75,676 research outputs found

    Semantics-Based Content Extraction in Typewritten Historical Documents

    No full text
    This paper presents a flexible approach to extracting content from scanned historical documents using semantic information. The final electronic document is the result of a "digital historical document lifecycle" process, where the expert knowledge of the historian/archivist user is incorporated at different stages. Results show that such a conversion strategy aided by (expert) user-specified semantic information and which enables the processing of individual parts of the document in a specialised way, produces superior (in a variety of significant ways) results than document analysis and understanding techniques devised for contemporary documents

    Semantics-based content extraction in typewritten historical documents

    Full text link
    This paper presents a flexible approach to extracting content from scanned historical documents using semantic information. The final electronic document is the result of a "digital historical document lifecycle" process, where the expert knowledge of the historian/archivist user is incorporated at different stages. Results show that such a conversion strategy aided by (expert) user-specified semantic information and which enables the processing of individual parts of the document in a specialised way, produces superior (in a variety of significant ways) results than document analysis and understanding techniques devised for contemporary documents

    Graph based text representation for document clustering

    Get PDF
    Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship and meanings of words in the document. As a result the sparsity and semantic problem that is prevalent in textual document are not resolved. In this study, the problem of sparsity and semantic is reduced by proposing a graph based text representation method, namely dependency graph with the aim of improving the accuracy of document clustering. The dependency graph representation scheme is created through an accumulation of syntactic and semantic analysis. A sample of 20 news group, dataset was used in this study. The text documents undergo pre-processing and syntactic parsing in order to identify the sentence structure. Then the semantic of words are modeled using dependency graph. The produced dependency graph is then used in the process of cluster analysis. K-means clustering technique was used in this study. The dependency graph based clustering result were compared with the popular text representation method, i.e. TFIDF and Ontology based text representation. The result shows that the dependency graph outperforms both TFIDF and Ontology based text representation. The findings proved that the proposed text representation method leads to more accurate document clustering results

    Text representation using canonical data model

    Get PDF
    Developing digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing, in turn, appears to be connected to raise the awareness for the requirement of effective techniques that can help during the search and retrieval of text. Text representation plays a crucial role in representing text in a meaningful way. The clarity of representation depends tightly on the selection of the text representation methods. Traditional methods of text representation model documents such as term-frequency invers document frequency (TF-IDF) ignores the relationship and meanings of words in documents. As a result the sparsity and semantic problem that is predominant in textual document are not resolved. In this research, the problem of sparsity and semantic is reduced by proposing Canonical Data Model (CDM) for text representation. CDM is constructed through an accumulation of syntactic and semantic analysis. A number of 20 news group dataset were used in this research to test CDM validity for text representation. The text documents goes through a number of pre-processing process and syntactic parsing in order to identify the sentence structure. Text documents goes through a number of preprocessing steps and syntactic parsing in order to identify the sentence structure and then TF-IDF method is used to represent the text through CDM. The findings proved that CDM was efficient to represent text, based on the model validation through language experts‟ review and the percentage of the similarity measurement methods

    Scientific documents ontologies for semantic representation of digital libraries

    Get PDF
    We present a system of services for the automatic processing of collections of scientific documents that are part of digital libraries. These services are based on ontologies for scientific documents representation, as well as on methods for semantic analysis of mathematical documents. The developed tools automatically check validity of documents for compliance with manuscript guidelines, convert these documents into required formats and generate their metadata

    A semantic-based system for querying personal digital libraries

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-28640-0_4. Copyright @ Springer 2004.The decreasing cost and the increasing availability of new technologies is enabling people to create their own digital libraries. One of the main topic in personal digital libraries is allowing people to select interesting information among all the different digital formats available today (pdf, html, tiff, etc.). Moreover the increasing availability of these on-line libraries, as well as the advent of the so called Semantic Web [1], is raising the demand for converting paper documents into digital, possibly semantically annotated, documents. These motivations drove us to design a new system which could enable the user to interact and query documents independently from the digital formats in which they are represented. In order to achieve this independence from the format we consider all the digital documents contained in a digital library as images. Our system tries to automatically detect the layout of the digital documents and recognize the geometric regions of interest. All the extracted information is then encoded with respect to a reference ontology, so that the user can query his digital library by typing free text or browsing the ontology

    Enhancing Sensitivity Classification with Semantic Features using Word Embeddings

    Get PDF
    Government documents must be reviewed to identify any sensitive information they may contain, before they can be released to the public. However, traditional paper-based sensitivity review processes are not practical for reviewing born-digital documents. Therefore, there is a timely need for automatic sensitivity classification techniques, to assist the digital sensitivity review process. However, sensitivity is typically a product of the relations between combinations of terms, such as who said what about whom, therefore, automatic sensitivity classification is a difficult task. Vector representations of terms, such as word embeddings, have been shown to be effective at encoding latent term features that preserve semantic relations between terms, which can also be beneficial to sensitivity classification. In this work, we present a thorough evaluation of the effectiveness of semantic word embedding features, along with term and grammatical features, for sensitivity classification. On a test collection of government documents containing real sensitivities, we show that extending text classification with semantic features and additional term n-grams results in significant improvements in classification effectiveness, correctly classifying 9.99% more sensitive documents compared to the text classification baseline

    CHORUS Deliverable 4.3: Report from CHORUS workshops on national initiatives and metadata

    Get PDF
    Minutes of the following Workshops: • National Initiatives on Multimedia Content Description and Retrieval, Geneva, October 10th, 2007. • Metadata in Audio-Visual/Multimedia production and archiving, Munich, IRT, 21st – 22nd November 2007 Workshop in Geneva 10/10/2007 This highly successful workshop was organised in cooperation with the European Commission. The event brought together the technical, administrative and financial representatives of the various national initiatives, which have been established recently in some European countries to support research and technical development in the area of audio-visual content processing, indexing and searching for the next generation Internet using semantic technologies, and which may lead to an internet-based knowledge infrastructure. The objective of this workshop was to provide a platform for mutual information and exchange between these initiatives, the European Commission and the participants. Top speakers were present from each of the national initiatives. There was time for discussions with the audience and amongst the European National Initiatives. The challenges, communalities, difficulties, targeted/expected impact, success criteria, etc. were tackled. This workshop addressed how these national initiatives could work together and benefit from each other. Workshop in Munich 11/21-22/2007 Numerous EU and national research projects are working on the automatic or semi-automatic generation of descriptive and functional metadata derived from analysing audio-visual content. The owners of AV archives and production facilities are eagerly awaiting such methods which would help them to better exploit their assets.Hand in hand with the digitization of analogue archives and the archiving of digital AV material, metadatashould be generated on an as high semantic level as possible, preferably fully automatically. All users of metadata rely on a certain metadata model. All AV/multimedia search engines, developed or under current development, would have to respect some compatibility or compliance with the metadata models in use. The purpose of this workshop is to draw attention to the specific problem of metadata models in the context of (semi)-automatic multimedia search

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings
    corecore