
Code clone detection in obfuscated Android apps

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Ardalan Foroughipour

©Ardalan Foroughipour, November 2021. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to

the author.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University

of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection.

I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis work or, in their absence,

by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood

that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by

the University of Saskatchewan. The views and opinions of the author expressed herein do not state or

reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement

purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building, 110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

The Android operating system has long become one of the main global smartphone operating systems.

Both developers and malware authors often reuse code to expedite the process of creating new apps and

malware samples. Code cloning is the most common way of reusing code in the process of developing

Android apps. Finding code clones through the analysis of Android binary code is a challenging task that

becomes more sophisticated when instances of code reuse are non-contiguous, reordered, or intertwined with

other code. We introduce an approach for detecting cloned methods as well as small and non-contiguous code

clones in obfuscated Android applications by simulating the execution of Android apps and then analyzing the

subsequent execution traces. We first validate our approach’s ability on finding different types of code clones

on 20 injected clones. Next we validate the resistance of our approach against obfuscation by comparing its

results on a set of 1085 apps before and after code obfuscation. We obtain 78%-87% similarity between the

finding from non-obfuscated applications and four sets of obfuscated applications. We also investigated the

presence of code clones among 1603 Android applications. We were able to find 44,776 code clones where

34% of code clones were seen from different applications and the rest are among different versions of an

application. We also performed a comparative analysis between the clones found by our approach and the

clones detected by Nicad on the source code of applications. Finally, we show a practical application of our

approach for detecting variants of Android banking malware. Among 60,057 code clone clusters that are

found among a dataset of banking malware, 92.9% of them were unique to one malware family or benign

applications.

ii

Acknowledgements

Foremost, I would like to express my deepest gratitude to my adviser, Prof. Natalia Stakhanova, for

her never-ending support, encouragement and patience. I consider myself lucky to have worked under her

supervision, as she truly cares for her students, and her guidance has carried me through all stages of my

graduate studies.

I would also like to thank Dr. Fazaneh Abazari and Dr. Bahman Sistany, for all their support, guidance,

and contributions in this project.

I would also to thank all my thesis committee members for for their encouragement and insightful com-

ments.

Finally, I would like to express my gratitude to my family, which without their support, I would not have

made it.

iii

Contents

Permission to Use . i

Abstract . ii

Acknowledgements . iii

Contents . iv

List of Tables . vi

List of Figures . vii

List of Abbreviations . viii

1 Introduction . 1

2 Background . 4
2.1 Android Architecture . 4
2.2 Android Applications . 5
2.3 Code Obfuscation . 6
2.4 Code Clone Detection . 6

3 Literature Review . 7
3.1 Code Obfuscation . 7
3.2 Code Clone Detection . 9
3.3 Code clone detection application in security . 12

4 Methodology . 14
4.1 Overview . 14
4.2 Entry Point Extraction . 15
4.3 Execution Simulation . 19

4.3.1 Mirroring class generation and loading . 20
4.3.2 Selecting methods for partial execution . 20

4.4 Execution Trace Analysis . 24
4.4.1 Nested execution trace extraction . 24
4.4.2 Execution trace simplification . 25
4.4.3 Important instruction extraction . 26
4.4.4 Slice and fragment extraction . 27

4.5 Code clone detection . 27
4.5.1 Method-level code clone detection . 28
4.5.2 Slice-level code clone detection . 28

5 Validation and Experiments . 29
5.1 Setup configuration . 29
5.2 Dataset creation . 29
5.3 Code clone detection validation . 32
5.4 Obfuscation resistance validation . 33
5.5 Code clone detection among all applications . 33
5.6 Comparative analysis . 35
5.7 Malware detection using code clone fragments . 37

iv

6 Discussion . 40

7 Conclusion . 42
7.1 Future work . 42

References . 44

v

List of Tables

5.1 The summary of the employed dataset . 30
5.2 Obfuscapk transformation . 31
5.3 The applied obfuscation transformations. 32
5.4 Code similarity of added code clones . 32
5.5 Obfuscation resistance validation . 34
5.6 Code clone detection among all applications . 35
5.7 Code clone detection among all applications without Android support libraries 35
5.8 Comparison results with Nicad . 36
5.9 Code clone clusters in malware Android apps . 39

vi

List of Figures

2.1 Android architecture stack . 4

4.1 The flow of the proposed approach . 15
4.2 A sample method and one possible execution trace . 25
4.3 Sample slice and fragments . 28

5.1 Code clone samples added for code clone detection validation 38

vii

List of Abbreviations

AOSP Android Open Source Project

API Application Programming Interface

ART Android-Runtime

AST Abstract Syntax Tree

CFG Control Flow Graph

CFO Control Flow Obfuscation

DalvikVM Dalvik Virtual Machine

DEX Dalvik Executable

HAL Hardware Abstraction Level

I/O Input and Output

PDG Program Dependence Graph

viii

1 Introduction

Software applications are no longer built from scratch, rather, they are assembled from open source

and third-party code components. A recent survey of 2,292 IT professionals found that 80 - 90% of a single

application now consists of third-party code components [58]. Moreover, to expedite the software development

process, programmers tend to copy pieces of source code directly from another source code with no or few

modifications. In the literature this is often called code cloning or code reuse [72].

Unfortunately, this phenomenon can lead to an increase in software maintenance costs as it can cause

software bugs to spread as defective codes are copied, and introduce new bugs to when a developer does not

modify different samples of reused code. Furthermore, this can lead to software vulnerabilities if a vulnerable

piece of code is cloned [72]. Due to these facts code clone detection has been widely studied as a means of

detection of bugs and vulnerabilities in software products [37, 36, 28].

While code reuse is typically associated with legitimate software development, malware writers are no

exception. The increasingly professional and profit-driven underground cybercrime communities provide

ample opportunities for adversaries to collaborate. Like traditional software development, adversaries work

in teams, reuse existing code and components, use third-party libraries and tools that effectively mask

malicious program behaviour from analysis, and expedite malware development. Indeed, every new malware

instance can be created at a faster pace by modifying the existing malware samples with a few tweaks or

by reusing existing code components. Establishing the presence of third-party code at the level of malware

code may facilitate efficient triage of unknown samples, accurate detection and understanding of malicious

functionality.

This has motivated many software security researchers to employ code clone and code similarity detection

approaches for malware detection in binary programs [29, 35]. Android applications are no exception and

many researchers have studied detection of malicious apps through code clone detection approaches [14, 5,

53]. A number of existing studies focusing on Android platform investigated a simple form of malicious

code reuse known as piggybacking, a popular vehicle for malware propagation through Android markets by

hijacking benign apps and grafting malicious functionality in them [19, 73, 71, 38]. For example, official

GooglePlay market was reported to host 2% of piggybacked malware, while on several unofficial markets

this number was reaching 50% [32]. Yet, researchers have noted that piggybacking phenomenon is largely

more simplistic than it was commonly believed, with malicious functionality often added as a standalone

code, appearing in resource files where it is obvious for detection [46]. However, more sophisticated code

reuse that integrates reusable components intertwining both legitimate and malicious code instances remains

1

challenging for detection.

From a software security point of view, effective code clone detection remains challenging as the instances

of reused are broken into non-contiguous pieces (i.e., code with statements that do not occur as contiguous text

in the program), reordered, and intertwined with other reused code or original code written by a developer

through code compilation, optimization, and obfuscation. Code obfuscation has became a commonly used

approach for both legitimate and malicious software to disguise their appearance, intent, and to protect

themselves from reverse engineering and automatic program analysis techniques. Although code obfuscation

is mostly used as a form of software protection in benign applications, it also plays a key role in creating

transient and evasive malware invisible for detection. Effective code clone detection in presence of code

obfuscation has already been studied in case of x86 binaries [26, 35, 24], however, it has remained unexplored

for Android applications. To the best of our knowledge, this is the first work that focuses on obfuscation-

resistant code clone detection for Android applications.

In this work, we present a effective and obfuscation-resistant byte-code level code clone detection for

Android applications which is capable of finding cloned methods as well as finer-grained code clones. Our

approach analyzes Smali code, a human readable format of Dalvik byte-code. The majority of previous studies

leverage static analysis and propose leveraging the similarity of code statements or structural features of a

program such as control-flow graph for detection of code clones. Yet, the wide use of obfuscation techniques

renders most of these existing approaches ineffective.

To mitigate the effect of code obfuscation, we propose a hybrid approach which partially executes Smali

code in order to achieve obfuscation resistance without the need to fully execute an Android application. We

employ Smali code simulation on the methods in an Android apps that can act as an entry point to it. Thus,

our approach analyzes only functional code that would normally be invoked during an actual execution of

an app to both increase accuracy and performance. Our approach simulates the execution of Smali code to

extract possible app execution traces. To analyze the traces, we employ multiple execution trace simplification

strategies and program backward slicing to extract semantically significant parts of an trace execution.

This approach allows us to slice code into smaller code segments which are then analyzed for potential

similarity between apps. This approach allows us to recognize semantically identical and syntactically similar

code clones often referred to as Type-3 in addition to some cases of syntactically different but semantically

equivalent code clones, often referred to as Type-4 code clones even in presence of code obfuscation.

We validate our approach first by investigating the effectiveness of our approach on different types of code

clones on 20 injected code clone examples and next measuring the obfuscation resistance of our approach on

1085 open-source Android applications, by comparing the results of our approach in presence and absence of

obfuscation. We achieve 84%, 81%, 87%, 78% similarity on four obfuscated sets of Android apps compared

to their non-obfuscated counterpart. We further perform code clone clusters detection among 1603 non-

obfuscated applications to assess the ability of our approach in finding code clones. We detected 44,776

group of methods that were identical, or their similarity was greater than 80%.

2

We also performed a comparative analysis with another method-level clone detection tool, called Nicad [18].

When comparing our results with Nicad we observed that on code clones with high degree of similarity both

approaches agreed on the detected clones. Moreover, our approach was also able to find many more code

clones not detected by Nicad.

Finally, we show a practical application of our approach for detecting variants of Android banking malware.

Our approach can find code clones with high similarity among applications’ methods corresponding to the

same malware family. Similar code clones derived for each banking malware family can be further used for

detecting other samples of that family.

The following is a summary of our contributions:

• We introduce an approach for detection of non-contiguous code clones that can be employed for both at

method level and code slice level in obfuscated Android apps through analysis of their execution traces.

To the best of our knowledge, this is the first work that offers detection of code clones in obfuscated

Android apps.

• As an alternative to purely static or dynamic analysis approaches for analyzing Smali code, we have

developed an Smali execution simulator to extract possible execution traces of an Android app. This

can help other Android security researchers to perform a hybrid analysis on Android applications.

• We have created multiple sets of obfuscated Android applications that can be further used by the

security community in an effort to facilitate research in this area.

3

2 Background

This chapter provides the needed background on the Android OS architecture, Android applications, code

obfuscation and code clone detection.

2.1 Android Architecture

Android is a mobile operating system maintained by Google under the Android Open Source Project (AOSP).

Androids architecture consists of the Linux kernel, the hardware abstraction level (HAL), the native libraries,

the Android-Runtime environment, the Android application framework layer, and the applications [3]. The

Android operating system architecture is shown in Figure 2.1.

Linux Kernel

Native C/C++ libraries

Hardware Abstraction Layer

Android Runtime

Applications

Power ManagmentDrivers

Audio Bluetooth Camera Sensors ...

Webkit LibC

OpenMax AL OpenGL ES

Media
Frameworks ...

Android Runtime (ART)

Core Libraries

Android Framework

Content Providers

View System

Managers

Activity Location Package Notification

Resources Telephony Window

Figure 2.1: Android architecture stack

In Android, applications are executed by the Android-Runtime each in their own sandbox. Before Android

4

version 5.0, Android executed its applications using the Dalvik Virtual Machine (DalvikVM). DalvikVM is

a register-based virtual machine specifically optimized for running on devices with limited computational

resources. DalvikVM executes Dalvik byte-code, a simple and Java compatible byte-code proprietary to

Google which allows Android application to take advantage of available common Java libraries. From Android

5.0, DalvikVM was replaced by Android-Runtime (ART). ART similar to its predecessor, can execute Dalvik

byte-code, however, it introduces ”Ahead-of-Time” compilation which generates a compiled executable from

Dalvik byte-code. DalvikVM and ART both provide APIs for applications to execute native machine code and

access native libraries’ functionality. Android applications can take advantage of this feature to interact with

Android native libraries, work with hardware such as Camera and Bluetooth or achieve higher performance

for some critical tasks [1].

Furthermore, in Android an application is not a stand alone executable and works on top of the Android

application framework. Android application framework defines four key components that applications use as

their building blocks. These components consist of Activities, Services, BroadcastReceivers, and Content-

Providers. Activities represent a user-interface that is shown in the device’s screen with which a user can

interact with. Activities can be launched by the Android system when an application is started, or they

can be started by other components. Services are responsible for executing background tasks that do not

need a user-interface. Services have to be started by other components such as activities. BroadcastRe-

ceivers are also important components that allow an Android application to be informed when a system-wide

event occurs by listening to messages that are broadcasted for all apps. Many different events can create a

broadcast such as when the screen has turned off or the battery is low, However, applications themselves can

also initiate a broadcast. For example when an application wishes to notify other apps that it has finished

downloading some data and it is now available for other apps to use. ContentProviders provide an interface

for applications to share data between each other. Through content providers can query or modify data if

the content provider allows it [2].

2.2 Android Applications

Android applications are packaged and distributed in the format of a .apk file. Each .apk file, when decom-

pressed, includes one or multiple .dex files that contain the logic of an application in Dalvik byte-code. Dalvik

byte-code is a high-level and object-oriented instruction set and thus, can be easily understood, modified,

and even in some cases, decompiled back to the original Java code. Due to the security implications, code

optimization and obfuscation are commonly adopted to make the analysis of Android programs more chal-

lenging. Dalvik byte-code can be converted to a human-readable format called Smali. Smali can be thought

of as the equivalent of Assembly code for Dalvik byte-code.

5

2.3 Code Obfuscation

Code obfuscation is a technique to hinder the process of analyzing a program by making it more difficult and

resource consuming to understand by a reverse engineer and program analysis tools. Obfuscation transfor-

mations are similar to compiler optimizations since they both perform semantic preserving transformations

on a given code. Code obfuscation is commonly used as a method of software protection, however, it can also

be used for hiding malicious code. Code obfuscation techniques can vary in their complexity, effectiveness,

resistance against deobfuscation, and computational overhead [17].

Code Obfuscation traditionally has been widely used in both benign and malicious x86 binaries to hinder

the process of reverse engineering. With the increasing popularity of mobile devices and the Android operating

system in particular, obfuscation has become a common technique among Android applications. In Android

applications, obfuscation can be both employed on the Dalvik byte-code of the application and any of the

native codes used by an application. One of the reasons for the increasing usage of obfuscation in Android

applications is the simplicity and high-level nature of Dalvik byte-code, which makes reverse engineering and

repackaging of non-obfuscated Android applications very easy. Even for obfuscated Android applications,

they can be relatively easily be analyzed and even deobfuscated by a reverse engineer provided given enough

time.

2.4 Code Clone Detection

In software development, code clone detection is used to reduce the maintenance of code and facilitate

detection of bugs [59]. From a security perspective, code clone detection is beneficial in vulnerability and

malware detection [72]. In the literature, code clones have been categorized into four types [59]

• Type-1: Identical code pieces that are textually equivalent except for white spaces, comments, or layout

characteristics.

• Type-2: Syntactically identical code pieces that can also differ in identifier names or literal values in

addition to type-1 differences.

• Type-3: Syntactically similar code pieces with minor differences at statement level. The code pieces

may differ by addition, removal, or modification of some statements in addition to type-1 and type-2

differences.

• Type-4: Syntactically different but semantically identical code clones.

In this work, we focus mainly on type-3 and also type-4 code clones that have been created by the

application of code obfuscation to any type-3 code clones, a very challenging type of code clone detection.

We demonstrate that our approach is capable of detecting any type-1, 2, and 3 code clones present in source

code that through compilation and obfuscation often (but not always) transform to type-4 clones.

6

3 Literature Review

This chapter provides a succinct summary of previous researches done on the areas of code obfuscation,

code clone detection, and application of code clone detection in software security.

3.1 Code Obfuscation

Code obfuscation can be defined as a series of code transformations that alters a code to another seman-

tically equivalent code that is significantly more complex to analyze. Code obfuscation is widely used as a

method of protecting a code base that needs to be shipped [17]. Code obfuscation can be used to hinder the

analysis of code for both protecting intellectual properties of developers from reverse engineers and stopping

malicious code from being detected by other security software such as anti-viruses. Code obfuscation has

been tackled from many different perspectives in the literature. In this section, we discuss research done on

code obfuscation regarding Java and Android applications.

Collberg et al. [17] presented one of the first and most significant works in this field. They studied

different obfuscation transformations applicable for Java byte-code, classified them, and discussed the possible

approaches that can be used for deobfuscation. They categorized code obfuscation into four groups: layout

obfuscations, control obfuscation, data obfuscation, and preventive obfuscation. Layout obfuscations are

transformations that remove the information left from source code in the compiled byte-code or binary

code. Examples of such transformations are removing debug information or renaming identifiers. These

transformations do not modify the content of a code and thus do not pose a great challenge for program

analysis, however, they are one-way transformations since after removing original identifier names or debug

information, the original code can not be recovered. Control obfuscations attempt to alter the control flow

of a program. Control flow obfuscations encompass a variety of techniques such as reordering code, method

inlining and outlining, insertions of dead or irrelevant code, etc. One key component of many control flow

obfuscations is the use of opaque predicates, expressions whose value is known to the obfuscator but are

difficult for the deobfuscator to infer their value. Data transformations are transformations that change

the storage, encoding, aggregation, and ordering of the data. One example of data obfuscation is string

encryption. Lastly, preventive transformations are defined as transformations that do not obscure a program

but rather, they cause common tools and deobfuscators to not work properly. An example of these obfuscation

techniques is modifying Java byte-code so that it cannot be properly decompiled to source code.

Many other studies also have been done regarding code obfuscation for Java and Android programs as

7

a means of software protection. Part of the previous studies have focused on studying current obfuscation

techniques or even proposing new ones. Memon et al. [50] proposed two obfuscation techniques for Java

programs which include un-letting the completion of statements and removing variable and method names.

Kumar et al. [45] investigated Java control-flow obfuscations(CFO) which alter the control flow path of a

program without changing its semantics. They concluded that there is a gap between theory and practice

regarding CFO.

Regarding obfuscation for Android applications, Kovacheva [44] is one of the first works that studied

obfuscation in Android applications. They showed that many of the applications available at official Android

markets could be easily reversed. So they proposed obfuscator implementations which were able to defeat

static analysis tools available to them. Protsenko et al. [54] proposed PANDORA, an Android byte-code ob-

fuscator, which contained 7 data obfuscation techniques for obfuscating object-oriented programs. Freiling et

al. [31] empirically evaluated the 7 different obfuscation techniques from PANDORA on 240 Android applica-

tions and evaluated using 8 software complexity metrics. Balachandran et al. [10] proposed 3 new control-flow

obfuscation techniques for Android applications that were harder to be resolved by static analysis compared

to previously proposed control-flow transformations. Their proposed obfuscation techniques were based on

1) packed-switch constructs, 2) try-catch constructs, and 3) combination of last two techniques. Recently,

Aonzo et al. [7] proposed Obfuscapk, an obfuscation tool for Android which supports a variety of obfuscation

techniques such as layout obfuscations, control-flow obfuscations, and string-encryption obfuscation. Their

approach directly works at Smali code level and first disassembles an .apk file, applies transformations on its

Smali code, and finally repackages the app.

Many other research have also be done on investigating the usage and effects of obfuscation among

real world applications. Linares-Vásquez et al. [48] analyzed 24,379 free Android applications regarding

the impact of presence of third-party libraries and code obfuscation on measuring code reuse in Android

applications. Maiorca et al. [49] studied the effect obfuscation on the performance of anti-malware solutions.

They concluded that first, manipulating strings in a benign Android applications, can cause anti-malware

solutions to mark it as malware and second, anti-malware solutions even though, preform well under simple

obfuscation techniques, they do no perform well under heavily obfuscated applications. Wermke et al. [63]

performed a large scale investigation in the usage of obfuscation in 1.7 million applications from Google Play

store. They found 24.92% of the applications were obfuscation by the developer. They also conducted a survey

from 308 developers regarding use of obfuscation in their projects. They concluded that while developers

are aware the their applications are at risk of plagiarism, the do not fear this issue much and even some of

them had difficulty in applying obfuscation to their apps. Dong et al. [25] performed an study on usage of

three different obfuscation techniques, identifier renaming, string encryption and use of Java reflection, on

a dataset collected from Google Play and other third party markets. They showed that identifier renaming

is widely used in apps found in Chinese markets, while more sophisticated obfuscation techniques such as

string encryption and use of reflection are commonly used in Android malware.

8

Another group of studies have focused on detection of existence of obfuscation and also the obfuscation

tool employed to perform the obfuscation on Android apps. Wang et al. [61] was the first to tackle the

problem of obfuscation identification. They proposed a machine learning approach to detect what obfuscator

has been used by extracting the obfuscation characteristics of a given .dex file. Bacci et al. [9] proposed

a machine learning approach that aims to identify the obfuscation techniques (if any) that have been used

in obfuscating an Android application. Mirzaei et al. [51] proposed an approach for detecting three popu-

lar obfuscation techniques in Android application, identifier renaming, string encryption, and control flow

obfuscation. They used online learning techniques to make their approach more suitable for resource lim-

ited systems. Mohammadinadooshan et al. [52], proposed a generative classification approach for string

encryption based on Naive Bayes which does not rely on positive samples for training which allowed them to

achieve higher generalizability to different obfuscation schemes. For quantifying the quality of obfuscation

in Android apps, Cho et al. [16] proposed an machine-learning based approach to evaluate the level of API

hiding among Android apps.

Looking at adversarial approaches, some other researches have focused on the analysis of obfuscated An-

droid applications and even deobfuscating them, however most of the previous research focused on one or a

subset of obfuscation techniques (e.g. identifier renaming, string encryption and control flow). For deobfus-

cating identifier renaming, Bichsel et al. [12] proposed an approach based on a probabilistic model trained on

thousands of non-obfuscated applications. Baumann et al. [11] proposed comparing obfuscated code of given

application to dataset of non-obfuscated applications and replacing the modified names with their original

names. In case of string encryption deobfuscation. Yoo et al. [68] proposed to dynamically execute Android

application on a modified Dalvik VM which captures the executed Dalvik instructions and their runtime

metadata which is then used to find the original value of obfuscated strings. De Vos et al.[22] proposed

ASTANA, that reverts obfuscated string literals to their original value by executing the string deobfuscation

logic inserted by the obfuscation tool. Regarding control flow deobfuscation, You et al. [69] investigated

the effectiveness of ReDex optimizer, a Dalvik byte-code optimizer written by Facebook, for deobfuscating

control-flow obfuscations applied by Obfuscapk. These studies on analyzing obfuscated Android applica-

tions and deobfuscation focus on particular obfuscations and do not generalize well for different obfuscation

techniques.

3.2 Code Clone Detection

Code clone detection is a well-studied problem that has been examined both at the source code level, usually

for program comprehension or plagiarism detection, and at binary code level for vulnerability analysis and

malware detection [35].

Most of the works on source code clone detection employ text-based, token-based or tree-based approaches

to find code clones. Roy et al. [18] proposed a lightweight text-based tool called Nicad. They start by parsing

9

given source files, then breaking them into functions or blocks of code, normalizing them, and finally using

the longest common sequence (LCS) algorithm to detect code clones. Kamiya et al. [41] proposed CCFinder

which employs lexical token sequences to detect code clones for codes written in C/C++, Java, and COBOL.

Sajnani et al. [56] proposed SourcererCC, a scalable token-based code clone detection that is effective in

finding code clone from large inter-project repositories. Duric et al. [60] proposed a token-based approach for

finding similar source codes that have resulted from copied and then modified code. they start by tokenizing

an input code, then removing some of the tokenized codes which have not been caused by copying code,

and finally, using RKR-GST or Winnoing algorithm for similarity comparison. Yang et al. [66] proposed

a token-based approach for finding code clones using token-sequences which also considered Java features

such as lambda expressions, anonymous classes, and generics in its analysis. DECKARD [39] characterizes

code using Abstract Syntax Tree (AST) subtrees with a vector of fixed-length which are then clustered using

Locality Sensitive Hashing (LSH).

Another group of studies have focused on using graph-based approaches or slicing based approaches to

improve code clone detection for non-contiguous code clones. The study by Komondoor et al. [43] was one

of the first attempts to represent C code with PDGs and employing program slicing to find isomorphic

sub-graphs in order to detect duplicated code. Higo et al. [34] proposed Scorpio, a PDG based code clone

detection tool to detect non-contiguous code clones. They introduce multiple heuristics in their approach to

reduce the time needed for code clone detection and improve detection of continues code clones.

Other studied have also investigated the use of learning-based approaches for code clone detection. She-

neamer et al [57] employed various types of classification models for detecting cloned method pairs using

features extracted from AST and PDG of methods. White et al. [64] propose applying deep learning on both

the lexical and syntactical information extracted from code for detecting code clone fragments. Li et al. [47]

proposed CCLearner, a method-level token-based code clone detection tool that leverages deep learning to

improve code clone detection effectiveness compared to previous approaches. Saini et al. [55] proposed using

deep learning on various software metrics extracted from source files for detecting clones that are usually

missed by other approaches. They also leveraged size of methods and its set of method invocations and field

accesses as heuristics to improve scalability and performance.

Some works have also been done on semantic code clone detection. Elva et al. [27] proposed JSCTracker

which considers two methods semantically similar if they would show similar Input/Output behaviour. They

employed auto generated test cases to execute the potentially similar methods to run those methods on JVM

and then capture the behaviour of method. Recently, Alomari et al. [6] proposed srcClone, a tool that used

program slicing to find semantic code clone which is more scalable compared to previous works that use code

slicing.

Regarding code clone detection in Android, to best of our knowledge, there has been only one study done

by Akram et al. [4]. They proposed DroidCC, a code clone detection tool for Android apps which first uses

dex2jar tool to convert an applications .dex file to a Jar file which is then decompiled to Java source code.

10

Next, the Java code is normalized by replacing names and literal values with a default value and Finally, the

hash value of sliding windows on the normalized code is used to detect code clones. This approach fails to

detect code clones for Android applications that cannot be decompiled to source code. Moreover, the effects

of obfuscation may be present in the source code which is problematic for accurate code clone detection.

Given the fact that source code program is not always available for analysis, several researchers have

ventured to detect code clone in binary code or byte-code at function or block level. Keivanloo et al. [42]

proposed SeByte, a token-based clone detection tool for Java byte-code. They use a heuristic to detect

the similarity between byte-code contents and rank the extracted code clones. Farhadi et al. [29] proposed

BinClone, a binary code clone detection tool that detects cloned binary code pieces by first normalizing the

instructions and then using a sliding-window to extract pieces of code called regions which are then stored

in a database for further code clone detection. They also employed their code clone detection approach

to investigate code clone in binary malware. Farhadi et al. [30] then proposed ScalClone, an extension on

BinClone which improved scalability and recall rate in searching code clones. Eschweiler et al. [28] proposed

extracting numerical (e.g., number of instructions, size of local variables) and structural (e.g., CFG of the

function and basic blocks) features for code clone detection. Ding et al. [23] represented assembly codes

as control flow graph and find code clones by finding similar sub-graphs between a given function and a

repository. Ding et al. [24] then proposed employing a modified version of Word2Vec algorithm which is

commonly used in NLP domain to improve the static representation of assembly functions. Yu et al. [70]

proposed a Java byte-code code clone detection tool. They used sequences of instructions and method calls

as features to find code clones across methods and code blocks. These approaches perform poorly under

obfuscation since the extracted features can change drastically in obfuscated code. Yang et al. [67] proposed

Asteria, a deep learning-based approach that learns semantic representation of binary functions by first

decompiling the binary to source code and then extracting the source codes AST find semantically similar

functions.

Another group of researchers have focused on finding semantically similar code in binaries which should

not be affected by obfuscation. Hu et al. [35] proposed converting binaries to an intermediate representation

and emulating selected codes with random values to extract semantic signatures. One major drawback of

this approach is its limited code coverage since it relies on random values. To solve this problem, Egele

et al. [26], proposed blanket execution, a dynamic analysis approach that captures side effects of binary

functions executed with random values to find functionally similar functions. To improve code coverage,

they also proposed repeated execution of binary functions from the first un-executed instruction until every

instruction has been executed at least once. Even though this work solves the problem of code coverage,

it introduces another flaw by capturing features from invalid executions which heavily distort the results.

This type of dynamic analysis is a challenge in Android because Android applications are developed in an

event-oriented manner, meaning the Android-Runtime will invoke methods in response to events such as

when an Android device is disconnected from the internet. Moreover, Android applications all rely on user

11

interaction with the GUI which is a major obstacle for automated dynamic analysis.

3.3 Code clone detection application in security

There have been much work done on studying the application of code clone detection in Android applications

for security purposes. Many of these work employ code clone detection for app clone detection based on the

assumption that similarity between applications is a sign of piggybakced applications and thus can be used

for detecting malware. Some other works have also studied use of code clone detection approaches directly

applied on malware samples and marking other similar application as malware.

Crussell et al. [20] proposed DNAdroid, a tool for detecting Android application clones by assigning a

similarity degree to two applications. To achieve this first they extract data dependency graph of all methods,

excluding commonly used libraries based on their hashes and removing graphs less than 10 nodes, and using

subgraph isomorphism to compare the graphs of methods with each other to measure method similarity, and

finally calculating the similarity of applications base on the ratio of number similar methods to all methods

of an application. Next year, Crussell et al. [21] proposed AnDarwin, which also uses dependency graphs

which are then broken into multiple sub set of nodes which they refer to as semantic blocks. These semantic

blocks are then converted into a vector which are then compared to each other using LSH algorithm in order

to find and group similar vectors. Using their semantic vectors they also exclude common library code and

lastly they use Jaccard Index to find similar applications. Chen et al. [15] proposed using 3D control flow

graphs on Android applications byte-code for finding similar methods. Next the ration of similar methods

to the number methods in an apps is used to measure app similarity. They also tried excluding applications

show similarity because they have been developed by the same developer or share much library code based

on the key to sign an application and the size of applications respectively. Gonzalez et al. [33] proposed

DroidKin for Android application similarity detection based on first extracting features from the application

code and also the applications meta information. For extracting features from code they employed opcode

n-gram on the applications byte-code. Then they applied filtering to reduce the number of comparisons

needed app clone detection. Lastly, they calculate the similarity of two applications based the intersection of

their profiles. Chen et al. [14] investigated use of off the shelf code clone detection tools, namely Nicad on

the Java code generated by decompiling Android .dex files, for malware detection. They analyzed more than

1000 malware applications from 19 malware families and demonstrated that they successfully could detect

95% of previously known malware families. Alam et al. proposed DroidClone [5], a code clone detection

approach for malware detection in Android applications. Their work is one of the few works that analyzed

both the Android application byte-code and also native code. They employed Control Flow Graphs (CFG)

for creating a signatures at method and block level which are subsequently used for code clone detection.

They evaluted their approach using 166 malware sample which were divided to a train and test set with the

size of 136 and 30 samples. Passeto et al. [53] proposed StrAndroid, a method level code similarity detection

12

tool for Android applications. In their approach they start by analyzing a set of Android applications by first

parsing the applications Smali methods, creating CFG for each method and extracting the CFG nodes known

as basic blocks. In their work they ignore methods that are smaller than a minimum size or do not invoke

any risky APIs. Next they perform backward slicing on interesting instructions of basic blocks to extract

all data-dependent instructions which are then referred to as strands. Then these strands are compared

for finding similar methods between apps. Finally they test their approach for malware classification on an

Android ransom malware dataset.

Code clone detection in Android applications has been widely explored for detection of piggybacked and

malware application, However, none of the proposed methods truly consider obfuscation as they only rely on

static features that are extracted from code and neglect the semantics of an application.

13

4 Methodology

In this chapter, we shall explain our proposed method for analyzing obfuscated Android applications for

finding code clones among them.

4.1 Overview

In this work, we take a path of code simulation to overcome the challenges of purely static or dynamic

approaches. Approaches that rely on static analysis do not perform well with obfuscated code due to un-

certainties of predicting the runtime code behaviour. Dynamic analysis techniques although less affected by

obfuscation, given that code obfuscation is semantic preserving, require generation of a sufficient number of

valid inputs to achieve high code coverage, the challenges that make the pure dynamic analysis not suit-

able for large code bases. This becomes more challenging for Android applications that rely heavily on user

interactions with GUI.

To combine the best of both static and dynamic approaches, we proposed a hybrid technique that relies

on simulating the execution of an app by partial execution of its Smali code to extract possible app execution

traces enhanced with the runtime metadata for each instruction during simulation. These execution traces

are then further analyzed to perform code clone detection. The benefits of analyzing the execution traces

generated from Smali code simulation is twofold:

• First, each execution trace corresponds to one execution path which means all the instructions in an

execution trace have been executed sequentially.

• Second, the added runtime metadata in each execution trace can help significantly in analyzing execu-

tion traces, particularly in case of obfuscated code.

Normally, extracting execution traces of a program is much challenging since it means a program needs to

be executed multiple times with all valid inputs. To overcome this challenge we developed our Smali simulator

which is a custom execution sandbox in the form of an Android application running in an emulated Android

device, which given any Smali method and the inputs needed for its execution, it tries to execute the Smali

code and capture its execution trace with its runtime metadata. This Smali simulator partially executes Smali

instructions, meaning some instructions are executed and some are not. The insight behind this idea is that

to execute instructions that are added by an obfuscator to achieve obfuscation resistance without needing

to execute all the code of an Android application. One key challenge when analyzing Android applications

14

especially if obfuscated is that they can include much code that is not used by the application. This happens

when applications include a library but only use a part of the library code or when an obfuscator injects

dead code into an application to hinder the analysis process. To solve this problem we proposed to extract

methods in an application that act as an entry point to it using an initial static analysis and then only

analyzing those entry point methods. Figure 4.1 summarizes the flow of the proposed approach that follows

four main steps:

1. Entry Point Extraction

2. Execution simulation

3. Execution trace analysis

4. Code clone detection

Application
entry point

method
extraction

Important
instruction
extraction

Execution
trace

simplification

Nested
execution

trace
extraction

Method
simulation

Mirroring
class

generation and
loading

Smali Execution Simulation

Application
execution

traces

Slice and
fragment
extraction

Method
slices and
fragments

Method/Slice level
code clone detection

Smali
Code

Execution Trace Analysis

Code Clone Detection

Entry Point Extraction

Figure 4.1: The flow of the proposed approach

4.2 Entry Point Extraction

Android applications unlike traditional Java programs do not contain a main method and are compromised

of multiple entry points. Hence, the first step of our analysis is to extract the entry point methods to an

Android application. Android applications consist of four key components as their building blocks. Each

15

component is an entry point through which the Android system or a user can interact with an application.

These components contains Activities, Services, BroadcastReceivers and ContentProviders.

For an Android application to perform some task, it needs to override specific methods from the defined

Android components. Each of the components can be thought of as an entry point through which the system

or a user can execute application logic. Furthermore, these components can define and register callback

methods that should be invoked in response to a particular event. These methods will be invoked by the

Android-Runtime during execution. We define app’s Entry Point Methods as a set of methods in an Android

application that need to be invoked by the Android framework during the execution of an app.

Separating the entry point methods from the rest of the application methods results in a selective, yet

efficient simulation and analysis of Android apps. This is necessary as Android applications often include

residual and unused classes and methods due to including all the code in an imported library even if only

part of it is used by the application or dead code added by an obfuscator.

Android entry point methods can be categorized into 3 broad groups:

1. Methods defined by the Android application components which are overridden by the developer and

subsequently invoked by the Android system. Examples of these methods include:

android.app.Activity->onCreate(Bundle)

android.app.Service->onBind(Intent)

2. Methods defined as event handlers which are registered into the system during execution of an appli-

cation. For example: android.view.View.OnClickListener->onClick(View)

android.view.View.OnFocusChangeListener->onFocusChange(View,boolean)

3. Methods declared as the click event handlers in layout files which are usually used by an Activity

of an application. In an Android application, a layout file is an XML file that defines the hierarchy

structure for a user interface and consists of View and ViewGroup objects. A View usually represents

elements that a user can see and interact with. For example, the element ”<Button>” can declare

an ”android:onClick” property which should be invoked when an onClick event happens. By Android

convention, the method corresponding to the value of ”android:onClick” property should be public,

return void, and define on parameter with the type of View. The class containing this method is the

class of Activity hosting the layout.

Figure 4.1 shows a sample code of an application that calculates the factorial of a given number. This

application consists of one Activity which contains one EditView, one TextView, and two Button objects.

The corresponding layout file of this Activity is also shown in figure 4.2. In this example, the onCreate

method is a type-1 entry point method which is invoked by the Android framework when this Activity has to

be shown on the device screen, the onClick method set as the onClickListener of calcFactorialBtn is a type-2

entry point method which is invoked by the Android framework when the corresponding button is clicked on

the screen, and the resetTextView” method is a type-3 entry point method which is invoked by the Android

16

framework when the reset button is clicked. This method is not explicitly set as the onClickListener for the

reset button, however, it is implicitly set as the on click event handler in the layout file corresponding to this

activity.

Figure 4.1: Sample factorial calculator app

public c lass MainActivity extends Act iv i ty {

@Override

protected void onCreate (Bundle savedIns tanceState) {

super . onCreate (savedIns tanceState) ;

setContentView (R. layout . a c t i v i t y ma in) ;

EditText editText = findViewById (R. id . ed itText) ;

TextView textView = findViewById (R. id . textView) ;

Button ca l cFac to r i a lBtn = findViewById (R. id . ca l cu la teButton) ;

c a l cFac to r i a lBtn . s e tOnCl i ckL i s t ene r (new OnCl ickListener () {

public void onCl ick (View view) {

try {

int num = Int ege r . pa r s e In t (editText . getText () . t oS t r i ng ()) ;

textView . setText (” Fac t o r i a l : ” + c a l c u l a t eF a c t o r i a l (num)) ;

} catch (I l l ega lArgumentExcept ion e){

textView . setText (” Inva l i d Number”) ;

}

}

}) ;

}

private stat ic long c a l c u l a t eF a c t o r i a l (int n){

i f (n < 0) throw new I l l ega lArgumentExcept ion () ;

i f (n==0 | | n==1) return 1 ;

return n∗ c a l c u l a t eF a c t o r i a l (n−1) ;

}

public void resetTextView (View view){

((TextView) findViewById (R. id . textView)) . setText (””) ;

}

}

Figure 4.2: Layout of sample factorial calculator app

<?xml ve r s i on=” 1 .0 ” encoding=”utf −8”?>

<LinearLayout xmlns : android=”http :// schemas . android . com/apk/ r e s / android ”

android : layout width=”match parent ”

android : l ayou t he i gh t=”match parent ”

android : o r i e n t a t i on=” v e r t i c a l ”>

<EditText

android : id=”@+id / editText ”

android : layout width=”match parent ”

android : l ayout he i gh t=”wrap content ”

android : ems=”10”

android : inputType=”numberDecimal”

android : h int=”Enter number”

android : layout marginTop=”20dp”/>

<TextView

android : id=”@+id / textView”

android : layout width=”match parent ”

android : l ayout he i gh t=”wrap content ”

android : t ext=””

android : textAlignment=” cente r ”

android : layout marginTop=”10dp”

/>

<Button

17

android : id=”@+id / ca l cu la teButton ”

android : layout width=”match parent ”

android : l ayout he i gh t=”wrap content ”

android : t ext=”Calcu late Fac t o r i a l ”

android : layout margin=”8dp”/>

<Button

android : id=”@+id / resetButton ”

android : layout width=”match parent ”

android : l ayout he i gh t=”wrap content ”

android : t ext=”Reset ”

android:onClick=”resetTextView”

android : layout margin=”8dp” />

</LinearLayout>

Extraction of most type-1 entry points is trivial as they correspond to component that should be declared

in the app’s ”AndroidManifest.xml” file. One exception case for type-1 entry point methods is the entry point

methods to BroadcastReceivers that are registered dynamically. Locating the entry points of dynamically

registered BroadcastReceivers and type-2 and type-3 entry points is more challenging since they represent

callbacks that are dynamically registered by the code of an application. Given that all of these callbacks

should inherit from specific classes or implement specific interfaces and their method names should remain

unchanged, it is possible to extract these entry points with some degree of error.

We design a heuristic to extract these entry points through static analysis of the app’s Smali code and

the corresponding layout files. The first step for extracting entry points of an Android application is to

define a list of methods in the Android-Runtime that will be invoked by the Android system if overridden

and registered to the system by an application. This list was compiled from previous research works that

have already extracted some of the entry points of an Android application. [8, 13, 62]. Next, we parse all

the Smali files of an application and check if they are overriding any of the methods specified in our list. If

the overridden method belongs to either a Service, Activity, or ContentProvider component, we also check

if the component is registered in the AndroidManifest.xml file. This is done to exclude entry point methods

declared in any of mentioned components that are not used by the application. For entry point methods

belonging to BroadcastReceivers and type-2 entry points, we take a more conservative approach by including

all methods that override methods specified in our list of Android API entry point methods.

The type-3 entry point methods, which are the last of entry points, are the hardest type of entry points

to extract. This is because extracting them needs a matching between layout declaring an onClick event

handler for a view element to the Activity component that uses the layout. This matching becomes more

challenging in cases that a Activity would contain sub-components called Fragments (a piece of an appli-

cation’s Activity) that would also register layouts at runtime. For extracting this group of entry points we

also take a conservative approach, which is if the method defined as a onClick handler in a layout file, has a

unique name in an entire application we also mark it as an entry point.

The algorithm of the entry point extraction is shown in Algorithm 1.

18

Algorithm 1 Extracting Android application entry points

1: function extractApplicationEntryPoints(appSmaliFiles,appManifestFile, appLayoutFiles)
2: result ← []
3: layoutOnclickListenerMethods ← extractOnClickHandlersInLayout(appLayoutFiles)
4: for all methodName in layoutOnclickListenerMethods do
5: methodSignature ← createOnClickListenerMethodSignature(methodName)
6: if methodSignatureUniqueInAllSmaliFiles(methodSignature, applicationSmaliFiles) then
7: smaliMethod ← getCorrespondingSmaliMethod(methodSignature, applicationSmaliFiles)
8: result.add(smaliMethod)

9: for all smaliClass in applicationSmaliFiles do
10: if smaliClass.isAbstract then
11: continue
12: if smaliClass.extends(”Landroid/app/Activity;”) or smaliClsss.extends(”Landroid/app/Service;”) or smali-

Class.extends(”Landroid/content/ContentProvider;”) then
13: if !smaliClassDeclaredInManifets(smaliClass, appManifestFile) then
14: continue
15: for all smaliMethod in smaliClass do
16: if isEntryPointMethod(smaliMethod) then
17: result.add(smaliMethod)

18: function isEntryPointMethod(smaliMethod)
19: if overridesComponentEntryPoint(smaliMethod) then
20: return True
21: else if overridesEventCallBackInterfaceMethods(smaliMethod) then
22: return True
23: return False
24: function extractOnClickHandlersInLayout(layoutFile)
25: result ← []
26: parsedLayout ← parseXml(layoutFile)
27: for all element in parsedLayout do
28: if ”android:onClick” in element.attributes then
29: result.add(element.attributes[”android:onClick”].value)

30: return result

4.3 Execution Simulation

Once all entry points of an app are obtained, they are simulated for extracting their possible execution traces.

In order to simulate the execution a Smali method, we partially execute Smali instructions in an Android

application running on an emulated Android device. Due to the dynamic features of the Android-Runtime

such as reflection and method handles, the logic of all Smali instructions can be emulated at application

layer which can be leveraged to create a custom execution environment for simulating Smali code. However,

fully emulating the logic of an application is not possible in practice since this requires all correct values and

objects needed for the execution of these instructions. Yet, to determine the similarity of two code pieces, it

is often unnecessary to know the all precise values in an real execution and it is sufficient to determine values

that are used by the applied obfuscation techniques in order for the obfuscation to be reversed.

This approach, in spirit, is similar to concolic execution since it combines real time execution of some

parts of a code without executing all of the code. For capturing values that correspond to execution of

instructions that we leave un-executed, we introduce a notion of ambiguous value that denotes any possible

value of a type in the execution.

To extract possible execution traces of a method, our simulator takes the method’s Smali code with its

arguments and simulates the execution with the maximum threshold of 10 executions per method. In our

current implemented prototype, we use ambiguous values for all the input values needed to execute a method.

While this reduces the accuracy of simulation in some cases, we show empirically that this is sufficient to

detect code clones. To realize our vision of a Smali simulator the twp main challenges have to be addressed:

19

1. creating and loading a class into the ART engine mirroring the types defined in the .smali files.

2. separating the methods that our simulator is allowed to execute from the methods we do not want to

be invoked during the execution.

In the following, we discuss how we have tackled these challenges in our work.

4.3.1 Mirroring class generation and loading

One major challenge we face when simulating Smali code, is modelling user-defined types that are given to the

simulator in the form of .smali files. This issue stem from the fact that Dalvik byte-code is a object oriented

instruction set and the runtime behaviour of instructions heavily relies on types. This means user-defined

classes need to be modelled in a way that can work intertwined with the existing Java or Android classes

which dictates that the types declared in the .smali files need to be loaded into the ART engine the same way

that would happen in the real execution of an application. To solve this issue, we have used the ByteBuddy

framework [65], a dynamic Java class generator. With the help of ByteBuddy framework, we can dynamically

create and inject a class to ART engine that mirrors the Smali class. The only difference would be that the

methods and constructors inside the dynamically created types by ByteBuddy invoke a special method in

our tool that simulates the execution of the method’s original Smali instructions. With this approach, the

Smali class is loaded to the ART engine which then can be treated as a normal Java class.

4.3.2 Selecting methods for partial execution

The logic of partial emulation is simple, i.e., any instruction that can return an invalid or unpredictable result

when executed in a simulator should not be executed. For example,

android.content.Context->getPackageName() API if executed in our custom execution environment,

would incorrectly return the name of the simulator and not the package name of an app under analysis.

Similarly, method invocations that perform I/O operations may produce unexpected results.

To realize partial execution, we divided methods defined in the core library classes bundled with the

Android-Runtime into safe and unsafe groups. A method that can be correctly executed in the context of

the simulator or does not perform any I/O functionality is considered to be safe. Similarly, a safe class is

a class that only includes only safe methods. Any other method defined in the Android-Runtime which is

not considered as safe is considered to be unsafe and when an unsafe method is invoked its return value is

modelled using an ambiguous value. Furthermore, all mutable objects passed to this unsafe method are also

replaced with ambiguous values. Other instruction that operates on an ambiguous value usually result in

a new ambiguous value to generated. Furthermore, If a conditional jump need to be taken based on some

condition on ambiguous value, a execution branch path is chosen at random.

To reduce the propagation of ambiguous values in our simulation, we also separate functionally pure

methods in the Android-Runtime core libraries which will refer to them as pure methods. Pure methods are

20

methods that do not change the state of passed arguments or the system, i.e., do not assign a new value to

any field or invoke another method which would change state of an Object. Pure methods only calculate and

return a new value based on the inputs such as toString() methods. Hence, by detecting pure methods, the

unnecessary propagation of ambiguous value on method arguments is stopped.

To separate safe and unsafe classes and methods from the core library classes bundled with the Android-

Runtime, we first extract the Android-Runtime core library files from an Android device and then converting

them to Smali format. Then we create an initial set of safe classes manually and then we complement it

with the new safe classes and safe methods by analyzing core library classes iteratively. The logic of this

algorithm is simple, any method that only uses safe methods is safe and others are not safe, however this gets

complicated by considering inheritance and polymorphism between types. To account for polymorphism and

overridden methods, we divide safe methods into two sub-groups: 1) static safe methods, and 2) instance

safe methods. The definition of static safe methods and instance safe methods are as follow:

1. Static safe method is a method where all its arguments are a either from a static safe class or a instance

safe class. Furthermore, all the invoked methods inside this method body are safe. Consequently, a

class is considered a static safe class if all of its static methods are safe. In this definition we assume

all classes have a safe ”<clinit>” function.

2. Instance safe method is a method which all of its arguments including the reference object are an

instance safe class and all the method invocations inside the its body are safe. In this definition we

also include constructors as a method. Consequently, a class is considered instance safe if 1) all of the

methods it defines are safe, 2) its super class is safe and 3)all of its child types are also safe.

To create the list of safe methods and classes, we start by first finding static safe methods and classes

and then we will use its results to extract instance safe methods and classes. For extracting instance safe

methods and classes, one challenge is that the second and third requirement of safe classes are dependent

on each other meaning a super class can be marked as safe only when its child classes are marked safe and

the child classes are marked as safe when their super class is marked as safe. To solve this we break the

logic of finding instance safe classes in two to parts, first we find classes that only use safe methods and also

inherit from another safe class, and then analyze them one more time to separate classes that also meet the

third requirement which is having all safe subclasses. Algorithm 2 depicts the process of extracting static

safe methods and static safe methods and Algorithm 3 depicts the how instance safe methods and instance

safe classes are extracted.

For extracting pure methods, similarly to the safe methods we start by manually creating a set of pure

methods. Then, we proceed to find other pure methods by performing a static analysis on the extracted

Smali code of Android framework core library classes. We define any method pure if it does not change any

field value, does not write new values to an array, and does not invoke other non-pure methods. Algorithm 4

presents a flow for extracting pure methods.

21

Algorithm 2 Extracting static safe classes and methods

1: staicSafeClasses ← getInitialSafeTypesList()
2: staticSafeMethods ← []
3: instanceSafeClasses ← getInitialSafeTypesList()
4: instanceSafeMethods ← []
5:
6: function extractStaticSafeClassesAndMethods
7: smaliTypes ← parseAllJavaAndAndroidAPIsSmaliFiles()
8: wasUpdated ← updateStaticSafeClassesAndMethods(smaliTypes)
9: while wasUpdated do
10: wasUpdated ← updateStaticSafeClassesAndMethods(smaliTypes)

11:
12: function updateStaticSafeClassesAndMethods(smaliTypes)
13: wasUpdated ← False
14: for all smaliType in smaliTypes do
15: if smaliType in staicSafeClasses then
16: continue
17: for all smaliMethod in smaliType.allStaticMethods do
18: if smaliMethod in staticSafeMethods then
19: continue
20: if isSaticSmaliMethodSafe(smaliMethod) then
21: staticSafeMethods.add(smaliMethod)
22: wasUpdated ← True

23: if smaliType.allStaticMethods in staticSafeMethods then
24: staicSafeClasses.add(smaliType)

25:
26: function isStaticMethodSafe(smaliMethod)
27: if smaliMethod.definingClass in staticSafeClasses or smaliMethod in staticSafeMethods then
28: return True
29: if smaliMethod.isNative then
30: return False
31: for all argType in smaliMethod.argTypes do
32: if !argTypeIsStaticSafe(argType) then
33: return False
34: for all smaliInstruction in smaliMethod.instructions do
35: if smaliInstruction instanceOf invokationInstruction then
36: if smaliInstruction instanceOf invokeStaticInstruction then
37: if !isStaticMethodSafe(smaliInstruction.targetMethod) then
38: return False
39: else
40: if smaliInstruction.targetMethod.isNative then
41: return False
42: if !smaliInstruction.targetMethod.isInheritedFromObjectType then
43: return False
44: return True
45:
46: function argTypeIsStaticSafe(argType)
47: if argType.isPrimitive then
48: return True
49: if argType.isArray then
50: toCheckType ← argType.baseArrayType
51: else
52: toCheckType ← argType

53: if toCheckType in staticSafeClasses or toCheckType in instanceSafeClasses then
54: return True
55: return False

22

Algorithm 3 Extracting instance safe classes and methods

1: staicSafeClasses ← getInitialSafeTypesList()
2: staticSafeMethods ← []
3: instanceSafeClasses ← getInitialSafeTypesList()
4: instanceSafeMethods ← []
5: extractStaticSafeClassesAndMethods()
6: function extractInstanceSafeClassesAndMethods
7: smaliTypes ← parseAllJavaAndAndroidAPIsSmaliFiles()
8: semiSafeClasses ← instanceSafeClasses.clone()
9: semiSafeMethods ← []
10: wasUpdated ← updateInstanceSemiSafeClassesAndMethods(smaliTypes, semiSafeClasses, semiSafeMethods)
11: while wasUpdated do
12: wasUpdated ← updateInstanceSemiSafeClassesAndMethods(smaliTypes, semiSafeClasses, semiSafeMethods)

13: instanceSafeClasses = createRawSafeClassesFromSemiSafeClasses()
14: instanceSafeMethods = instanceSemiSafeMethods
15: wasUpdated ← removeSafeAndPartialSafeClassesUsingNewUnsafeMethods()
16: while wasUpdated do
17: wasUpdated ← removeSafeAndPartialSafeClassesUsingNewUnsafeMethods()

18: function updateInstanceSemiSafeClassesAndMethods(smaliTypes, semiSafeClasses, semiSafeMethods)
19: wasUpdated ← False
20: for all smaliType in smaliTypes do
21: for all smaliConstructor in allConstructors do
22: if !isInstanceMethodOrConstructorSafe(smaliMethod, semiSafeClasses, semiSafeMethods) then
23: continue
24: else
25: semiSafeMethods.add(smaliConstructor)
26: wasUpdated ← True

27: for all SmaliMethod in allMethods do
28: if isInstanceMethodOrConstructorSafe(smaliMethod, semiSafeClasses, semiSafeMethods) then
29: semiSafeMethods.add(smaliMethod)
30: wasUpdated ← True

31: return wasUpdated

32: function isInstanceMethodOrConstructorSafe(smaliMethod, inputSafeClasses, inputSafeMethods)
33: if smaliMethod.isNative then
34: return False
35: for all argument in smaliMethod.arguments do
36: if !instanceArgTypeSafe(argument.type, inputSafeClasses) then
37: return false
38: for all instruction in smaliMethod.instructions do
39: if instruction instance invokeStaticInstruction then
40: targetMethod ← invokeStaticInstruction.targetMethod
41: if !(targetMethod.definingClass in staticSafeClasses) and !(targetMethod in staticSafeMethods) then
42: return False
43: else if instruction instance invokeInstruction then
44: targetMethod ← invokeInstruction.targetMethod
45: if !(targetMethod.definingClass in inputSafeClasses) and !(targetMethod in inputSafeMethods) then
46: return False
47: return True
48: function createRawSafeClassesFromSemiSafeClasses
49: rawSafeTypes ← []
50: for all semiSafeType in semiSafeTypes do
51: if semiSafeType.allChildTypes in semiSafeTypes then
52: rawSafeTypes.add(semiSafeType)

53: returnSafeTypes

54: function removeSafeAndPartialSafeClassesUsingNewUnsafeMethods
55: for all smaliClass in instanceSafeClasses do
56: for all smaliMethod in smaliClass.methods do
57: if !isInstanceMethodOrConstructorSafe(smaliMethod, instanceSafeClasses, instanceSafeMethods) then
58: instanceSafeClasses.remove(smaliClass)
59: else
60: instanceSafeMethods.add(smaliMethod)

61: for all instanceSafeMethod in instanceSafeMethods do
62: if !isInstanceMethodOrConstructorSafe(smaliMethod, instanceSafeClasses, instanceSafeMethods) then
63: instanceSafeClasses.remove(smaliClass)

64: function instanceArgTypeSafe(argType, semiSafeClasses)
65: if argType.isPrimitive then
66: return True
67: if argType.isArray then
68: toCheckType ← argType.baseArrayType
69: else
70: toCheckType ← argType

71: if toCheckType in semiSafeClasses then
72: return True
73: return False

23

Algorithm 4 Extracting Android pure methods

1: function extractPureMethods
2: pureMethods ← getInitialListOfPureMethods()
3: allJavaAndAndroidSmaliTypes ← parseAllJavaAndAndroidSmaliFiles()
4: wasUpdated ← updatePureMethods()
5: while wasUpdated do
6: wasUpdated ← updatePureMethods()

7: for all pureMethod in pureMethods do
8: if isMethodOveriddenByUnPureMethodInChildTypes() then
9: pureMethods.remove(pureMethod)

10: function updatePureMethods
11: for all smaliType in smaliTypes do
12: for all smaliMethod in smaliType do
13: if !smaliMethod.isAbstract And !smaliMethod.isNative then
14: for all instruction in smaliMethod.instructions do
15: if instruction instanceOf StaticFieldPutInstruction then
16: continue
17: if instruction instanceOf InstanceFieldPutInstruction then
18: continue
19: if instruction instanceOf ArrayPutInstruction then
20: continue
21: if instruction instanceOf invokeMethodInstruction then
22: if !invokeMethodInstruction.targetMethod in pureMethods then
23: continue
24: pureMethods.add(smaliMethod)

25: function isMethodOveriddenByUnPureMethodInChildTypes(smaliMethod)
26: methodDefiningClass ← smaliMethod.definingClass
27: for all smaliType in methodDefiningClass.allChildClasses do
28: if smaliType.hasMethod(smaliMethod.signature) And (!smaliMethod in pureMethods) then
29: return True
30: return False

After solving class loading challenge and separating safe methods and pure methods, we can implement

our Smali simulator. Our simulator helps us to generate possible execution traces of a Smali method enhanced

with the corresponding runtime metadata. Essentially each execution trace captures a sequence of instruction

corresponding with one execution path with some information on the values used during execution of each

instruction. Figure 4.2 depicts a sample code with one possible execution trace of it. In this example due to

lack of space the runtime information are not included.

4.4 Execution Trace Analysis

For a given app, the simulator generates possible execution traces. These raw execution traces require further

analysis to extract semantically significant parts of code for detection of code clones. The analysis of execution

traces consists of four steps as follow.

4.4.1 Nested execution trace extraction

The first step of analyzing execution traces is to separate all the nested execution traces in our execution

traces. During the simulation of a method, if the method invokes another user-defined method, the execution

trace of the called method is also included in the generated execution trace of the caller method. In the later

stages of our execution trace analysis, we consider all the instructions in an execution trace as if they all

were executed by the outermost method. Thus, in order to analyze nested execution traces for code clone

detection, we extract them and analyze them independently.

24

// App: com.gabm.fancyplaces:9

package com.gabm.fancyplaces.functional;

class LocationHandler {

...

protected Boolean

isValidLocation(Location location){

 if (location == null) {

 return false;

 }

 Time now = new Time();

 now.setToNow();

 return (now.toMillis(true) -
location.getTime()) <= TWO_MINUTES;

}

…

}

const/4 v1 1 &0
const/4 v2 0 &1
if-nez v9 @6 &2
new-instance v0 Landroid/text/format/Time; &6
invoke-direct v0 Landroid/text/format/Time;-><init>()V &7
invoke-virtual v0 Landroid/text/format/Time;->setToNow()V &8
invoke-virtual v0 v1 Landroid/text/format/Time;->toMillis(Z)J &9
move-result-wide v4 &10
invoke-virtual v9 Landroid/loca�on/Loca�on;->getTime()J &11
move-result-wide v6 &12
sub-long/2addr v4 v6 &13
const-wide/32 v6 120000 &14
cmp-long v3 v4 v6 &15
if-gtz v3 @20 &16
invoke-sta�c v1 Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean; &17
move-result-object v1 &18
goto @5 &19
return-object v1 &5

Figure 4.2: A sample method and one possible execution trace

4.4.2 Execution trace simplification

The next step is to normalize and simplify the execution trace to purge any side effects obfuscation has had on

the execution trace. The applied simplification and normalization are essentially a series of transformations

that are performed on the obtained execution traces to remove the differences caused by compilers, optimiza-

tions, and obfuscations. Applying simplifying transformations on execution traces is generally simpler than

applying them on code since first, an execution trace is a sequential set of instructions and thus much easier

to analyze than code and second, our execution traces containing runtime information of each value in the

registers used by each instruction. The simplification transformations we perform are:

• Execution trace flattening : In this transformation, an execution trace is modified so that the instructions

in nested traces can be treated as if they were executed in their parent executions. To achieve this the

register number used by nested execution traces has to be updated to new unused register numbers. In

this transformation, we assume an infinite number of registers exists and any register can be addressed

in any instruction. Furthermore, the invocation call in the parent execution trace and the return

instruction in the nested trace is removed and instead of them, new move instructions are added to

connect the data dependency between nested and parent execution trace.

• Removing register aliasing : In this transformation we any register aliasing in the execution trace that

have resulted from move instructions. This is necessary since we need to perform backward slicing later

which to perform correctly needs the execution trace to not include any aliasing between registers.

• Reflection normalization: In this transformation we need to replace any method invocation done using

reflection with a normal method invocation. This transformation is not trivial since by changing the

method invocation from reflection to a normal method invocation we need to use new registers and add

25

move instructions in the correct places to connect the data dependency from instructions that create

the argument values to the new added registers.

• Constant transformation simplification: In this transformation, try to find any method invocation that

takes constant primitive values or String as inputs and computes and returns a new primitive value or

String based on the inputs. After finding such methods we replace the consequent Smali ”move-result”

instruction in the parent execution with a ”const” Smali instructions.

4.4.3 Important instruction extraction

The third step of analyzing execution traces is separating their important instructions. Knowing that not all

instructions in an execution trace bear the same significance, our first task is to define what type of instructions

we consider semantically important. This is also a key step to only extract semantically important parts of an

execution trace in order to eliminate the differences in code instances caused by different compiler versions,

compiler optimization, and obfuscation. When analyzing execution traces we informally define an important

instruction as any instruction that can affect the system outside of the method’s scope. We formally define

an important instructions as:

• A methods return instruction which does not void.

• Changing the value of a static fields of classes.

• Changing the value of an instance fields of an object.

• Invocation of Java/Android API methods that change global state such as reading from Input or writing

to Output.

• Invocations of Java/Android API methods that change the state of an object not created in local

method scope.

Separating the return instruction of a method or instructions that assign a new value to a field is straight-

forward, however, separating method invocations that can generate side effects is much more difficult. In

our work for finding Java/Android API invocations that change the global state of an application such as

printing some value or writing a value to a file, we reused our list of safe classes and safe methods. Essentially

in our current implementation, any method invocation on unsafe methods is considered to cause a side effect.

For method invocations that change the state of a non-local object, we reused our list of pure methods. In

this case, any non-pure method invocation on a non-local object is also considered to change its state. For

example, adding a new value to an ArrayList object that has not been instantiated inside a method. In the

Figure 4.2 the important instruction has been marked as bold.

26

4.4.4 Slice and fragment extraction

Backward slicing

Each important instruction depicts a single side effect seen in an execution trace of a method. Each important

instruction usually depends on multiple instructions executed before it. By extracting all instructions that

are needed for one important instruction to be executed based on the data-dependency, we can extract a

set of instructions that correlate with a single behaviour in execution trace. The data-dependency between

instructions is computed based on def-use chain of registers used in the important instruction and its de-

pendent instructions. We use backward slicing on data-dependent instructions of an execution trace for two

reasons: 1) control-flow can be modified by obfuscation which would be difficult to simplify using only exe-

cution traces. 2) Because Smali is an object-oriented instruction set, data-dependency between instructions

includes significant semantic information.

Fragmenting slices

Our next step is to break the slices to smaller pieces in order to capture small but semantically important

code segments that can be shared between different methods. In an slice, the instruction are operating on

multiple registers containing different objects or primitive values. The goal here is to separate instructions

that correlate with a single value into a single group that we refer to as a Fragment.

Fragment normalization

After separating our fragments we apply different normalizations on them to remove minor differences caused

by different literal values, user-defined type names, register numbers, and repeated instruction caused by loops

and recursion. In this part, we remove all literal values and the used register numbers for each instruction.

Furthermore, we remove type identifiers from instructions if they are not user-defined. Finally, we discard any

repeated instructions in a fragment to remove any differences in fragments caused by loops and recursion.

After normalizing the fragments we save the results for further analysis. Figure 4.3 shows the slices and

fragments extracted from the important instruction of the execution trace in Figure 4.2.

4.5 Code clone detection

Once different methods have been analyzed and summarized in the form of slices and their corresponding

fragments, the next step is to extract code clones. In this works we propose code clone defection at two

levels, method-level and slice-level.

27

return-object v1 &5
invoke-sta�c v1 Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean; &17

invoke-virtual v0 v1 Landroid/text/format/Time;->toMillis(Z)J &9
invoke-virtual v0 Landroid/text/format/Time;->setToNow()V &8

invoke-direct v0 Landroid/text/format/Time;-><init>()V &7
new-instance v0 Landroid/text/format/Time; &6

const/4 v1 1 &0

return-object v1 &5
invoke-sta�c v1 Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean; &17

invoke-virtual v0 v1 Landroid/text/format/Time;->toMillis(Z)J &9
const/4 v1 1 &0

invoke-virtual v0 v1 Landroid/text/format/Time;->toMillis(Z)J &9
invoke-virtual v0 Landroid/text/format/Time;->setToNow()V &8

invoke-direct v0 Landroid/text/format/Time;-><init>()V &7
new-instance v0 Landroid/text/format/Time; &6

return-object
invoke-sta�c Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean;

invoke-virtual Landroid/text/format/Time;->toMillis(Z)J
const

invoke-virtual Landroid/text/format/Time;->toMillis(Z)J
invoke-virtual Landroid/text/format/Time;->setToNow()V

invoke-direct Landroid/text/format/Time;-><init>()V
new-instance Landroid/text/format/Time;

Slice

Raw Fragment Raw Fragment

Normalized Fragment Normalized Fragment

Figure 4.3: Sample slice and fragments

4.5.1 Method-level code clone detection

Wemeasure the similarity between methods by employing the Jaccard index on the sets of fragments extracted

from two methods. We consider a pair of two methods that show similarity above the specified threshold as

a clone. Given two sets of fragments, A and B, the Jaccard index of these sets is calculated as follows:

JaccardIndex =
|A ∩B|
|A ∪B|

(4.1)

4.5.2 Slice-level code clone detection

For finding small pieces of cloned code which often are non-contiguous, between methods, one important

challenge is to define what is the smallest piece of code that can be considered as a code clone. In this work,

we propose to use our slices as units we compare for finding small pieces of code clones. The reason for this is

each slice represents a group of data-dependent instructions that perform one semantically significant task.

To compare the similarity between slices, the Jaccard Index of their fragments can be measured.

28

5 Validation and Experiments

In this chapter, we elaborate on how we created the dataset we used for our experiments and how we

validated our approach. Finally, we present our findings from the experiments we performed to investigate

the presence of code clones in benign and malicious applications.

5.1 Setup configuration

Our simulator was implemented as an Android application for the Android version 26 or above. After

installation, the simulator exposes APIs over the network which can be used to interact with it and perform

Smali method simulation. After performing simulation on the methods needing to be analyzed, we copied

their execution traces from the Android device to our computer and continue analyzing traces off-device.

For our experiments, we installed our simulator on 6 emulated Android devices to perform our simulation in

parallel, each device having 2 CPU cores and 4GB of memory.

5.2 Dataset creation

Due to the lack of a labeled dataset containing Android application code clones at byte-code level, with

or without obfuscation, we ventured to create our set. From the open-source Android market F-Droid1, we

collected all the Android application source projects available to download at the time of creating our dataset,

which compromised of 5045 projects, containing multiple versions for 1814 unique applications. Next, we

attempted to compile these projects our self to create a consistent set of applications. To achieve this, first, we

filtered apps containing code written in Kotlin, as our current implementation does not support applications

written in the Kotlin programming language. We also removed applications that do not use the Gradle build

tool, the default build tool used by Android Studio, the official Android application development environment.

This was done due to the fact that the projects which not use Gradle as their build tool, could have not been

compiled automatically. The remaining projects were compiled and those that were successfully compiled

were used in our dataset for further analysis. A total of 1751 projects from 685 unique applications comprised

our dataset. The summary of the employed dataset is shown in Table 5.1.

To obfuscate these applications, we employed Obfuscapk [7], a free and open source Android obfuscator

that includes a range of obfuscation techniques such as control flow obfuscation, string encryption and

1https://www.f-droid.org/

29

Table 5.1: The summary of the employed dataset

Set name Num. of all apps
Downloaded source code projects 5045
Successfully compiled projects 1751
successfully simulated applications 1603

successfully obfuscated applications

Control-flow obfusctions 1320
Reflection obfuscations 1741
String encryption obfuscations 1740
All obfuscations 1085

Used obfuscated applications for evaluation 1085
Banking Malware applications 1076

reflection. Table5.2 depicts the obfuscation techniques provided by Obfuscapk.

To explore the obfuscation resiliency of our code clone detection approach, we obfuscated the available

Android projects with various obfuscation techniques, creating four different sets of obfuscated apps. The

rationality for creating four sets was to better understand the performance of our approach under different

obfuscation techniques. The obfuscation transformations applied to each set and their corresponding order

are shown in Table 5.3. Unfortunately, Obfuscapk failed to successfully obfuscate some of the apps. For

the control-flow obfuscation set, Obuscapk was able to successfully obfuscate 1320 out of 1751 .apk files, the

reflection was only applied to 1741 .apk files, and the string encryption to 1740 apps. To ensure a proper

comparison, for the further evaluation experiments, we used 1085 apps in the intersection of all these sets.

We successfully applied all obfuscation transformations to these 1085 apps. The summary of the obfuscated

applications is shown in Table 5.1.

30

Table 5.2: Obfuscapk transformation

Type Name Description

Trivial
NewSignature Re-sign the application with a new custom signature.
NewAlignment Realign the application.
Rebuild Rebuild the application.

Rename
ClassRename Change the package name and rename classes (even in the manifest file).
MethodRename Rename methods.
FieldRename Rename fields.

Code

ArithmeticBranch Insert junk code. In this case, the junk code is composed by arithmetic com-
putations and a branch instruction depending on the result of these computa-
tions, crafted in such a way that the branch is never taken.

CallIndirection This technique modifies the control-flow graph without impacting the code
semantics: it adds new methods that invoke the original ones. For example,
an invocation to the method m1 will be substituted by a new wrapper method
m2, that, when invoked, it calls the original method m1.

DebugRemoval Remove debug information.
Goto Given a method, it inserts a goto instruction pointing to the end of the method

and another goto pointing to the instruction after the first goto; it modifies
the control-flow graph by adding two new nodes.

MethodOverload It exploits the overloading feature of the Java programming language to assign
the same name to different methods but using different arguments. Given an
already existing method, this technique creates a new void method with the
same name and arguments, but it also adds new random arguments. Then,
the body of the new method is filled with random arithmetic instructions.

Nop Insert junk code. Nop, short for no-operation, is a dedicated instruction that
does nothing. This technique just inserts random nop instructions within every
method implementation.

Reorder This technique consists of changing the order of basic blocks in the code. When
a branch instruction is found, the condition is inverted (e.g., branch if lower
than, becomes branch if greater or equal than) and the target basic blocks
are reordered accordingly. Furthermore, it also randomly re-arranges the code
abusing goto instructions.

Reflection This technique analyzes the existing code looking for method invocations of
the app, ignoring the calls to the Android framework (see AdvancedReflec-
tion). If it finds an instruction with a suitable method invocation (i.e., no
constructor methods, public visibility, enough free registers, etc.) such invo-
cation is redirected to a custom method that will invoke the original method
using the Reflection APIs.

AdvancedReflection Uses reflection to invoke dangerous APIs of the Android Framework. To find
out if a method belongs to the Android Framework, Obfuscapk refers to the
mapping discovered by Backes et al.

Encryption
AssetEncryption Encrypt asset files.
LibEncryption Encrypt native libs.
ConstStringEncryption Encrypt constant strings in code.
ResStringEncryption Encrypt strings in resources (only those called inside code).

Resource RandomManifest Randomly reorder entries in the manifest file.

31

Table 5.3: The applied obfuscation transformations.

Obfuscation set name Applied Transformations

Control-flow obfuscation

1-CallIndirection
2-MethodOverload
3-ArithmeticBranch
4-Reorder
5-Goto
6-Nop

Reflection obfuscated
1-Reflection
2-AdvancedReflection

String encryption obfuscation 1-ConstStringEncryption

All obfuscations
1- All control-flow obfuscations
2- All reflection obfuscations
3- ConstStringEncryption

5.3 Code clone detection validation

For our first experiment, we examined the effectiveness of our approach in finding different types of code

clones. In this experiment, we manually injected 20 code clones for 5 different code snippets to a sample

Android application. For each code snippet, 4 code clones were created corresponding to a code clone type

which was analyzed for code clone detection.

To create these clones we first created four code clone samples at source code as depicted in Figure 5.1 and

then they were compiled to Smali code. However, since the Smali code is what matters for our approach and

some differences in source code such as variable names are not present in the Smali code, we further modified

some of the compiled Smali code to create correct code clones. For creating type-1 clones from the Smali

code of these code snippets we removed the debugging information in the Smali code and for type-2 clones,

we changed the register numbers in the code samples. For type-3 and type-4 clones, no further change was

done to the Smali code since the differences in the source code were enough for creating type-3 and type-4

clones at the Smali code level.

With our code clone samples created and injected to a sample Android application, we measured the

similarity of these code clones. Table 5.4 shows the results of our approach for the injected code clone

samples. The similarity results shows that our approach is successful in finding type-1 to type-3 clones and

also can detect some type-4 clones.

Table 5.4: Code similarity of added code clones

Code clone Name Type-1 similarity Type-2 similarity Type-3 similarity Type-4 similarity

appendTextToFile 100% 100% 100% 44%

isTreeFull 100% 100% 100% 100%

removeDuplicatedInIntegerArrayList 100% 100% 100% 0%

reverseNumber 100% 100% 100% 26%

removeMiddleNodeInLinkedList 100% 100% 100% 100%

32

5.4 Obfuscation resistance validation

To evaluate the obfuscation resistance of our approach against different obfuscation techniques we used our

four obfuscated datasets (Table 5.3). When analyzing the applications in our dataset, for some of the apps

our simulator failed to simulate some of their entry point methods. In our validation, we discarded any

application that any of its methods failed to simulate properly. When manually analyzing the errors for such

failures and we noticed most of the failures are caused by our tool failing dynamically creating classes using

ByteBuddy because some Android applications contain classes with fields or method declarations referring to

types that do not exist in the applications .dex files. This may cause a problem in our current implementation

but it works fine in Android, since 1) the methods or fields with non-existent types are not invoked during

execution and 2) the ART engine loads classes lazily. However, in our current implementation, when defining

classes using ByteBuddy, we have to declare and load classes eagerly which when loading such classes, causes

an error to be thrown.

Considering the original set of non-obfuscated apps as the ground truth for evaluating the resistance of

our approach against obfuscation, for each obfuscation set, we compared the fragments of each method of

each app with its corresponding fragments in the non-obfuscated set. If a method only exists in one of the

non-obfuscated or the obfuscated set, it was ignored since it could not be compared properly. The reason

for the existence of such cases is that our approach may traverse different execution paths in each analysis

since it takes a random path when branching on Ambiguous values. In the case of reflection and string

encryption since not all methods were affected by these obfuscations, when comparing the results of our

approach on obfuscated and non-obfuscated applications we only considered the methods that were affected

by these obfuscations.

The results of these comparisons are shown in Table 5.5. As the results show, string encryption has the

highest similarity (87%), i.e., 87% of fragments from non-obfuscated set are similar to the application set

obfuscated with String encryption. Among obfuscated sets, all obfuscation techniques generated the most

comparable methods (53564) from 846 apps and the minimum similarity (78%) which is expected due to

the complexity of obfuscation techniques. Moreover, after obfuscating applications with Control-flow and

Reflection techniques, our approach performs 84% and 81% similarly to the non-obfuscated applications,

respectively.

5.5 Code clone detection among all applications

In this experiment, we investigate the presence of method-level code clones among all of our 1603 successfully

simulated applications from our non-obfuscated set. To perform such comparison effectively, instead of

comparing application pairs and extracting their code clones, we tried finding code clone clusters. In this

experiment, we define a code clone cluster as a group of methods that were detected as identical to each other

33

Table 5.5: Obfuscation resistance validation

Obfuscation set Successfully
Analyzed
Apps

Compared
Methods

Average
Similarity

Control-flow obfuscations 989 72638 84%
Reflection obfuscations 1017 7613 81%
String encryption obfusca-
tion

1035 13836 87%

All obfuscations 846 53564 78%

or a pair of identical method clusters whose similarity was greater than 80%. Table 5.6 shows the number

of code clone clusters we were able to extract. Moreover, when clustering methods together, we discard any

methods that had less than four fragments to ignore very small methods such as getters and setters.

It is very common for Android applications to include a group of libraries called Android support libraries

in their build process. These libraries are developed by Google in order to improve compatibility with older

devices. Thus, after extracting code clone clusters we filtered the clusters that have been detected in the

Android support library classes. This was done to investigate the code clones detected in Android applications

that have been generated by user-defined code or any common library that the developer has used. Table

5.6 depicts our extracted code clones. We further explored the extracted code clones among all applications

without Android support libraries (see Table 5.7). Out of 44776 code clones, 66% and 34% are associated to

different versions of the apps and different apps, respectively.

To further investigate and validate the extracted code clones, we randomly selected 15 clusters with

different similarity degrees and analyzed them manually. From the selected clusters 11 of them were indeed

code clones, 3 of them were not code clone and 1 was a clone with the wrong similarity number. For the four

samples that were not correctly identified, all of them shared one problem which was very low code coverage

for methods that use the Android support library classes. Many applications use support library classes

instead of types bundled in Android-Runtime environment to improve compatibility with older devices. The

methods defined in support library classes perform many checks to validate the state of the device and if one

of the checks fails, the method throws an exception. In the current implementation of our approach since

we lack proper input generation and an Ambiguous value is used for all of the method arguments including

the reference object of each method, at each check a random path is taken which in most cases causes an

exception to be thrown and thus the user-defined code rarely is executed. This problem in the execution

path causes many methods to be detected as clones since all of them show a similar execution trace leading

to the throw exception.

34

Table 5.6: Code clone detection among all applications

All Code Clone
Clusters

number of all code clone clusters 54319
clones with 100% similarity 19865 (36.57%)
clones with [96%:100%) similarity 2537 (4.67%)
clones with [92%:96%) similarity 4982 (9.17%)
clones with [88%:92%) similarity 7136 (13.13%)
clones with [84%:88%) similarity 7817 (14.39%)
clones with [80%:84%) similarity 11982(22.05%)

Code Clone Clusters
Without Android
Support Libraries

number of all code clone clusters 44776
clones with 100% similarity 17638 (39.39%)
clones with [96%:100%) similarity 2145 (4.79%)
clones with [92%:96%) similarity 3982 (8.89%)
clones with [88%:92%) similarity 5626 (12.56%)
clones with [84%:88%) similarity 6125 (13.67%)
clones with [80%:84%) similarity 9260 (20.68%)

Table 5.7: Code clone detection among all applications without Android support libraries

Code Clone Clusters
in different versions of
apps

number of all code clone clusters 29744(66%)
clones with 100% similarity 14076(47.32%)
clones with [96%:100%) similarity 1802(6.06%)
clones with [92%:96%) similarity 2895(9.73%)
clones with [88%:92%) similarity 3504(11.78%)
clones with [84%:88%) similarity 3447(11.59%)
clones with [80%:84%) similarity 4020(13.52%)

Code Clone Clusters
in different apps

number of all code clone clusters 15032(34%)
clones with 100% similarity 3562(23.7%)
clones with [96%:100%) similarity 343(2.28%)
clones with [92%:96%) similarity 1087(7.23%)
clones with [88%:92%) similarity 2122(14.12%)
clones with [84%:88%) similarity 2678(17.82%)
clones with [80%:84%) similarity 5240(34.86%)

5.6 Comparative analysis

To further investigate the ability of our approach in finding code clones, we compared the findings of our

approach with a source code clone detection tool at method level. We chose Nicad [18] for this comparison

because first, it can analyze Java code which is the language used to develop Android applications and second,

for each clone method that it finds, it also reports a similarity degree which can be used for comparing the

results of our approaches.

To perform such comparison, our first step was to separate the source code files that are relevant for

these comparisons and should be analyzed by Nicad. This is needed because Android application projects,

contain many different types of code, such as: source code files, test cases, automation scripts, and etc. In

case of projects that build different flavors for an application, they may also define multiple implementation

for some classes which is problematic since the source code file corresponding to the implementation used

in the .apk file we used for our analysis has be separated. To first problem can be solved by analyzing the

35

directory structure of Android application projects and also matching the types defined in a source file with

types used in the compiled .apk files. The second problem is more challenging to solve since we needed to

manually select what source file should be used in our analysis.

Another key challenge for comparing the results of our approach with Nicad is that since our work operates

on Smali byte-code, it also considers all the library codes included in an app which causes much more code

clones be detected compared to Nicad. For this experiment because we had compiled the applications of

our dataset our self, we were able to leverage the name of types to separate user-defined code from library

codes bundled in an .apk file which is needed to be able to properly compare our approach with Nicad.

However, when working with obfuscated applications where identifier renaming has been applied, it is much

more challenging to separate used-defined code from library code since to do so a library profile has to be

built before hand by analyzing different libraries using our tool.

In this experiment, we only compared different versions of application with each other. The reason for

such choice is that 1) Different version of an applications are expected to share more codes. 2) Comparing

any combination of two applications would have resulted in an explosion in the number of comparisons

and time required to perform such comparisons. After creating the application-version pairs needed for our

analysis, We used pairs of different versions of an application to be used as a benchmark for comparing our

approach with Nicad. In this experiment 1555 application-version pairs were analyzed using Nicad which

then were compared with our approach at method-level code clone detection. We used the threshold of 70%

for extracting cloned methods for both our approach and Nicad. Table 5.8 shows our findings after comparing

our approach with Nicad. For any method-clone pairs that the difference of similarity degree from Nicad and

our approach was less than 15% we marked it as ”Agreed Similarity Clone”, if the Similarity difference was

greater than 15% we marked it as ”Disagreed Similarity Clone”. For any clones that was only detected by

one tool or the other we marked them as ”Not detected as clone by Nicad” or ”Not detected as clone by our

approach”. These two groups depict code clone that either of the tools failed to analyze or after analyses

their similarity degree was less than our 70% threshold.

Table 5.8: Comparison results with Nicad

Agreed similarity clones 15865 (81%)

Disagreed similarity clones 3565 (19%)

Not detected as clone by Nicad 312906

Not detected as clone by our approach 455624

Not detected as clone by our approach due to

code coverage

443393 (%)

36

5.7 Malware detection using code clone fragments

In this experiment we investigate the application of our approach in detecting code clone in malware applica-

tions. To explore the performance of our approach on a set of Android malware apps, we used a set of Android

banking malware extracted from [40]. The dataset consists of 103 benign 973 malicious Android banking

applications and distributed across 10 families of malware: BankBot, Binv, Citmo, FakeBank, Sandroid,

SMSspy, Spitmo, Wroba, ZertSecurity and Zitmo.

In order to evaluate our approach we tried finding code clone clusters among all applications. We define

a code clone cluster as a group of methods that were detected as identical to each other, or a pair of identical

method clusters that their similarity was greater than 75%. We discard any methods that had less than

3 fragments to highlight longer and more meaningful methods. In total we find 60,057 code clone clusters

among all applications. We categorize these clusters in four groups:

• Identical code clones that have been seen in one malware family or only benign apps

• Similar code clones that have been seen in one malware family or only benign apps

• Identical code clones that have been seen in more than one malware family or benign apps

• Similar code clones that have been seen in more than one malware family or benign apps

We are interested in the first and second group of code clones since they can be considered as unique

clones to a malware family or the benign applications. These extracted code clone can further be used to

detect new variant of the studied malware.

Table 5.9 shows the number of code clone clusters we were able to extract for each malware type. 92.9%

of code clone clusters have been seen in apps belonged to one type of malware and 7.1% of code clone clusters

are belonged to apps in different malware family. Among all malware types, SMSspy, FakeBank, Sandroid

have the highest similar and identical code clones among their apps. However due to small number of samples

in Binv, ZertSecurity and Citmo our approach finds less code clones among their apps.

37

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 a
p
p
e
n
d
T
e
x
t
T
o
F
ile

(
S
t
r
in

g
 t

e
x
t
,
 F

ile
 file

)
 t

h
r
o
w

s
 I

O
E
x
c
e
p
t
io

n
 {

 /
/
 c

h
e
c
k
 file

 e
x
is

t
s
 a

n
d
 it

 is
 in

d
e
e
d
 a

 file

 if(
!
file

.
is

F
ile

(
)
)
 r

e
t
u
r
n
;

 /
/
 c

r
e
a
t
in

g
 a

 F
ile

W
r
it
e
r
 fo

r
 t

h
e
 g

iv
e
n
 file

 w
it
h
 a

p
p
e
n
d
 m

o
d
e
 a

s
 t

r
u
e

 F
ile

W
r
it
e
r
 file

W
r
it
e
r
 =

 n
e
w

 F
ile

W
r
it
e
r
(
file

,
t
r
u
e
)
;

 /
/
 c

r
e
a
t
in

g
 a

 b
u
ffe

r
W

r
it
e
r
 fr

o
m

 t
h
e
 F

ile
W

r
it
e
r

 B
u
ffe

r
e
d
W

r
it
e
r
 b

u
ffe

r
e
d
W

r
it
e
r
 =

 n
e
w

 B
u
ffe

r
e
d
W

r
it
e
r
(
file

W
r
it
e
r
)
;

 /
/
 w

r
it
in

g
 t

h
e
 t

e
x
t
 a

n
d
 c

lo
s
in

g
 t

h
e
 b

u
ffe

r
W

r
it
e
r

 b
u
ffe

r
e
d
W

r
it
e
r.
w

r
it
e
(
t
e
x
t
)
;

 b
u
ffe

r
e
d
W

r
it
e
r.
c
lo

s
e
(
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 a
p
p
e
n
d
T
e
x
t
T
o
F
ile

(
S
t
r
in

g
 t

e
x
t
,
 F

ile
 file

)
 t

h
r
o
w

s
 I

O
E
x
c
e
p
t
io

n
 {

 if(
!
file

.
is

F
ile

(
)
)
 r

e
t
u
r
n
;

 F
ile

W
r
it
e
r
 file

W
r
it
e
r
 =

 n
e
w

 F
ile

W
r
it
e
r
(
file

,
t
r
u
e
)
;

 B
u
ffe

r
e
d
W

r
it
e
r
 b

u
ffe

r
e
d
W

r
it
e
r
 =

 n
e
w

 B
u
ffe

r
e
d
W

r
it
e
r
(
file

W
r
it
e
r
)
;

 b
u
ffe

r
e
d
W

r
it
e
r.
w

r
it
e
(
t
e
x
t
)
;

 b
u
ffe

r
e
d
W

r
it
e
r.
c
lo

s
e
(
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
S
t
r
in

g
 s

,
 F

ile
 f

)
 t

h
r
o
w

s
 I

O
E
x
c
e
p
t
io

n
 {

 if(
!
f.
is

F
ile

(
)
)
 r

e
t
u
r
n
;

 F
ile

W
r
it
e
r
 fw

 =
 n

e
w

 F
ile

W
r
it
e
r
(
f,
t
r
u
e
)
;

 B
u
ffe

r
e
d
W

r
it
e
r
 b

w
 =

 n
e
w

 B
u
ffe

r
e
d
W

r
it
e
r
(
fw

)
;

 b
w

.
w

r
it
e
(
s
)
;

 b
w

.
c
lo

s
e
(
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
S
t
r
in

g
 s

,
 F

ile
 f

)
 t

h
r
o
w

s
 I

O
E
x
c
e
p
t
io

n
 {

 if(
f.
is

F
ile

(
)
)
 {

 B
u
ffe

r
e
d
W

r
it
e
r
 b

w
 =

 n
e
w

 B
u
ffe

r
e
d
W

r
it
e
r
(
n
e
w

 F
ile

W
r
it
e
r
(
f,
 t

r
u
e
)
)
;

 b
w

.
w

r
it
e
(
s
)
;

 b
w

.
c
lo

s
e
(
)
;

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
S
t
r
in

g
 s

,
 F

ile
 f

)
 t

h
r
o
w

s
 I

O
E
x
c
e
p
t
io

n
 {

 if(
!
f.
is

F
ile

(
)
)
 r

e
t
u
r
n
;

 F
ile

W
r
it
e
r
 fw

 =
 n

e
w

 F
ile

W
r
it
e
r
(
f,
t
r
u
e
)
;

 fw
.
w

r
it
e
(
s
)
;

 fw
.
c
lo

s
e
(
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 b
o
o
le

a
n

 is
T
r
e
e
F
u
ll(

B
in

a
r
y
T
r
e
e
.
N

o
d
e
 n

o
d
e
)
{

 /
/
 n

u
ll n

o
d
e

 if(
n
o
d
e
=

=
n
u
ll)

r
e
t
u
r
n
 t

r
u
e
;

 /
/
 b

o
t
h
 n

u
ll c

h
ild

 n
o
d
e
s

 if(
n
o
d
e
.
le

ft
 =

=
 n

u
ll &

&
 n

o
d
e
.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 t

r
u
e
;

 /
/
 o

n
e
 n

u
ll c

h
ild

 n
o
d
e

 if(
n
o
d
e
.
le

ft
 =

=
 n

u
ll |

|
 n

o
d
e
.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 fa

ls
e
;

 /
/
 b

o
t
h
 c

h
ild

 n
o
d
e
s
 n

o
t
 n

u
ll,

 c
h
e
c
k
 t

h
e
 r

e
c
u
r
s
iv

e
ly

 r
e
t
u
r
n
 is

T
r
e
e
F
u
ll(

n
o
d
e
.
le

ft
)
 &

&
 is

T
r
e
e
F
u
ll(

n
o
d
e
.
r
ig

h
t
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 b
o
o
le

a
n
 is

T
r
e
e
F
u
ll(

B
in

a
r
y
T
r
e
e
.
N

o
d
e
 n

o
d
e
)
{

 if(
n
o
d
e
=

=
n
u
ll)

r
e
t
u
r
n
 t

r
u
e
;

 if(
n
o
d
e
.
le

ft
 =

=
 n

u
ll &

&
 n

o
d
e
.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 t

r
u
e
;

 if(
n
o
d
e
.
le

ft
 =

=
 n

u
ll |

|
 n

o
d
e
.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 fa

ls
e
;

 r
e
t
u
r
n
 is

T
r
e
e
F
u
ll(

n
o
d
e
.
le

ft
)
 &

&
 is

T
r
e
e
F
u
ll(

n
o
d
e
.
r
ig

h
t
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 b
o
o
le

a
n
 x

(
B
in

a
r
y
T
r
e
e
.
N

o
d
e
 n

)
{

 if(
n
=

=
n
u
ll)

r
e
t
u
r
n
 t

r
u
e
;

 if(
n
.
le

ft
 =

=
 n

u
ll &

&
 n

.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 t

r
u
e
;

 if(
n
.
le

ft
 =

=
 n

u
ll |

|
 n

.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 fa

ls
e
;

 r
e
t
u
r
n
 x

(
n
.
le

ft
)
 &

&
 x

(
n
.
r
ig

h
t
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 b
o
o
le

a
n
 x

(
B
in

a
r
y
T
r
e
e
.
N

o
d
e
 n

)
{

 if(
n
=

=
n
u
ll)

 r
e
t
u
r
n
 t

r
u
e
;

 if(
n
.
le

ft
 =

=
 n

u
ll ^

 n
.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 fa

ls
e
;

 r
e
t
u
r
n
 x

(
n
.
le

ft
)
 &

&
 x

(
n
.
r
ig

h
t
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 b
o
o
le

a
n
 x

(
B
in

a
r
y
T
r
e
e
.
N

o
d
e
 n

)
{

 if(
n
=

=
n
u
ll |

|
 (

n
.
le

ft
 =

=
 n

u
ll &

&
 n

.
r
ig

h
t
 =

=
 n

u
ll)

)
r
e
t
u
r
n
 t

r
u
e
;

 if(
n
.
le

ft
 =

=
 n

u
ll |

|
 n

.
r
ig

h
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
 fa

ls
e
;

 r
e
t
u
r
n
 x

(
n
.
le

ft
)
 &

&
 x

(
n
.
r
ig

h
t
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 r
e
m

o
v
e
D

u
p
lic

a
t
e
d
I
n
I
n
t
e
g
e
r
A
r
r
a
y
L
is

t
(
A
r
r
a
y
L
is

t
<

I
n
t
e
g
e
r
>

 a
r
r
a
y
L
is

t
)
{

 in
t
 a

r
r
a
y
S
iz

e
 =

 a
r
r
a
y
L
is

t
.
s
iz

e
(
)
;

 /
/
 H

a
s
h
S
e
t
 t

o
 k

e
e
p
 t

h
e
 u

n
iq

u
e
 n

u
m

b
e
r
s
 w

e
 s

e
e

 S
e
t
<

I
n
t
e
g
e
r
>

 s
e
e
n
N

u
m

b
e
r
s
 =

 n
e
w

 H
a
s
h
S
e
t
<

>
(
)
;

 fo
r
(
in

t
 i=

0
;
 i <

 a
r
r
a
y
S
iz

e
;
 i+

+
)
{

 in
t
 n

 =
 a

r
r
a
y
L
is

t
.
g
e
t
(
i)

;

 /
/
 if t

h
e
 n

u
m

b
e
r
 is

 r
e
p
e
a
t
e
d
,

 /
/
 r

e
m

o
v
e
 it

 a
n
d
 c

h
a
n
g
e
 c

o
u
n
t
e
r
s
 a

c
c
o
r
d
in

g
ly

 if(
s
e
e
n
N

u
m

b
e
r
s
.
c
o
n
t
a
in

s
(
n
)
)
{

 a
r
r
a
y
L
is

t
.
r
e
m

o
v
e
(
i)

;

 i-
-
;

 a
r
r
a
y
S
iz

e
-
-
;

 }

 /
/
 if t

h
e
 n

u
m

b
e
r
 w

e
 s

e
e
 is

 u
n
iq

u
e
 a

d
d
 it

 t
o
 t

h
e
 H

a
s
h
S
e
t

 e
ls

e
 {

 s
e
e
n
N

u
m

b
e
r
s
.
a
d
d
(
n
)
;

 }

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 r
e
m

o
v
e
M

id
d
le

N
o
d
e
I
n
L
in

k
e
d
L
is

t
(
M

y
L
in

k
e
d
L
is

t
 lin

k
e
d
L
is

t
)
{

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 c

u
r
 =

 lin
k
e
d
L
is

t
.
g
e
t
H

e
a
d
(
)
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 p

e
r
v
M

id
d
le

N
o
d
e
 =

 n
u
ll;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 m

id
d
le

N
o
d
e
 =

 c
u
r
;

 /
/
 if L

in
k
e
d
L
is

t
 is

 e
m

p
t
y
 r

e
t
u
r
n

 if(
c
u
r
=

=
n
u
ll)

 r
e
t
u
r
n
;

 b
o
o
le

a
n
 in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
 =

 fa
ls

e
;

 /
/
 t

r
a
v
e
r
s
e
 t

h
e
 L

in
k
e
d
 lis

t
 a

n
d
 fo

r
 e

v
e
r
y
 t

w
o
 t

r
a
v
e
r
s
e
d
 n

o
d
e
s

 /
/
 m

o
v
e
 t

h
e
 m

id
d
le

 n
o
d
e
 p

o
in

t
e
r

 w
h
ile

 (
c
u
r
 !

=
 n

u
ll)

{

 if(
in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
)
{

 p
e
r
v
M

id
d
le

N
o
d
e
 =

 m
id

d
le

N
o
d
e
;

 m
id

d
le

N
o
d
e
 =

 m
id

d
le

N
o
d
e
.
n
e
x
t
;

 }

 in
c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
 =

 !
in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
;

 c
u
r
 =

 c
u
r.
n
e
x
t
;

 }

 /
/
 r

e
m

o
v
in

g
 t

h
e
 m

id
d
le

 n
o
d
e

 if(
p
e
r
v
M

id
d
le

N
o
d
e
 !

=
 n

u
ll)

{

 p
e
r
v
M

id
d
le

N
o
d
e
.
n
e
x
t
 =

 m
id

d
le

N
o
d
e
.
n
e
x
t
;

 }

 }

 p
u
b
lic

 s
t
a
t
ic

 in
t
 r

e
v
e
r
s
e
N

u
m

b
e
r
(
in

t
 n

u
m

)
{

 in
t
 r

e
v
e
r
s
e
d
 =

 0
;

 /
/
 r

u
n
 lo

o
p
 u

n
t
il n

u
m

 b
e
c
o
m

e
s
 0

 w
h
ile

(
n
u
m

 !
=

 0
)
 {

 /
/
 g

e
t
 la

s
t
 d

ig
it
 fr

o
m

 n
u
m

 in
t
 d

ig
it
 =

 n
u
m

 %
 1

0
;

 r
e
v
e
r
s
e
d
 =

 r
e
v
e
r
s
e
d
 *

 1
0
 +

 d
ig

it
;

 /
/
 r

e
m

o
v
e
 t

h
e
 la

s
t
 d

ig
it
 fr

o
m

 n
u
m

 n
u
m

 /
=

 1
0
;

 }

 r
e
t
u
r
n
 r

e
v
e
r
s
e
d
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 r
e
m

o
v
e
D

u
p
lic

a
t
e
d
I
n
I
n
t
e
g
e
r
A
r
r
a
y
L
is

t
(
A
r
r
a
y
L
is

t
<

I
n
t
e
g
e
r
>

 a
r
r
a
y
L
is

t
)
{

 in
t
 a

r
r
a
y
S
iz

e
 =

 a
r
r
a
y
L
is

t
.
s
iz

e
(
)
;

 S
e
t
<

I
n
t
e
g
e
r
>

 s
e
e
n
N

u
m

b
e
r
s
 =

 n
e
w

 H
a
s
h
S
e
t
<

>
(
)
;

 fo
r
(
in

t
 i=

0
;
 i <

 a
r
r
a
y
S
iz

e
;
 i+

+
)
{

 in
t
 n

 =
 a

r
r
a
y
L
is

t
.
g
e
t
(
i)

;

 if(
s
e
e
n
N

u
m

b
e
r
s
.
c
o
n
t
a
in

s
(
n
)
)
{

 a
r
r
a
y
L
is

t
.
r
e
m

o
v
e
(
i)

;

 i-
-
;

 a
r
r
a
y
S
iz

e
-
-
;

 }

 e
ls

e
 {

 s
e
e
n
N

u
m

b
e
r
s
.
a
d
d
(
n
)
;

 }

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
A
r
r
a
y
L
is

t
<

I
n
t
e
g
e
r
>

 a
)
{

 in
t
 s

 =
 a

.
s
iz

e
(
)
;

 S
e
t
<

I
n
t
e
g
e
r
>

 s
n
 =

 n
e
w

 H
a
s
h
S
e
t
<

>
(
)
;

 fo
r
(
in

t
 i=

0
;
 i <

 s
;
 i+

+
)
{

 in
t
 n

u
m

 =
 a

.
g
e
t
(
i)

;

 if(
s
n
.
c
o
n
t
a
in

s
(
n
u
m

)
)
{

 a
.
r
e
m

o
v
e
(
i)

;

 i-
-
;

 s
-
-
;

 }

 e
ls

e
 {

 s
n
.
a
d
d
(
n
u
m

)
;

 }

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
A
r
r
a
y
L
is

t
<

I
n
t
e
g
e
r
>

 a
)
{

 S
e
t
<

I
n
t
e
g
e
r
>

 s
n
 =

 n
e
w

 H
a
s
h
S
e
t
<

>
(
)
;

 in
t
 s

 =
 a

.
s
iz

e
(
)
;

 in
t
 i =

 0
;

 w
h
ile

 (
i <

 s
)
{

 in
t
 n

u
m

 =
 a

.
g
e
t
(
i)

;

 if(
s
n
.
c
o
n
t
a
in

s
(
n
u
m

)
)
{

 s
-
-
;

 i-
-
;

 a
.
r
e
m

o
v
e
(
i)

;

 }

 e
ls

e
 {

 s
n
.
a
d
d
(
n
u
m

)
;

 }

 i+
+

;

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
A
r
r
a
y
L
is

t
<

I
n
t
e
g
e
r
>

 a
r
r
a
y
L
is

t
)
{

 S
e
t
<

I
n
t
e
g
e
r
>

 s
e
e
n
N

u
m

b
e
r
s
 =

 n
e
w

 H
a
s
h
S
e
t
<

>

(
a
r
r
a
y
L
is

t
)
;

 a
r
r
a
y
L
is

t
.
c
le

a
r
(
)
;

 a
r
r
a
y
L
is

t
.
a
d
d
A
ll(

s
e
e
n
N

u
m

b
e
r
s
)
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 r
e
m

o
v
e
M

id
d
le

N
o
d
e
I
n
L
in

k
e
d
L
is

t
(
M

y
L
in

k
e
d
L
is

t
 lin

k
e
d
L
is

t
)
{

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 c

u
r
 =

 lin
k
e
d
L
is

t
.
g
e
t
H

e
a
d
(
)
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 p

r
e
v
M

id
d
le

N
o
d
e
 =

 n
u
ll;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 m

id
d
le

N
o
d
e
 =

 c
u
r
;

 if(
c
u
r
=

=
n
u
ll)

 r
e
t
u
r
n
;

 b
o
o
le

a
n
 in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
 =

 fa
ls

e
;

 w
h
ile

 (
c
u
r
 !

=
 n

u
ll)

{

 if(
in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
)
{

 p
r
e
v
M

id
d
le

N
o
d
e
 =

 m
id

d
le

N
o
d
e
;

 m
id

d
le

N
o
d
e
 =

 m
id

d
le

N
o
d
e
.
n
e
x
t
;

 }

 in
c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
 =

 !
in

c
r
e
m

e
n
t
M

id
d
le

N
o
d
e
;

 c
u
r
 =

 c
u
r.
n
e
x
t
;

 }

 if(
p
r
e
v
M

id
d
le

N
o
d
e
 !

=
 n

u
ll)

{

 p
r
e
v
M

id
d
le

N
o
d
e
.
n
e
x
t
 =

 m
id

d
le

N
o
d
e
.
n
e
x
t
;

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
M

y
L
in

k
e
d
L
is

t
 l)

{

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 c

 =
 l.

g
e
t
H

e
a
d
(
)
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 p

 =
 n

u
ll;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 m

 =
 c

;

 if(
c
=

=
n
u
ll)

 r
e
t
u
r
n
;

 b
o
o
le

a
n
 i =

 fa
ls

e
;

 w
h
ile

 (
c
 !

=
 n

u
ll)

{

 if(
i)

{

 p
 =

 m
;

 m
 =

 m
.
n
e
x
t
;

 }

 i =
 !

i;

 c
 =

 c
.
n
e
x
t
;

 }

 if(
p
 !

=
 n

u
ll)

{

 p
.
n
e
x
t
 =

 m
.
n
e
x
t
;

 }

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
M

y
L
in

k
e
d
L
is

t
 l)

{

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 c

 =
 l.

g
e
t
H

e
a
d
(
)
;

 if(
c
=

=
n
u
ll)

 r
e
t
u
r
n
;

 b
o
o
le

a
n
 i =

 fa
ls

e
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 m

 =
 c

;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 p

 =
 n

u
ll;

 w
h
ile

 (
t
r
u
e
)
{

 if(
i)

{

 p
 =

 m
;

 m
 =

 m
.
n
e
x
t
;

 }

 c
 =

 c
.
n
e
x
t
;

 i =
 !

i;

 if(
c
 =

=
 n

u
ll)

 b
r
e
a
k
;

 }

 if(
p
 !

=
 n

u
ll)

p
.
n
e
x
t
 =

 m
.
n
e
x
t
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 v
o
id

 x
(
M

y
L
in

k
e
d
L
is

t
 l)

{

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 h

e
a
d
 =

 l.
g
e
t
H

e
a
d
(
)
;

 if (
h
e
a
d
 =

=
 n

u
ll |

|
 h

e
a
d
.
n
e
x
t
 =

=
 n

u
ll)

 r
e
t
u
r
n
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 fa

s
t
P
o
in

t
e
r
 =

 h
e
a
d
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 s

lo
w

P
o
in

t
e
r
 =

 h
e
a
d
;

 M
y
L
in

k
e
d
L
is

t
.
N

o
d
e
 p

r
e
v
 =

 n
u
ll;

 w
h
ile

 (
fa

s
t
P
o
in

t
e
r
 !

=
 n

u
ll

 &
&

 fa
s
t
P
o
in

t
e
r.
n
e
x
t
 !

=
 n

u
ll)

 {

 fa
s
t
P
o
in

t
e
r
 =

 fa
s
t
P
o
in

t
e
r.
n
e
x
t
.
n
e
x
t
;

 p
r
e
v
 =

 s
lo

w
P
o
in

t
e
r
;

 s
lo

w
P
o
in

t
e
r
 =

 s
lo

w
P
o
in

t
e
r.
n
e
x
t
;

 }

 p
r
e
v
.
n
e
x
t
 =

 s
lo

w
P
o
in

t
e
r.
n
e
x
t
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 in
t
 r

e
v
e
r
s
e
N

u
m

b
e
r
(
in

t
 n

u
m

)
{

 in
t
 r

e
v
e
r
s
e
d
 =

 0
;

 w
h
ile

(
n
u
m

 !
=

 0
)
 {

 in
t
 d

ig
it
 =

 n
u
m

 %
 1

0
;

 r
e
v
e
r
s
e
d
 =

 r
e
v
e
r
s
e
d
 *

 1
0
 +

 d
ig

it
;

 n
u
m

 /
=

 1
0
;

 }

 r
e
t
u
r
n
 r

e
v
e
r
s
e
d
;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 in
t
 x

(
in

t
 n

)
{

 in
t
 r

 =
 0

;

 w
h
ile

(
n
 !

=
 0

)
 {

 in
t
 d

 =
 n

 %
 1

0
;

 r
 =

 r
 *

 1
0
 +

 d
;

 n
 /

=
 1

0
;

 }

 r
e
t
u
r
n
 r

;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 in
t
 x

(
in

t
 n

)
{

 in
t
 r

 =
 0

;

 w
h
ile

(
n
 !

=
 0

)
 {

 in
t
 d

ig
it
 =

 n
 %

 1
0
;

 n
 /

=
 1

0
;

 r
 =

 r
 *

 1
0
 +

 d
ig

it
;

 }

 r
e
t
u
r
n
 r

;

 }

 p
r
iv

a
t
e
 s

t
a
t
ic

 in
t
 x

(
in

t
 n

u
m

)
{

 in
t
 r

e
s
u
lt
 =

 0
;

 c
h
a
r
[
]
 c

h
a
r
A
r
r
a
y
 =

 I
n
t
e
g
e
r.
t
o
S
t
r
in

g
(
n
u
m

)

 .
t
o
C
h
a
r
A
r
r
a
y
(
)
;

 fo
r
 (

in
t
 i =

 c
h
a
r
A
r
r
a
y
.
le

n
g
t
h
 -

 1
;
 i >

 -
1
 ;

 i-
-
)
 {

 c
h
a
r
 c

 =
 c

h
a
r
A
r
r
a
y
[
i]

;

 r
e
s
u
lt
 =

 r
e
s
u
lt
 *

 1
0
 +

 c
 -

 4
8
;

 }

 r
e
t
u
r
n
 r

e
s
u
lt
;

 }

O
riginal sam

ple
Type-1 clone

Type-2 clone
Type-3 clone

Type-4 clone

Sample 1:
appending text to a file

Sample 2:
checking if a binary tree

is a full tree

Sample 3:
removing

duplocated numbers
in an ArrayList of integers

Sample 4:
removing the middle node

in a linked list
Sample 5:

reversing a number

Figure 5.1: Code clone samples added for code clone detection validation

38

Table 5.9: Code clone clusters in malware Android apps

Cluster type
Malware
Type

Num of
Sample

Identical
Clones

Similar
Clones

Clusters with same
malware type

Spitmo 191 55 704

BankBot 136 224 581

Zitmo 142 531 837

SMSspy 131 1458 27540

Wroba 152 344 1004

FakeBank 151 1216 1887

Sandroid 61 830 5620

Binv 2 8 5

ZertSecurity 4 2 7

Citmo 3 42 10

Benign 103 2719 10189

All 1076 7429(12.4%) 48384(80.5%)

Clusters with
different

malware type
All - 938(1.6%) 3306(5.5%)

39

6 Discussion

One major challenge we faced in our work was defining what should be considered as a code clone,

especially when analyzing a code that is obfuscated and traditional heuristics can not be employed. When

studying previous works done on analyzing obfuscated programs, and code clone detection, we clearly noticed

a semantical gap. Most of the code clone detection works we studied defined code clones as code pieces that

essentially look similar in some form and do not focus on the behaviour of the code which makes those

approaches prone to obfuscation. On the other hand, proposed obfuscation-resistant approaches in the

literature analyze a given code very abstractly and only focused at the captured behavioural features of some

code at runtime such as invoked system calls or the captured I/O behaviour which is not particularly useful

for finding code clones and measuring code reuse. In our approach we proposed analysis of execution traces

of to achieve an automated and obfuscation-resistant code clone detection approach that does not assume

anything about a given code. We also implemented a prototype of Smali simulation environment that can

generate possible execution traces of an Android application, enhanced with its runtime metadata. Finally,

we proposed a code clone detection approach for extracting semantic code clones which can further be used

for other applications such as Android library detection and profiling.

The current implementation of our approach suffers from three limitations: limited code coverage, scala-

bility and false-positive cases.

Limited code coverage: Currently, the most significant issue of our work is its limited code coverage,

especially for applications that use Android support library classes. This is caused by the fact that our

approach uses ambiguous value as all of its inputs and thus traverse undesired paths. In addition, during

simulation, when a condition is checked against an ambiguous value, the ambiguous value does not capture

the result of the checked condition and thus does not keep track of its corresponding constraints. This can

lead to some invalid paths being taken during simulation.

Scalability: Another limitation of our approach is its needed computational resources, its analysis speed

and scalability. Due to the fact that our approach is a hybrid approach that tries to incorporate elements

of dynamic analysis, it makes it slower than most static analysis approaches, however, it is faster and more

efficient than most purely dynamic approaches since it can analyze any method thrown at it and does not

require all the given inputs to be completely valid and can abstract over the I/O operations executed in an

Android application. During our experiments we noticed that our tool performs slowly when dynamically

creating classes that contain very large number of methods (e.g. 2000 methods) which can happen in obfus-

cated applications. This bottleneck is caused by how ByteBuddy create and dynamically loads classes into

40

the system. However, we believe that this is a matter of implementation and our tool can be significantly

optimized in the future.

False-positives: Our proposed approach can lead to false-positive cases, particularly if two user-defined

code samples use a common library. This is caused by the fact that the execution traces of two methods

share many similarities because of the shared logic from the library while the code samples defined by the

user might be vastly different. This was a trade-off we deliberately chose to achieve obfuscation resistance

against common obfuscation techniques such as method outlining, without assuming anything about a given

code and any possible obfuscations applied to it.

41

7 Conclusion

Code clone detection is a challenging form of software analysis that is widely used in both software

development and software security. From a software security perspective, code clone detection can be used

for a variety of use cases such as malware detection and classification or vulnerability detection. However,

one key challenge for effective code clone detection in binary code is the presence of code obfuscation. Due

to ease of reversing and modifying Dalvik byte-code, code obfuscation has become widely used in Android

applications for software protection purposes. Even though code obfuscation is a very common form of

software protection, it also plays an important role in the creation of new malware as it helps malware

authors to hide the logic and intents of their created samples.

Due to the fact that purely static approaches do not perform well on obfuscated code and dynamic

approaches are very expensive to perform and automate, we proposed a hybrid approach that tries to combine

the best of both worlds. In this work, we introduced an obfuscation-resistant code clone detection approach

based on two key ideas, first is the analysis of execution traces of Android apps instead of their code, and

second, using Smali simulation to generate possible execution traces for an app. Using these techniques we

were able to achieve resistance against different types of obfuscation techniques used for Android applications

even for more challenging obfuscation techniques such as string encryption and reflection. In this work, we

confirmed that code simulation and the analysis of execution traces are effective techniques for overcoming

code obfuscation. However, they can have their own drawbacks such as being more expensive than most

common static analysis techniques and suffering from the code coverage problem.

7.1 Future work

This research can be extended in many other interesting directions such as increasing the overall performance

and accuracy, improving scalability, and applying the proposed approach for different application analysis

purposes. In this section, some of these possible directions are enumerated.

• Adding input generation : The addition of input generations techniques can be used when simulating

Smali methods. Improving input generation can increase the accuracy and obfuscation resistance of

our approach. Sophisticated input generation techniques are generally expensive to perform, however,

since our approach can also take an ambiguous value as an input, this becomes less challenging since

sophisticated input generation can be used only for some specific arguments which are critical to the

overall performance of our approach.

42

• Integration with SMT solver: One limitation of the ambiguous value is that as a random path

is taken based on the result of some condition on an ambiguous value, the corresponding constraint

is not captured. By capturing constraints of ambiguous values along different execution paths we can

significantly reduce the number of invalid execution paths generated. By integrating our approach with

an SMT solver, much more information can also be inferred from Android applications such as on what

conditions a code is executed.

• Improving scalability: By optimizing the simulation process and how execution traces are analyzed

and compared the speed and scalability of our approach can be greatly improved. One key challenge

of code clone detection on large datasets is scalability. This issue can be improved by using different

heuristics such as the size of code in order to reduce the number of comparisons needed to be made by

eliminating improbable clones.

• Android library profiling: Our proposed approach can be leveraged for the detection of Android

library codes in presence of code obfuscation. Detection of Android library codes is beneficial since

it can be used to separate user-defined code, improve application comprehension, and even vulnera-

bility detection. Android libraries are bundled in an apk file during the compile process which after

obfuscation becomes very hard to distinguish from user-defined code.

• Vulnerability detection: Code clone detection has been proved to be an effective way for finding

software vulnerabilities in x86 programs, however, this has also been left unexplored for Android. An

effective code clone detection approach that can operate on binary code instead of source code and

is resilient to obfuscation can be further used for vulnerability discovery on applications present in

Android markets.

43

References

[1] Android runtime (art) and dalvik : Android open source project. https://source.android.com/

devices/tech/dalvik. Accessed: 2021-11-01.

[2] Application fundamentals : Android developers. https://developer.android.com/guide/

components/fundamentals. Accessed: 2021-11-01.

[3] Platform architecture : Android developers. https://developer.android.com/guide/platform. Ac-
cessed: 2021-11-01.

[4] Junaid Akram, Zhendong Shi, Majid Mumtaz, and Ping Luo. Droidcc: A scalable clone detection
approach for android applications to detect similarity at source code level. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), volume 1, pages 100–105. IEEE, 2018.

[5] Shahid Alam, Ryan Riley, Ibrahim Sogukpinar, and Necmeddin Carkaci. Droidclone: Detecting android
malware variants by exposing code clones. In 2016 Sixth International Conference on Digital Information
and Communication Technology and its Applications (DICTAP), pages 79–84. IEEE, 2016.

[6] Hakam W Alomari and Matthew Stephan. Srcclone: Detecting code clones via decompositional slicing.
In Proceedings of the 28th International Conference on Program Comprehension, pages 274–284, 2020.

[7] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo. Obfuscapk: An open-
source black-box obfuscation tool for android apps. SoftwareX, 11:100403, 2020.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[9] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, and Francesco Mercaldo. Detection
of obfuscation techniques in android applications. In Proceedings of the 13th International Conference
on Availability, Reliability and Security, pages 1–9, 2018.

[10] Vivek Balachandran, Darell JJ Tan, Vrizlynn LL Thing, et al. Control flow obfuscation for android
applications. Computers & Security, 61:72–93, 2016.

[11] Richard Baumann, Mykolai Protsenko, and Tilo Müller. Anti-proguard: Towards automated deobfusca-
tion of android apps. In Proceedings of the 4th Workshop on Security in Highly Connected IT Systems,
pages 7–12, 2017.

[12] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation of
android applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 343–355, 2016.

[13] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. Horndroid: Practical and sound static analysis
of android applications by smt solving. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 47–62. IEEE, 2016.

[14] Jian Chen, Manar H Alalfi, Thomas R Dean, and Ying Zou. Detecting android malware using clone
detection. Journal of Computer Science and Technology, 30(5):942–956, 2015.

[15] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalability simultaneously in detecting
application clones on android markets. In Proceedings of the 36th International Conference on Software
Engineering, pages 175–186, 2014.

44

https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/platform

[16] Taejoo Cho, Hyunki Kim, and Jeong Hyun Yi. Security assessment of code obfuscation based on dynamic
monitoring in android things. Ieee Access, 5:6361–6371, 2017.

[17] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transformations.
Technical report, Department of Computer Science, The University of Auckland, New Zealand, 1997.

[18] James R Cordy and Chanchal K Roy. The nicad clone detector. In 2011 IEEE 19th International
Conference on Program Comprehension, pages 219–220. IEEE, 2011.

[19] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detecting cloned applications on
android markets. In European Symposium on Research in Computer Security, pages 37–54. Springer,
2012.

[20] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detecting cloned applications on
android markets. In European Symposium on Research in Computer Security, pages 37–54. Springer,
2012.

[21] Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scalable detection of semantically simi-
lar android applications. In European Symposium on Research in Computer Security, pages 182–199.
Springer, 2013.

[22] Martijn de Vos and Johan Pouwelse. Astana: Practical string deobfuscation for android applications
using program slicing. arXiv preprint arXiv:2104.02612, 2021.

[23] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Kam1n0: Mapreduce-based assembly
clone search for reverse engineering. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 461–470, 2016.

[24] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 472–489. IEEE, 2019.

[25] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao Xu, Kai Chen,
XiaoFeng Wang, and Kehuan Zhang. Understanding android obfuscation techniques: A large-scale in-
vestigation in the wild. In Raheem Beyah, Bing Chang, Yingjiu Li, and Sencun Zhu, editors, Security and
Privacy in Communication Networks, pages 172–192, Cham, 2018. Springer International Publishing.

[26] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. Blanket execution: Dynamic sim-
ilarity testing for program binaries and components. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 303–317, San Diego, CA, August 2014. USENIX Association.

[27] Rochelle Elva and Gary T Leavens. Jsctracker: A semantic clone detection tool for java code. Technical
report, University of Central Florida, Dept. of EECS, CS division, 2012.

[28] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre: Efficient cross-architecture
identification of bugs in binary code. In NDSS, volume 52, pages 58–79, 2016.

[29] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad Debbabi. Binclone:
Detecting code clones in malware. In 2014 Eighth International Conference on Software Security and
Reliability (SERE), pages 78–87. IEEE, 2014.

[30] Mohammad Reza Farhadi, Benjamin CM Fung, Yin Bun Fung, Philippe Charland, Stere Preda, and
Mourad Debbabi. Scalable code clone search for malware analysis. Digital Investigation, 15:46–60, 2015.

[31] Felix C Freiling, Mykola Protsenko, and Yan Zhuang. An empirical evaluation of software obfuscation
techniques applied to android apks. In International Conference on Security and Privacy in Communi-
cation Networks, pages 315–328. Springer, 2014.

45

[32] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook Choi. Adrob: Ex-
amining the landscape and impact of android application plagiarism. In Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys ’13, page 431–444,
New York, NY, USA, 2013. Association for Computing Machinery.

[33] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. Droidkin: Lightweight detection of android
apps similarity. In International Conference on Security and Privacy in Communication Networks, pages
436–453. Springer, 2014.

[34] Yoshiki Higo and Shinji Kusumoto. Code clone detection on specialized pdgs with heuristics. In 2011
15th European Conference on Software Maintenance and Reengineering, pages 75–84. IEEE, 2011.

[35] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. Binary code clone detection across architec-
tures and compiling configurations. In 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), pages 88–98. IEEE, 2017.

[36] Md R Islam and Minhaz F Zibran. A comparative study on vulnerabilities in categories of clones
and non-cloned code. In 2016 IEEE 23rd international conference on software analysis, evolution, and
reengineering (SANER), volume 3, pages 8–14. IEEE, 2016.

[37] Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: finding unpatched code clones in entire os
distributions. In 2012 IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2012.

[38] Jihwan Jeong, Dongwon Seo, Chanyoung Lee, Jonghoon Kwon, Heejo Lee, and J. Milburn. Mys-
teryChecker: Unpredictable attestation to detect repackaged malicious applications in Android. In
Malicious and Unwanted Software: The Americas (MALWARE), 2014 9th International Conference on,
pages 50–57, Oct 2014.

[39] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and accurate
tree-based detection of code clones. In 29th International Conference on Software Engineering (ICSE’07),
pages 96–105. IEEE, 2007.

[40] Andi Fitriah A Kadir, Natalia Stakhanova, and Ali A Ghorbani. An empirical analysis of android
banking malware. Protecting mobile networks and devices: challenges and solutions, 209, 2016.

[41] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):654–670, 2002.

[42] Iman Keivanloo, Chanchal K Roy, and Juergen Rilling. Sebyte: Scalable clone and similarity search for
bytecode. Science of Computer Programming, 95:426–444, 2014.

[43] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source code. In Patrick
Cousot, editor, Static Analysis, pages 40–56, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[44] Aleksandrina Kovacheva. Efficient code obfuscation for android. In International Conference on Advances
in Information Technology, pages 104–119. Springer, 2013.

[45] Renuka Kumar and Anjana Mariam Kurian. A systematic study on static control flow obfuscation
techniques in java. arXiv preprint arXiv:1809.11037, 2018.

[46] Li Li, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, David Lo, and Lorenzo
Cavallaro. Understanding android app piggybacking: A systematic study of malicious code grafting.
IEEE Trans. Inf. Forensics Secur., 12(6):1269–1284, 2017.

[47] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A deep learning-
based clone detection approach. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 249–260. IEEE, 2017.

46

[48] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. Revisiting
android reuse studies in the context of code obfuscation and library usages. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 242–251, 2014.

[49] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. Stealth attacks: An
extended insight into the obfuscation effects on android malware. Computers & Security, 51:16–31, 2015.

[50] Jan M Memon, Asghar Mughal, Faisal Memon, et al. Preventing reverse engineering threat in java using
byte code obfuscation techniques. In 2006 International Conference on Emerging Technologies, pages
689–694. IEEE, 2006.

[51] Omid Mirzaei, José Maŕıa de Fuentes, J Tapiador, and Lorena Gonzalez-Manzano. Androdet: An
adaptive android obfuscation detector. Future Generation Computer Systems, 90:240–261, 2019.

[52] Alireza Mohammadinodooshan, Ulf Kargén, and Nahid Shahmehri. Robust detection of obfuscated
strings in android apps. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security,
pages 25–35, 2019.

[53] Michele Pasetto, Niccolò Marastoni, and Mila Dalla Preda. Revealing similarities in android malware
by dissecting their methods. In 2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pages 625–634. IEEE, 2020.

[54] Mykola Protsenko and Tilo Müller. Pandora applies non-deterministic obfuscation randomly to an-
droid. In 2013 8th International conference on malicious and unwanted software:” The Ameri-
cas”(MALWARE), pages 59–67. IEEE, 2013.

[55] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V Lopes. Oreo: De-
tection of clones in the twilight zone. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages
354–365, 2018.

[56] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. Sourcerercc:
Scaling code clone detection to big-code. In Proceedings of the 38th International Conference on Software
Engineering, pages 1157–1168, 2016.

[57] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using machine learning. In 2016 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), pages 1024–1028.
IEEE, 2016.

[58] Sonatype. 2017 DevSecOps Community Survey of 2,292 IT professionals. Technical report, Sonatype,
8161 Maple Lawn Blvd 250, Fulton, MD 20759, 2017.

[59] Jeffrey Svajlenko and Chanchal K Roy. Evaluating clone detection tools with bigclonebench. In 2015
IEEE international conference on software maintenance and evolution (ICSME), pages 131–140. IEEE,
2015.

[60] Zoran urić and Dragan Gašević. A source code similarity system for plagiarism detection. The Computer
Journal, 56(1):70–86, 2013.

[61] Yan Wang and Atanas Rountev. Who changed you? obfuscator identification for android. In 2017
IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft),
pages 154–164. IEEE, 2017.

[62] Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. ACM Transactions on Privacy and
Security (TOPS), 21(3):1–32, 2018.

[63] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick Traynor, and Sascha Fahl.
A large scale investigation of obfuscation use in google play. In Proceedings of the 34th Annual Computer
Security Applications Conference, pages 222–235, 2018.

47

[64] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code
fragments for code clone detection. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 87–98. IEEE, 2016.

[65] Rafael Winterhalte. Byte buddy - runtime code generation for the java virtual machine. https://

bytebuddy.net.

[66] Jun Yang, Yu Xiong, and Jinxin Ma. A function level java code clone detection method. In 2019
IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
volume 1, pages 2128–2134. IEEE, 2019.

[67] Shouguo Yang, Long Cheng, Yicheng Zeng, Zhe Lang, Hongsong Zhu, and Zhiqiang Shi. Asteria:
Deep learning-based ast-encoding for cross-platform binary code similarity detection. 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Jun 2021.

[68] WooJong Yoo, Myeongju Ji, MinKoo Kang, and Jeong Hyun Yi. String deobfuscation scheme based on
dynamic code extraction for mobile malwares. IT Convergence Practice, 4(2):1–8, 2016.

[69] Geunha You, Gyoosik Kim, Jihyeon Park, Seong-je Cho, and Minkyu Park. Reversing obfuscated control
flow structures in android apps using redex optimizer. 2020.

[70] Dongjin Yu, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao Wang, Wei Yang, and Wei Yan. Detecting java
code clones with multi-granularities based on bytecode. In 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 317–326. IEEE, 2017.

[71] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection. In 7th ACM Conference on WiSec, Ox-
ford, United Kingdom, 2014.

[72] Haibo Zhang and Kouichi Sakurai. A survey of software clone detection from security perspective. IEEE
Access, 9:48157–48173, 2021.

[73] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone applications in
third-party android marketplaces. In Proceedings of the Second ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY ’12, page 317–326, New York, NY, USA, 2012. Association for
Computing Machinery.

48

https://bytebuddy.net
https://bytebuddy.net

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Android Architecture
	Android Applications
	Code Obfuscation
	Code Clone Detection

	Literature Review
	Code Obfuscation
	Code Clone Detection
	Code clone detection application in security

	Methodology
	Overview
	Entry Point Extraction
	Execution Simulation
	Mirroring class generation and loading
	Selecting methods for partial execution

	Execution Trace Analysis
	Nested execution trace extraction
	Execution trace simplification
	Important instruction extraction
	Slice and fragment extraction

	Code clone detection
	Method-level code clone detection
	Slice-level code clone detection

	Validation and Experiments
	Setup configuration
	Dataset creation
	Code clone detection validation
	Obfuscation resistance validation
	Code clone detection among all applications
	Comparative analysis
	Malware detection using code clone fragments

	Discussion
	Conclusion
	Future work

	References

