7,482 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Connected systems in smart cities: use-cases of integration of buildings information with smart systems

    Get PDF
    Realisation of smart cities is highly dependent on innovative connections between the deployed systems in the cities. This implies that successfully deployment of individual smart systems which meet citizensā€™ needs, is not sufficient to make a city smart. Indeed, the smart cities require to innovate and connect establish infrastructures for the citizens and organisations. To enable connected systems in smart cities, the possibilities to exchange and integration information between different systems is essential. Construction industry is one of the domains which owns huge amount of valuable information asset. Buildings information can be utilised to create initiatives associated with various domains like, urban and infrastructure planning, maintenance/facility management, and energy monitoring. However, there are some barriers to realise these initiatives. This paper introduces and elaborates the details about three use-cases which need to utilise buildings information to present innovative smart services. The three use cases are: 1) Energy Usage Monitoring for positive energy usage district areas in Smart Cities (a use case from River City-anonymous name of the city); 2) Services for Facility Management Industry (a use-case from Estates office in Quay University); 3) Safety & risk management for buildings in 3D Hack event in Dublin. Each use-case considers various stakeholdersā€™ perspectives. Also they include elaborated details related to the barriers and challenges associated with utilisation and integration of buildings information. This paper concludes by the detailed barriers to benefit from valuable buildings information to create innovative smart services. Further, recommendations are provided to overcome the presented challenges

    Linked education: interlinking educational resources and the web of data

    Get PDF
    Research on interoperability of technology-enhanced learning (TEL) repositories throughout the last decade has led to a fragmented landscape of competing approaches, such as metadata schemas and interface mechanisms. However, so far Web-scale integration of resources is not facilitated, mainly due to the lack of take-up of shared principles, datasets and schemas. On the other hand, the Linked Data approach has emerged as the de-facto standard for sharing data on the Web and offers a large potential to solve interoperability issues in the field of TEL. In this paper, we describe a general approach to exploit the wealth of already existing TEL data on the Web by allowing its exposure as Linked Data and by taking into account automated enrichment and interlinking techniques to provide rich and well-interlinked data for the educational domain. This approach has been implemented in the context of the mEducator project where data from a number of open TEL data repositories has been integrated, exposed and enriched by following Linked Data principles

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    • ā€¦
    corecore