8 research outputs found

    Enhancing code clone detection using control flow graphs

    Get PDF
    Code clones are syntactically or semantically equivalent code fragments of source code. Copy-and-paste programming allows software developers to improve development productivity, but it could produce code clones that can introduce non-trivial difficulties in software maintenance. In this paper, a code clone detection framework is presented with a feature extractor and a clone classifier using deep learning. The clone classifier is trained with true and false clones and then is tested with a test dataset to evaluate the performance of the proposed approach to clone detection. In particular, the proposed approach to clone detection uses Control Flow Graphs (CFGs) to extract features of a given code snippet. The selected features are used to compute similarity scores for comparing two code fragments. The clone classifier is trained and tested with similarity scores that quantify the degree of how similar two code fragments are. The experimental results demonstrate that using CFG features is a viable methodology in terms of the effectiveness of clone detection for both syntactic and semantic clones

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    Code clone detection in obfuscated Android apps

    Get PDF
    The Android operating system has long become one of the main global smartphone operating systems. Both developers and malware authors often reuse code to expedite the process of creating new apps and malware samples. Code cloning is the most common way of reusing code in the process of developing Android apps. Finding code clones through the analysis of Android binary code is a challenging task that becomes more sophisticated when instances of code reuse are non-contiguous, reordered, or intertwined with other code. We introduce an approach for detecting cloned methods as well as small and non-contiguous code clones in obfuscated Android applications by simulating the execution of Android apps and then analyzing the subsequent execution traces. We first validate our approach’s ability on finding different types of code clones on 20 injected clones. Next we validate the resistance of our approach against obfuscation by comparing its results on a set of 1085 apps before and after code obfuscation. We obtain 78-87% similarity between the finding from non-obfuscated applications and four sets of obfuscated applications. We also investigated the presence of code clones among 1603 Android applications. We were able to find 44,776 code clones where 34% of code clones were seen from different applications and the rest are among different versions of an application. We also performed a comparative analysis between the clones found by our approach and the clones detected by Nicad on the source code of applications. Finally, we show a practical application of our approach for detecting variants of Android banking malware. Among 60,057 code clone clusters that are found among a dataset of banking malware, 92.9% of them were unique to one malware family or benign applications

    On Measuring JavaScript Vulnerabilities in the NPM Packages, Websites and Chrome Extensions

    Get PDF
    JavaScript is often rated as the most popular programming language for the development of both client-side and server-side applications. Because of its popularity, JavaScript has become a frequent target for attackers, who exploit vulnerabilities in the source code to take control over the application. To address these JavaScript security issues, such vulnerabilities must be identified first. Existing studies in vulnerable code detection in JavaScript mostly consider package-level vulnerability tracking and measurements. However, such package-level analysis is largely imprecise as real-world services that include a vulnerable package may not use the vulnerable functions in the package. Moreover, even the inclusion of a vulnerable function may not lead to a security problem, if the function cannot be triggered with exploitable inputs. In this thesis, we develop a vulnerability detection framework that uses vulnerable pattern recognition and textual similarity methods to detect vulnerable functions in real-world JavaScript projects, combined with a static multi-file taint analysis mechanism to further assess the impact of the vulnerabilities on the whole project (i.e., whether the vulnerability can be exploited in a given project). We compose a comprehensive dataset of 1,360 verified vulnerable JavaScript functions using the Snyk vulnerability database and the VulnCode-DB project. From this ground-truth dataset, we build our vulnerable patterns for two common vulnerability types: prototype pollution and Regular Expression Denial of Service (ReDoS). With our framework, we analyze 9,205,654 functions (from 3,000 NPM packages, 1892 websites and 557 Chrome Web extensions), and detect 117,601 prototype pollution and 7,333 ReDoS vulnerabilities. By further processing all 5,839 findings from NPM packages with our taint analyzer, we verify the exploitability of 290 zero-day cases across 134 NPM packages. In addition, we conduct an in-depth contextual analysis of the findings in 17 popular/critical projects and study the practical security exposure of 20 functions. With our semi-automated vulnerability reporting functionality, we disclose all verified findings to project owners. We also obtained four CVEs for our findings, two of them rated as 9.8/10 (critical) severity, one as 9.1/10 (critical), and one as 7.5/10 (high) severity; several other CVE requests are still in the process now. As evident from the results, our approach can shift JavaScript vulnerability detection from the coarse package/library level to the function level, and thus improve the accuracy of detection and aid timely patching

    Aspect of Code Cloning Towards Software Bug and Imminent Maintenance: A Perspective on Open-source and Industrial Mobile Applications

    Get PDF
    As a part of the digital era of microtechnology, mobile application (app) development is evolving with lightning speed to enrich our lives and bring new challenges and risks. In particular, software bugs and failures cost trillions of dollars every year, including fatalities such as a software bug in a self-driving car that resulted in a pedestrian fatality in March 2018 and the recent Boeing-737 Max tragedies that resulted in hundreds of deaths. Software clones (duplicated fragments of code) are also found to be one of the crucial factors for having bugs or failures in software systems. There have been many significant studies on software clones and their relationships to software bugs for desktop-based applications. Unfortunately, while mobile apps have become an integral part of today’s era, there is a marked lack of such studies for mobile apps. In order to explore this important aspect, in this thesis, first, we studied the characteristics of software bugs in the context of mobile apps, which might not be prevalent for desktop-based apps such as energy-related (battery drain while using apps) and compatibility-related (different behaviors of same app in different devices) bugs/issues. Using Support Vector Machine (SVM), we classified about 3K mobile app bug reports of different open-source development sites into four categories: crash, energy, functionality and security bug. We then manually examined a subset of those bugs and found that over 50% of the bug-fixing code-changes occurred in clone code. There have been a number of studies with desktop-based software systems that clearly show the harmful impacts of code clones and their relationships to software bugs. Given that there is a marked lack of such studies for mobile apps, in our second study, we examined 11 open-source and industrial mobile apps written in two different languages (Java and Swift) and noticed that clone code is more bug-prone than non-clone code and that industrial mobile apps have a higher code clone ratio than open-source mobile apps. Furthermore, we correlated our study outcomes with those of existing desktop based studies and surveyed 23 mobile app developers to validate our findings. Along with validating our findings from the survey, we noticed that around 95% of the developers usually copy/paste (code cloning) code fragments from the popular Crowd-sourcing platform, Stack Overflow (SO) to their projects and that over 75% of such developers experience bugs after such activities (the code cloning from SO). Existing studies with desktop-based systems also showed that while SO is one of the most popular online platforms for code reuse (and code cloning), SO code fragments are usually toxic in terms of software maintenance perspective. Thus, in the third study of this thesis, we studied the consequences of code cloning from SO in different open source and industrial mobile apps. We observed that closed-source industrial apps even reused more SO code fragments than open-source mobile apps and that SO code fragments were more change-prone (such as bug) than non-SO code fragments. We also experienced that SO code fragments were related to more bugs in industrial projects than open-source ones. Our studies show how we could efficiently and effectively manage clone related software bugs for mobile apps by utilizing the positive sides of code cloning while overcoming (or at least minimizing) the negative consequences of clone fragments

    Towards Semantic Clone Detection, Benchmarking, and Evaluation

    Get PDF
    Developers copy and paste their code to speed up the development process. Sometimes, they copy code from other systems or look up code online to solve a complex problem. Developers reuse copied code with or without modifications. The resulting similar or identical code fragments are called code clones. Sometimes clones are unintentionally written when a developer implements the same or similar functionality. Even when the resulting code fragments are not textually similar but implement the same functionality they are still considered to be clones and are classified as semantic clones. Semantic clones are defined as code fragments that perform the exact same computation and are implemented using different syntax. Software cloning research indicates that code clones exist in all software systems; on average, 5% to 20% of software code is cloned. Due to the potential impact of clones, whether positive or negative, it is essential to locate, track, and manage clones in the source code. Considerable research has been conducted on all types of code clones, including clone detection, analysis, management, and evaluation. Despite the great interest in code clones, there has been considerably less work conducted on semantic clones. As described in this thesis, I advance the state-of-the-art in semantic clone research in several ways. First, I conducted an empirical study to investigate the status of code cloning in and across open-source game systems and the effectiveness of different normalization, filtering, and transformation techniques for detecting semantic clones. Second, I developed an approach to detect clones across .NET programming languages using an intermediate language. Third, I developed a technique using an intermediate language and an ontology to detect semantic clones. Fourth, I mined Stack Overflow answers to build a semantic code clone benchmark that represents real semantic code clones in four programming languages, C, C#, Java, and Python. Fifth, I defined a comprehensive taxonomy that identifies semantic clone types. Finally, I implemented an injection framework that uses the benchmark to compare and evaluate semantic code clone detectors by automatically measuring recall

    Change Impact Analysis of Code Clones

    Get PDF
    Copying a code fragment and reusing it with or without modifications is known to be a frequent activity in software development. This results in exact or closely similar copies of code fragments, known as code clones, to exist in the software systems. Developers leverage the code reuse opportunity by code cloning for increased productivity. However, different studies on code clones report important concerns regarding the impacts of clones on software maintenance. One of the key concerns is to maintain consistent evolution of the clone fragments as inconsistent changes to clones may introduce bugs. Challenges to the consistent evolution of clones involve the identification of all related clone fragments for change propagation when a cloned fragment is changed. The task of identifying the ripple effects (i.e., all the related components to change) is known as Change Impact Analysis (CIA). In this thesis, we evaluate the impacts of clones on software systems from new perspectives and then we propose an evolutionary coupling based technique for change impact analysis of clones. First, we empirically evaluate the comparative stability of cloned and non-cloned code using fine-grained syntactic change types. Second, we assess the impacts of clones from the perspective of coupling at the domain level. Third, we carry out a comprehensive analysis of the comparative stability of cloned and non-cloned code within a uniform framework. We compare stability metrics with the results from the original experimental settings with respect to the clone detection tools and the subject systems. Fourth, we investigate the relationships between stability and bug-proneness of clones to assess whether and how stability contribute to the bug-proneness of different types of clones. Next, in the fifth study, we analyzed the impacts of co-change coupling on the bug-proneness of different types of clones. After a comprehensive evaluation of the impacts of clones on software systems, we propose an evolutionary coupling based CIA approach to support the consistent evolution of clones. In the sixth study, we propose a solution to minimize the effects of atypical commits (extra large commits) on the accuracy of the detection of evolutionary coupling. We propose a clustering-based technique to split atypical commits into pseudo-commits of related entities. This considerably reduces the number of incorrect couplings introduced by the atypical commits. Finally, in the seventh study, we propose an evolutionary coupling based change impact analysis approach for clones. In addition to handling the atypical commits, we use the history of fine-grained syntactic changes extracted from the software repositories to detect typed evolutionary coupling of clones. Conventional approaches consider only the frequency of co-change of the entities to detect evolutionary coupling. We consider both change frequencies and the fine-grained change types in the detection of evolutionary coupling. Findings from our studies give important insights regarding the impacts of clones and our proposed typed evolutionary coupling based CIA approach has the potential to support the consistent evolution of clones for better clone management
    corecore