4 research outputs found

    Open-domain web-based multiple document : question answering for list questions with support for temporal restrictors

    Get PDF
    Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015With the growth of the Internet, more people are searching for information on the Web. The combination of web growth and improvements in Information Technology has reignited the interest in Question Answering (QA) systems. QA is a type of information retrieval combined with natural language processing techniques that aims at finding answers to natural language questions. List questions have been widely studied in the QA field. These are questions that require a list of correct answers, making the task of correctly answering them more complex. In List questions, the answers may lie in the same document or spread over multiple documents. In the latter case, a QA system able to answer List questions has to deal with the fusion of partial answers. The current Question Answering state-of-the-art does not provide yet a good way to tackle this complex problem of collecting the exact answers from multiple documents. Our goal is to provide better QA solutions to users, who desire direct answers, using approaches that deal with the complex problem of extracting answers found spread over several documents. The present dissertation address the problem of answering Open-domain List questions by exploring redundancy and combining it with heuristics to improve QA accuracy. Our approach uses the Web as information source, since it is several orders of magnitude larger than other document collections. Besides handling List questions, we develop an approach with special focus on questions that include temporal information. In this regard, the current work addresses a topic that was lacking specific research. A additional purpose of this dissertation is to report on important results of the research combining Web-based QA, List QA and Temporal QA. Besides the evaluation of our approach itself we compare our system with other QA systems in order to assess its performance relative to the state-of-the-art. Finally, our approaches to answer List questions and List questions with temporal information are implemented into a fully-fledged Open-domain Web-based Question Answering System that provides answers retrieved from multiple documents.Com o crescimento da Internet cada vez mais pessoas buscam informações usando a Web. A combinação do crescimento da Internet com melhoramentos na Tecnologia da Informação traz como consequência o renovado interesse em Sistemas de Respostas a Perguntas (SRP). SRP combina técnicas de recuperação de informação com ferramentas de apoio à linguagem natural com o objetivo de encontrar respostas para perguntas em linguagem natural. Perguntas do tipo lista têm sido largamente estudadas nesta área. Neste tipo de perguntas é esperada uma lista de respostas corretas, o que torna a tarefa de responder a perguntas do tipo lista ainda mais complexa. As respostas para este tipo de pergunta podem ser encontradas num único documento ou espalhados em múltiplos documentos. No último caso, um SRP deve estar preparado para lidar com a fusão de respostas parciais. Os SRP atuais ainda não providenciam uma boa forma de lidar com este complexo problema de coletar respostas de múltiplos documentos. Nosso objetivo é prover melhores soluções para utilizadores que desejam buscar respostas diretas usando abordagens para extrair respostas de múltiplos documentos. Esta dissertação aborda o problema de responder a perguntas de domínio aberto explorando redundância combinada com heurísticas. Nossa abordagem usa a Internet como fonte de informação uma vez que a Web é a maior coleção de documentos da atualidade. Para além de responder a perguntas do tipo lista, nós desenvolvemos uma abordagem para responder a perguntas com restrição temporal. Neste sentido, o presente trabalho aborda este tema onde há pouca investigação específica. Adicionalmente, esta dissertação tem o propósito de informar sobre resultados importantes desta pesquisa que combina várias áreas: SRP com base na Web, SRP especialmente desenvolvidos para responder perguntas do tipo lista e também com restrição temporal. Além da avaliação da nossa própria abordagem, comparamos o nosso sistema com outros SRP, a fim de avaliar o seu desempenho em relação ao estado da arte. Por fim, as nossas abordagens para responder a perguntas do tipo lista e perguntas do tipo lista com informações temporais são implementadas em um Sistema online de Respostas a Perguntas de domínio aberto que funciona diretamente sob a Web e que fornece respostas extraídas de múltiplos documentos.Fundação para a Ciência e a Tecnologia (FCT), SFRH/BD/65647/2009; European Commission, projeto QTLeap (Quality Translation by Deep Language Engineering Approache

    RECUPERACIÓN DE PASAJES EN TEXTOS LEGALES Y PATENTES MULTILINGÜES

    Full text link
    En este trabajo se expone: la problemática de la recuperación de pasajes, el dominio de los textos legales y las patentes y su característica de diversidad idiomática. Se presentan técnicas para solucionar problemas de recuperación de información y se analizan dos participaciones en competencias con prepuestas de enfoques novedosos.Correa García, S. (2010). RECUPERACIÓN DE PASAJES EN TEXTOS LEGALES Y PATENTES MULTILINGÜES. http://hdl.handle.net/10251/14084Archivo delegad

    Encyclopaedic question answering

    Get PDF
    Open-domain question answering (QA) is an established NLP task which enables users to search for speciVc pieces of information in large collections of texts. Instead of using keyword-based queries and a standard information retrieval engine, QA systems allow the use of natural language questions and return the exact answer (or a list of plausible answers) with supporting snippets of text. In the past decade, open-domain QA research has been dominated by evaluation fora such as TREC and CLEF, where shallow techniques relying on information redundancy have achieved very good performance. However, this performance is generally limited to simple factoid and deVnition questions because the answer is usually explicitly present in the document collection. Current approaches are much less successful in Vnding implicit answers and are diXcult to adapt to more complex question types which are likely to be posed by users. In order to advance the Veld of QA, this thesis proposes a shift in focus from simple factoid questions to encyclopaedic questions: list questions composed of several constraints. These questions have more than one correct answer which usually cannot be extracted from one small snippet of text. To correctly interpret the question, systems need to combine classic knowledge-based approaches with advanced NLP techniques. To Vnd and extract answers, systems need to aggregate atomic facts from heterogeneous sources as opposed to simply relying on keyword-based similarity. Encyclopaedic questions promote QA systems which use basic reasoning, making them more robust and easier to extend with new types of constraints and new types of questions. A novel semantic architecture is proposed which represents a paradigm shift in open-domain QA system design, using semantic concepts and knowledge representation instead of words and information retrieval. The architecture consists of two phases, analysis – responsible for interpreting questions and Vnding answers, and feedback – responsible for interacting with the user. This architecture provides the basis for EQUAL, a semantic QA system developed as part of the thesis, which uses Wikipedia as a source of world knowledge and iii employs simple forms of open-domain inference to answer encyclopaedic questions. EQUAL combines the output of a syntactic parser with semantic information from Wikipedia to analyse questions. To address natural language ambiguity, the system builds several formal interpretations containing the constraints speciVed by the user and addresses each interpretation in parallel. To Vnd answers, the system then tests these constraints individually for each candidate answer, considering information from diUerent documents and/or sources. The correctness of an answer is not proved using a logical formalism, instead a conVdence-based measure is employed. This measure reWects the validation of constraints from raw natural language, automatically extracted entities, relations and available structured and semi-structured knowledge from Wikipedia and the Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia link graph to Vnd relevant information. This method achieves good precision and allows only pages of a certain type to be considered, but is aUected by the incompleteness of the existing markup targeted towards human readers. In order to address this, a semantic analysis module which disambiguates entities is developed to enrich Wikipedia articles with additional links to other pages. The module increases recall, enabling the system to rely more on the link structure of Wikipedia than on word-based similarity between pages. It also allows authoritative information from diUerent sources to be linked to the encyclopaedia, further enhancing the coverage of the system. The viability of the proposed approach was evaluated in an independent setting by participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL outperformed standard textual QA systems as well as semi-automatic approaches. Having established a feasible way forward for the design of open-domain QA systems, future work will attempt to further improve performance to take advantage of recent advances in information extraction and knowledge representation, as well as by experimenting with formal reasoning and inferencing capabilities.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore