8,548 research outputs found

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Using Distributed Representations to Disambiguate Biomedical and Clinical Concepts

    Full text link
    In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the biomedical domain. Additionally, our method is fast and easy to set up and extend to other domains. Supplementary materials, including source code, can be found at https: //github.com/clips/yarnComment: 6 pages, 1 figure, presented at the 15th Workshop on Biomedical Natural Language Processing, Berlin 201

    Rotated canonical correlation analysis for multilingual corpora

    Get PDF
    This paper aims at proposing the joint use of Canonical Correlation Analysis and Procrustes Rotations (RCA), when we deal with a text and its translation into another language. The basic idea is representing words in the two different natural languages on a common reference space. The main characteristic of this space is to be lan-guage independent, although Procrustes Rotation is performed transforming the lexical table derived from trans-lation by minimizing its distance from the lexical table belonging to the original corpus, while the subsequent Canonical Correlation Analysis treats symmetrically the two word sets. The most interesting RCA feature is building a unique reference space for representing the correlation structure in the data, inducing the two systems of canonical factors to lie on the same space. These graphical representations enables us to read distances be-tween corresponding points in terms of different way of translating the same word in relation with the general context defined by the canonical variates. Trying to understand the distances between matched points could rep-resent an useful tool for enriching lexical resources in a translation procedure. In this paper we propose the com-parison of the most frequent content bearing words in the two languages, analyzing one year (2003) of Le Monde Diplomatique and its Italian edition

    Topic Map Generation Using Text Mining

    Get PDF
    Starting from text corpus analysis with linguistic and statistical analysis algorithms, an infrastructure for text mining is described which uses collocation analysis as a central tool. This text mining method may be applied to different domains as well as languages. Some examples taken form large reference databases motivate the applicability to knowledge management using declarative standards of information structuring and description. The ISO/IEC Topic Map standard is introduced as a candidate for rich metadata description of information resources and it is shown how text mining can be used for automatic topic map generation

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

    Get PDF
    End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with large amounts of parallel data. Besides this palpable improvement, neural networks provide several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words -or sentences- which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the NMT context vectors, i.e. output of the encoder, and their power as an interlingua representation of a sentence. We assess their quality and effectiveness by measuring similarities across translations, as well as semantically related and semantically unrelated sentence pairs. Second, as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an F1=98.2% on data from a shared task when using only NMT context vectors. Using context vectors jointly with similarity measures F1 reaches 98.9%.Comment: 11 pages, 4 figure
    corecore