2 research outputs found

    Biblio-MetReS: A bibliometric network reconstruction application and server

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstruction of genes and/or protein networks from automated analysis of the literature is one of the current targets of text mining in biomedical research. Some user-friendly tools already perform this analysis on precompiled databases of abstracts of scientific papers. Other tools allow <b>expert </b>users to elaborate and analyze the full content of a corpus of scientific documents. However, to our knowledge, no <b>user friendly </b>tool that simultaneously analyzes the latest set of scientific documents available on line and reconstructs the set of genes referenced in those documents is available.</p> <p>Results</p> <p>This article presents such a tool, Biblio-MetReS, and compares its functioning and results to those of other user-friendly applications (iHOP, STRING) that are widely used. Under similar conditions, Biblio-MetReS creates networks that are comparable to those of other user friendly tools. Furthermore, analysis of full text documents provides more complete reconstructions than those that result from using only the abstract of the document.</p> <p>Conclusions</p> <p>Literature-based automated network reconstruction is still far from providing complete reconstructions of molecular networks. However, its value as an auxiliary tool is high and it will increase as standards for reporting biological entities and relationships become more widely accepted and enforced. Biblio-MetReS is an application that can be downloaded from <url>http://metres.udl.cat/</url>. It provides an easy to use environment for researchers to reconstruct their networks of interest from an always up to date set of scientific documents.</p

    Event extraction from biomedical texts using trimmed dependency graphs

    Get PDF
    This thesis explores the automatic extraction of information from biomedical publications. Such techniques are urgently needed because the biosciences are publishing continually increasing numbers of texts. The focus of this work is on events. Information about events is currently manually curated from the literature by biocurators. Biocuration, however, is time-consuming and costly so automatic methods are needed for information extraction from the literature. This thesis is dedicated to modeling, implementing and evaluating an advanced event extraction approach based on the analysis of syntactic dependency graphs. This work presents the event extraction approach proposed and its implementation, the JReX (Jena Relation eXtraction) system. This system was used by the University of Jena (JULIE Lab) team in the "BioNLP 2009 Shared Task on Event Extraction" competition and was ranked second among 24 competing teams. Thereafter JReX was the highest scorer on the worldwide shared U-Compare event extraction server, outperforming the competing systems from the challenge. This success was made possible, among other things, by extensive research on event extraction solutions carried out during this thesis, e.g., exploring the effects of syntactic and semantic processing procedures on solving the event extraction task. The evaluations executed on standard and community-wide accepted competition data were complemented by real-life evaluation of large-scale biomedical database reconstruction. This work showed that considerable parts of manually curated databases can be automatically re-created with the help of the event extraction approach developed. Successful re-creation was possible for parts of RegulonDB, the world's largest database for E. coli. In summary, the event extraction approach justified, developed and implemented in this thesis meets the needs of a large community of human curators and thus helps in the acquisition of new knowledge in the biosciences
    corecore