1,203 research outputs found

    Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation?

    Full text link
    Extracting a subset of a given OWL ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules (LBMs). These come in two flavours, syntactic and semantic, and a syntactic LBM is known to contain the corresponding semantic LBM. For syntactic LBMs, polynomial extraction algorithms are known, implemented in the OWL API, and being used. In contrast, extracting semantic LBMs involves reasoning, which is intractable for OWL 2 DL, and these algorithms had not been implemented yet for expressive ontology languages. We present the first implementation of semantic LBMs and report on experiments that compare them with syntactic LBMs extracted from real-life ontologies. Our study reveals whether semantic LBMs are worth the additional extraction effort, compared with syntactic LBMs

    Reasoning over Ontologies with Hidden Content: The Import-by-Query Approach

    Full text link
    There is currently a growing interest in techniques for hiding parts of the signature of an ontology Kh that is being reused by another ontology Kv. Towards this goal, in this paper we propose the import-by-query framework, which makes the content of Kh accessible through a limited query interface. If Kv reuses the symbols from Kh in a certain restricted way, one can reason over Kv U Kh by accessing only Kv and the query interface. We map out the landscape of the import-by-query problem. In particular, we outline the limitations of our framework and prove that certain restrictions on the expressivity of Kh and the way in which Kv reuses symbols from Kh are strictly necessary to enable reasoning in our setting. We also identify cases in which reasoning is possible and we present suitable import-by-query reasoning algorithms

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    vSPARQL: A View Definition Language for the Semantic Web

    Get PDF
    Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Natural language software registry (second edition)

    Get PDF
    corecore