Figure 6.15a pieces of evidence in the top-right quadrant argue for a threat, pieces

of evidence in the bottom-left quadrant argue against a threat. The top-left and bottom-right

quadrant show pieces of evidence that increase and decrease ignorance, respectively. As such, it

can be argued that the reception of the AIS broadcast of the vessel is inconsequential, the vessel’s

type and its kinematic behaviour in the area of interest both argue for the threat. The vessel’s

affiliation (Assumed friend) and its inconsistent AIS broadcast argue respectively against and for

the threat while also disputing the other argument.

It is interesting to see that both mass functions related to the vessel’s kinematic behaviour

and its type are equally sensitive to discounting and have no effect on the plausibility of threat,

but both the vessel identity as well as the AIS inconsistency have a significant impact on Pl(Thr).

The overall belief and plausibility values of threat are determined by belief and plausibility levels

of opportunity, capability and intent. Mass functions m3 and m4 solely determine capability and

opportunity, respectively, since no evidence against capability or opportunity exists (they are both

fully plausible), they have no effect on threat plausibility. On the contrary masses m1 and m2 both

determine intent, however m1 supports the hypothesis “INTENT = TRUE” whereas m2 opposes

it. The conflict between the two means that discounting one reinforces the other one, therefore,

changing, increasing, or decreasing the plausibility of malicious intent and by extension of threat.

This is consistent with Figure 6.16a, where opportunity and capability correspond to kinematics

and vessel type. The overall sensitivity is slightly lower than when the sources are considered

directly, as the reports have already been corrected by the source model. Similarly, the conflict

which causes AIS inconsistency to reduce specificity in Figure 6.15b is resolved in 6.16b. Similarly,

when comparing 6.17a to 6.15a, we observe similar values but scaled down due to the source

correction and the threat model.

The measures 6.4 and 6.5 are shown in Figure 6.15b. Pieces of evidence at the point of origin
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Figure 6.16: Sensitivity spaces for the impact of INTENT on inference on TREAT
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Figure 6.17: Sensitivity spaces for the impact of the individual reports on INTENT

have no impact on the reasoning result, i.e. the reasoning result is not sensitive against the

addition or removal of it. All the pieces of evidence increase the dissent between the arguments.

As per the previous example, masses, m3 and m4 have the same behaviour. It is interesting to see

that mass function m1 has a significantly smaller effect on dissent between arguments whilst also

decreasing specificity. It is expected that a decrease in specificity will also decrease disagreement

between the arguments, but it is counter-intuitive that this mass should decrease the overall

specificity. This can be again explained by the conflict dynamics—the two mass functions related

to intent m1 and m2 conflict with one another. Meanwhile, the evidence supporting the hypothesis

that the vessel does not have malicious intent reduces the nonspecificity of Threat more than

evidence to the contrary. From Figure 6.17b it can be seen that the two mass functions have the

same impact on the specificity of Intent, but it is not the case for Threat (Figure 6.15b)). The same

impact of the two masses can be justified by them being in conflict with one another and only with

one another. Reinforcing m1 essentially discounts m2, resulting in a net decrease in specificity, as

discussed in the previous paragraph.
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6.2.4 Explaining the source model

The difficulty with extending this approach directly to the analysis of the impact of the source

model is that the former may have multi-dimensional quality valuations. For example, whereas

the approach can be applied very easily to the sources such as ”Inconsistent AIS”, where the

valuation on quality can be discounted directly, it is more problematic for sources such as capability

assessment, where the quality may change in multiple directions.

Consider the classic example proposed by Pichon et al. [82], where the same source has a

behaviour that depends on the two dimensions of reliability and truthfulness. The one-dimensional

description from earlier is not helpful anymore, as the only option would be to display the variation

on different sensitivity spaces.

The behaviour of the source is now governed by a variable on the joint frame ΩQ = {rel ×
truth, rel× l ie,¬rel× truth,¬rel× l ie}, and defined by the mapping

Γrel×truth(A)= A, ∀A ⊆Ω
Γrel×l ie(A)= A, ∀A ⊆Ω

Γ¬rel×truth(A)=Γ¬rel×l ie(A)=Ω, ∀A ⊆Ω

with the marginal mass functions m(rel)=α, m(¬rel)= 1−α, m(truth)=β, m(l ie)= 1−β, with α

and β within [0,1] and representing respectively the probability of the source being reliable and

truthful. This yields the joint mass function on Q:

(6.7) mQ(Q)=


αβ if Q = rel× truth

α(1−β) if Q = rel× l ie

1−α if Q = {¬rel× truth,¬rel× l ie}

Now we no longer can simply produce the derivative of Bel as in 4.7 with respect to a single

parameter, since now Bel(A) is a function of both α and β.

Hence we consider Bel(A,α,β) to be a scalar field over the space α×β, and compute the

gradient derivative of the scalar field at that point:

(6.8) ∇Bel i(A)=
(
δBel i(A)

δαi
δBel(A)
δβi

)

which corresponds to the vector of the greatest increase in gradient at that point, which magnitude

is used as the sensitivity value:

(6.9) áBel i(A)= |∇Bel i(A)|αi=αi0
βi=βi0

The directional derivatives can be used to assess the sensitivity of the computation to a specific

type of variation in quality - making the source either more or less truthful, or more or less reliable.

The directional derivative defines the magnitude of gradient in direction of~v:

(6.10) ∇vBel(A)=∇Bel(A) · v̂
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and thus

(6.11) áBel i(A)v =∇vBel i|αi=αi0
βi=βi0

=∇Bel i(A)|αi=αi0
βi=βi0

· v̂

where v̂ denotes the unit vector in direction~v.
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Figure 6.18: Source behaviour as variation of α and β, with directions corresponding to maximum
positive changes of belief, plausibility, specificity and consonance

Figure 6.18 displays the different directions in which quality can vary in the α−β space. Some

directions of particular interest are these where the source directly tends towards one of the

unique source behavioural modes. – in this case, the fully reliable and truthful source (“Perfect"),

a reliable liar (“Liar") or an unreliable source (“Unreliable”), as well as the directions of maximum

changes of Bel(X = True), Pl(X = True), Cons(m) and Spec(m). Such direction is the unit vector

from the initial source behaviour configuration to the point corresponding to the behaviour of

interest:

(6.12) ~v =

(
α1

β1

)
−

(
α0

β0

)
∣∣∣∣∣
(
α1

β1

)
−

(
α0

β0

)∣∣∣∣∣
where the point (α1,β1) corresponds to the source configuration of interest: (1,1) for the perfect

source, (1,−1) for the liar and (−1,0) for the unreliable source2.

By extension we consider all the sensitivity loci, which trace an ellipse:

(6.13)

( áBel i(A)àPl i(A)

)
(θ)=


∇Bel i(A) ·

(
cosθ

sinθ

)

∇Pl i(A) ·
(
cosθ

sinθ

)
=

(
δBel i(A)

δαi
cosθ+ δBel i(A)

δαi
sinθ

δPl i(A)
δαi

cosθ+ δPl i(A)
δαi

sinθ

)

2It can be argued that the unreliable source should correspond to the line α= 0, but we choose to ignore this for the
sake of clarity

163



where θ denotes the direction of change in quality on α×β. The resulting sensitivity spaces with

α0 = 0.6 and β0 = 0.6 are shown in Figures 6.19a and 6.19b. It can be clearly seen that, as expected,

if the conflicting source is treated as perfect it has a significant negative effect on both belief and

plausibility of X = True, a minor increase in specificity and a very large decrease in consonance.

Treating the source as a Liar increases the belief of X = True as well as the specificity, with

marginal negative impact on consonance. Simply reducing the relevance of the report increases

the plausibility as well as the consonance, while marginally decreasing the belief and specificity. It

is interesting to note that treating the three main quality directions are not symmetric, i.e. they

all have distinct effects.
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Figure 6.19: Sensitivity spaces for belief and plausibility with two-dimensional quality valuation
and different directions of source uncertainty shift for source 2

The approach described here can be naturally applied to the more general BBC model with a

set of arbitrary source behaviours. For this, each behaviour should be parametrised with a set of

n binary variables Z = {Z1 . . . Zn}, each being true with probability pi and false with probability

1− pi such that there exists a truth table relating each configuration of Z to a possible source

behaviour.

This is the way we have chosen to parametrise the behaviours of both capability estimation

(with the two parameters being the probability of underestimation and overestimation), as well as

the kinematic behaviour analysis (the parameters being accuracy and reliability).

We apply this to the example in question. Unlike in the example discussed earlier, the lack

of external conflict between many of the sources means that there is the little possible impact of

changing the quality valuations on the plausibility of threat as well as a very strong correlation

between change in consonance and specificity. This means that the short radius of the ellipse is so

small that the shape traced is essentially a straight line segment. Therefore, depending on the

direction of change of quality, the impact on inference result can lie anywhere on this line segment.

These sensitivity spaces are shown in Figure 6.20.

By inspection and comparison of Figures 6.20a and 6.20b to Figures 6.15a and 6.15b respec-

tively it can be seen that both AIS inconsistency as well as vessel identity’s impact are similar
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Figure 6.20: Sensitivity spaces for inference on Threat where the parameters describing source
behaviour are varied

but shifted down (more negative and less positive) for plausibility and its magnitude is reduced

for belief. In general, the inference gradient with respect to reliability is expected to be slightly

smaller than discounting the report directly since it takes into account the initial conditions. Due

to the way conflict is redistributed, as discussed before, this makes the impact on plausibility more

negative or less positive.

The impact of changing the quality estimate of kinematics or type can lie anywhere on the line

segment marked on the sensitivity space. Note that the sensitivity values from Fig. 6.15a can be

made negative if the source is discounted rather than reinforced. The corresponding positive and

negative values bound the line segment for kinematics and vessel type from Figure 6.20a. As such,

the maximum sensitivity to the source model is less than the sensitivity to the reports. Similar

arguments follow when considering the specificity-consonance sensitivity in Figure 6.20b. However,

it is interesting to note the strong correlation between impact on consonance and specificity for

this kind of conflict-free source. The real added value of this type of analysis comes from the ability

to assess the impact an incorrect source assessment may have on the inference result. Considering

a finite set of resources, which could be used to improve some of the sources, it can be shown that

the ones the quality of which may have the greatest impact should be the ones to be prioritised. A

downside of this approach is that it is impossible to distinguish the different directions of quality

shift only through inspection of the sensitivity space.

Finally, we consider the overall impact of the source model. Whereas the previous figure shows

the impact of source quality assessment, Figure 6.21 enables understanding of the overall impact

of the model. It shows the difference in sensitivity of the inference process to reports when the

sources are considered to be perfect (red) and when the source model is used (blue). A perfect

source is one with no correction due to the source model, i.e. its report is assumed to accurately

represent the knowledge we can obtain from it. Thus it can be seen that employing the source

model generally dramatically reduces the sensitivity to individual reports while increasing the

impact on the overall consonance for the two conflicting sources (Identity and AIS inconsistency).
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Figure 6.21: The comparison of sensitivity of the inference result to the report with (blue) and
without (red) the source model included

This also shows that the impact of the source model is relatively low for non-conflicting sources

(vessel type and kinematics).

6.3 Summary

In this section„ two scenarios for the fusion of uncertain information within a maritime context

were presented. The first was concerned with situational awareness ans sense-making on informa-

tion regarding multiple entities and the relationships between them. The framework of uncertain

conceptual graphs was used for this purpose. The reasoning capabilities were provided using

the link between uncertain conceptual graphs and valuation networks. These tools were used to

obtain a distribution on possible worlds showing the relationships between all the entities, each

of them described by a conceptual graph. This has shown the applicability of the approach in a

relatively realistic scenario. These results were subsequently analysed using some explainability

tools. Specifically sensitivity spaces were produced to describe the impact of individual sources

on the belief and plausibility of hypotheses of interest, as well as their impact on conflict and

epistemic uncertainty in the process. Shapley value was used to assess the impact of individual

sources to the overall solution. The explanations produced were consistent with the expectations.

Typically, we would like to assess the processes used throughout both scenarios with respect to

the ground truth. In both cases presented we can see that the inference result is consistent with

the ground truth, however since the scenarios themselves are synthetic and the sensing process is

not modelled it is insufficient to use this to assess the reasoning process. Furthermore, the purpose

of both of these scenarios is to showcase methods and tools. If an inconsistency existed it would be

difficult to address whether it is a weakness of the tools themselves - the valuation networks or

the conceptual graphs - or rather the problem model. For example, in Scenario 2, the threat model

used is likely under-sensitive and could be modified if deployed. However, this weakness of the

problem model does not imply a problem with the tools and methods.
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The second scenario is the one presented in the conference paper at 2020 International

Conference on Information Fusion [113]. It is concerned with assessment of the threat a vessel

may pose to sensitive underwater infrastructure, such as the subsea communications cables. The

focus of this scenario is on modelling the partial reliability of sources, as well as its impact on the

reasoning. Results for four different vessels are presented, and one vessel of particular interest is

analysed in greater detail. A novel method for assessment of the latter is proposed, by extending

the notion of sensitivity space to multi-dimensional source quality models. This makes it possible

to assess what wold the impact of the source be if the assessment of its quality would change. As

such, it gives us an estimation of the impact of the second-order uncertainty, or the uncertainty

regarding the quality of the sources. This can be useful in a real-life scenario, where we may have

a finite amount of resources and it is necessary to prioritize which sources should be improved.

The method proposed makes it possible to assess how much the source impact would change in

this case.
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7
DISCUSSION

This thesis addressed the challenges in the field of uncertain information fusion through

three key lenses - that of context exploitation for partially reliable sources, explainability

and situation awareness.

7.1 Thesis summary and next steps

The notion of context has been discussed in Chapter 3 and aligned with relevant works in the field

of belief functions. The contextual reasoning model used currently in literature has been framed

as context-of the problem, as opposed to context-for the problem. A novel method of inclusion

of context-for in evidential reasoning has been proposed. Furthermore, we have partitioned the

universe of discourse into the context of the problem and the context of the sources. Individual

pieces of contextual information can exist within either context while acting as context-for either.

These two behaviours correspond to whether a piece of contextual information makes it possible to

reason about the source quality or about the variable of interest itself. This approach supports

interpretability of evidential reasoning, improves the reasoning results and can even increase the

expressiveness of contributing sources.

Furthermore, in this chapter, other issues related to source modelling were addressed. This

includes dealing with sources that are not independent. If such a situation occurs and is not

addressed, double counting of information takes place. While solutions for a combination of sources

with known dependence relation exist, alongside ones that can be used when this relation is

unknown, an alternative solution has been proposed. An interpretation of the Behaviour-Based

Correction model (or as referred to throughout this thesis, its variant, the XQR model) was

proposed to allow for uncertain dependency relations between contributing sources.

Several exciting areas of work remain that need to be omitted. One of them is the link between

contextual reasoning and source dependency. A natural extension is to consider that a source

dependency relation is conditional given some context. A trivial example is a set of data available
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to an analyst. It is reasonable to consider this shared data to be the contextual information for the

analyst. Consider that there are multiple analysts, and they all operate on the same information.

In this case, their reports are not going to be independent. This is of particular interest in a

multi-agency collaboration scenario, where the analysts may be unaware that they use the same

information.

Smets’ canonical decomposition of belief functions has been used for interpretation of results. It

is a great tool to demonstrate the added expressiveness, but there is room for greater exploitation

of it. One way inclusion of context increases the expressiveness of the belief mass has been shown

(using the canonical decomposition), but there are other types of pseudo-BBA’s that can be induced

by contextual information. An example is the one discussed in the last section of Chapter 3.

Chapter 4 focuses on the second challenge for multi-source information fusion, that of prove-

nance or explainability. The purpose of addressing this is that while graphical evidential reasoning

is transparent by design, the process of information aggregation itself can be opaque, especially

with multiple sources and large frames of discernment. If this process is used to make a decision,

especially in safety-critical applications or where large stakes are associated with the outcome

of such a decision, it is necessary to be able to understand which of the sources are driving this

decision. The contribution measure based on a geometric interpretation of belief masses was

proposed. As this was a novel approach, this chapter is largely exploratory, and several possible

evaluation methods are proposed. One which turned out to be of particular importance is the

preference property. Originally its formalisation suggested that it should be satisfied by any

contribution measure. However, a more in-depth analysis showed that not only it is not satisfied

by default, but for any contribution measure considered, there exists a proportion of cases where

this property is not satisfied at all. As such, this property has been reinterpreted to be treated

as a performance evaluation tool, where the lower proportion of cases where it does not hold,

the better the performance of the particular contribution measure. Interestingly, the distance-

based contribution measure proposed performed relatively well regardless of the decision-making

method and the combination rule used. While in all cases it has been outperformed by some other

contribution measure, it always showed at least satisfactory performance, as opposed to other

possible measures which tended to perform very well in optimal conditions but significantly worse

in others.

With this chapter largely treading new ground, there is a great breadth of possible further

work. The postulates for the properties the contribution measure should satisfy should be revisited.

While in some cases, the notion of "greatest impact" can be self-explanatory, in others, it is not. In

particular, if we consider more complex valuation networks, source correction models and similar

methods, it may be very hard to agree on what is meant by the greatest impact of a particular

body of evidence. An example of such a case is in Chapter 7, where the threat model based on

the conjunction of three variables is used. Clearly, all three are required for inference on the

threat, and arguably the one with the greatest impact is the least-committed one, as it reduces the

plausibility of threat. This is a major difficulty with tracking uncertainty as well. While in some

cases, the uncertainty can come from conflict redistribution, in others, it may be due to source

correction or source self-doubt. In order to track this correctly, this separation between lack of
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information (source self-doubt) and low source quality should be addressed correctly.

Chapter 5 addresses the problem of multi-entity situation modelling. It draws very heavily

from the work of Laudy et al., but with a much greater focus on the modelling of uncertainty

itself. An extension of the framework of conceptual graphs is proposed to allow for embedding

uncertainty in the graphs themselves. Two reliability levels are included, which make it possible

to consider an alternative interpretation of the notion of partial reliability. Since a source provides

multiple interconnected pieces of information, a partially reliable source can provide some valid

information, whilst some can be false. This approach contrasts with previous work, where the

sources were given a reliability rating, but it corresponded to the likelihood that all the information

provided is true. Based on this, two methods of combining information from such uncertain graphs

are proposed. The second half of that chapter addresses the links between the uncertain conceptual

graphs and other uncertainty formalisms, in particular valuation networks. This makes it possible

to use the conceptual graphs framework for information storage and some information fusion and

the valuation networks for uncertain reasoning on the same problem. Furthermore, the uncertain

conceptual graph framework is compared to Markov Logic Networks, as the two are intuitively

linked. It is shown that the same problem can be solved with MLN’s as well. It can be argued that

the example discussed does not leverage the relative strengths of different approaches. However,

it does show that the different approaches are compatible.

An interesting area of work that has been omitted in that chapter is the relationship between

valuation networks and Markov Logic Networks. An MLN induces a Markov network, and the set

of rules for an MLN can be used to generate a set of valuations over the same variables which

exist in the Markov network. This suggests that it is possible to generate an equivalent valuation

network for any Markov Logic Network. This is something that should be addressed in the future

to assess the feasibility and usefulness of such an approach. Another area of further work is that of

extending the notions from the field of multi-target association to the fusion of conceptual graphs.

In particular, the models used in Chapter 5 do not sufficiently address the question of ensuring

that the identity of targets matches, as well as targets having more than one property of the

same time. Since the purpose of using conceptual graphs is to deal with multi-entity fusion, it is

important to ensure that these "semantic tracks" are correctly associated with the corresponding

targets.

These three key areas of interest - context, explainability and situation awareness - are brought

together in Chapter 6. There two scenarios from the maritime situation awareness domain are

discussed. One is a multi-entity situation awareness scenario involving several vessels involved

in illegal fishing. This demonstrates the ability to reason about several entities simultaneously,

exploit context and provide some level of explanations. The second scenario is focused on a single

vessel that is likely to pose a threat to sensitive maritime infrastructure. In this case, the main

focus is on more complex reasoning, explainability and linking explanation abilities with the

partially reliable source model. The notion of sensitivity spaces is extended to allow quantification

of the impact of the source model itself. Both of these scenarios show that these three areas of

research can be used together, and, in fact, a significant synergy exists between them. While

the examples have been designed to be realistic, they are nevertheless synthetic and suffer from

171



several oversimplifications. For example, the threat model itself is clearly overly conservative.

The multi-entity illegal fishing scenario, too, operates on some assumptions which would not

necessarily be adequate in a real-life situation. Nevertheless, the two examples show that the

tools proposed throughout this thesis have the ability to solve a certain type of problem.

7.2 Further research and relation to other areas within
Artificial Intelligence

There are several areas that could be investigated next. In this thesis, it was originally intended

to place a greater focus on source heterogeneity. Although it was addressed to some extent in

Chapter 3, it could have been investigated in more detail. In particular, the fusion of semantic

information was only briefly mentioned in Chapter 5, in the light of situational awareness. In

recent years, the general field of natural language processing has been advanced significantly, in

particular through deep learning techniques. These can be applied to information extraction from

text much more easily than at the time when work on this thesis begun. Therefore a natural next

step is to re-address this work and to align the deep neural network-based relation extraction and

ontology population with the tools for the fusion of semantic information outlined in Chapter 5.

The utilisation of deep learning approaches was briefly discussed in Chapter 3, but only as an

example of a partially reliable source. With greater work on explainable and interpretable deep

learning models, as well as the more recent work on evidential deep learning, new challenges

for integrating these with evidential networks arise. This applies to contextual information, too,

as some works in integration context in neural networks have been undertaken throughout

recent years. It is important to note that it is a well-known issue with deep learning models (and

neural networks in general) that misclassification can take place due to imbalanced contextual

information (such as time of the day or season in computer vision tasks). The selection of ensembles

of classifiers by context is another example of context utilisation in machine learning, the use of

which is strongly related to the work presented in Chapter 3.

Decision-making in the theory of evidence was very briefly outlined in Chapter 2 and then

recalled in Chapter 4. Very clearly, there is much more to that. With a possible advent of evidential

deep learning, it is likely that evidential decision-making will be an area of interest in the

near future. A particular topic of interest is that of information value. In a Bayesian approach,

information value is associated with the expected increase in utility when a source is sampled.

However, this problem becomes more complicated in the evidential framework. If we consider a

partially reliable source that can provide information with a degree of self-doubt, we may have a

situation where the information provided by the source decreases the expected utility but reduces

the interval between maximum and minimum utility. If we consider that ambiguity aversion is an

important aspect of decision making in human agents, it stands to reason that the reduction in

epistemic uncertainty associated with a decision should in itself be considered a form of utility. This

becomes particularly important in light of the discussion in Chapter 6 - where we are concerned

with the possible cost of improving a source. Another area related to the aforementioned problem
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is confirmation bias. This is something that can be positioned between the discussions in Chapter

3 (on source behaviour and partially independent sources) and Chapter 4 (explainability). In a

multi-intelligence scenario, it is possible that the sources which are independent are more likely

to report on a particular area in the frame of discernment. This ties in with the information

value problem, as well as with context, which can shed light as to which areas of the frame of

discernment are likely to be over-represented in the reports.

This thesis began with a very open-ended research question: "How can sensemaking in a multi-

intelligence scenario, with uncertain and possibly unreliable sources, be improved?". I believe that

the three key areas addressed in this thesis: context, explainability and situational awareness,

framed in the light of uncertainty modelling, form a major part of the answer to this question. The

challenge of using multiple sources to analyse multiple targets, as described in the introduction,

is essentially the definition of situational awareness. Context exploitation fits perfectly into the

research question, too, as, on the one hand, it can be used to reduce the complexity of the problem

and, on the other, to better interpret the information provided by unreliable sources. Finally,

a degree of explainability is necessary to make these solutions applicable in a scenario where

misinformation may have tangible costs. The three concepts are seemingly unrelated but given

a more in-depth investigation, they turn out to be significantly intertwined, and it becomes

difficult to discuss one without addressing the others, and they are all equally important for

multi-intelligence sensemaking.
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