19 research outputs found

    ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora

    Get PDF
    This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based on cosine similar- ity scores. Two sets of word embedding mod- els were trained separately on two specialised corpora: a medical corpus and a music indus- try corpus. Our system scored highest in the medical domain among the competing unsu- pervised systems but performed poorly on the music industry domain. Our approach does not depend on any external data other than raw specialised corpora

    Hypernym Detection Using Strict Partial Order Networks

    Full text link
    This paper introduces Strict Partial Order Networks (SPON), a novel neural network architecture designed to enforce asymmetry and transitive properties as soft constraints. We apply it to induce hypernymy relations by training with is-a pairs. We also present an augmented variant of SPON that can generalize type information learned for in-vocabulary terms to previously unseen ones. An extensive evaluation over eleven benchmarks across different tasks shows that SPON consistently either outperforms or attains the state of the art on all but one of these benchmarks.Comment: 8 page

    FinMatcher at FinSim-2: hypernym detection in the financial services domain using knowledge graphs

    Get PDF
    This paper presents the FinMatcher system and its results for the FinSim 2021 shared task which is co-located with the Workshop on Financial Technology on the Web (FinWeb) in conjunction with The Web Conference. The FinSim-2 shared task consists of a set of concept labels from the financial services domain. The goal is to find the most relevant top-level concept from a given set of concepts. The FinMatcher system exploits three publicly available knowledge graphs, namely WordNet, Wikidata, and WebIsALOD. The graphs are used to generate explicit features as well as latent features which are fed into a neural classifier to predict the closest hypernym

    Knowledge-based approaches to producing large-scale training data from scratch for Word Sense Disambiguation and Sense Distribution Learning

    Get PDF
    Communicating and understanding each other is one of the most important human abilities. As humans, in fact, we can easily assign the correct meaning to the ambiguous words in a text, while, at the same time, being able to abstract, summarise and enrich its content with new information that we learned somewhere else. On the contrary, machines rely on formal languages which do not leave space to ambiguity hence being easy to parse and understand. Therefore, to fill the gap between humans and machines and enabling the latter to better communicate with and comprehend its sentient counterpart, in the modern era of computer-science's much effort has been put into developing Natural Language Processing (NLP) approaches which aim at understanding and handling the ambiguity of the human language. At the core of NLP lies the task of correctly interpreting the meaning of each word in a given text, hence disambiguating its content exactly as a human would do. Researchers in the Word Sense Disambiguation (WSD) field address exactly this issue by leveraging either knowledge bases, i.e. graphs where nodes are concept and edges are semantic relations among them, or manually-annotated datasets for training machine learning algorithms. One common obstacle is the knowledge acquisition bottleneck problem, id est, retrieving or generating semantically-annotated data which are necessary to build both semantic graphs or training sets is a complex task. This phenomenon is even more serious when considering languages other than English where resources to generate human-annotated data are scarce and ready-made datasets are completely absent. With the advent of deep learning this issue became even more serious as more complex models need larger datasets in order to learn meaningful patterns to solve the task. Another critical issue in WSD, as well as in other machine-learning-related fields, is the domain adaptation problem, id est, performing the same task in different application domains. This is particularly hard when dealing with word senses, as, in fact, they are governed by a Zipfian distribution; hence, by slightly changing the application domain, a sense might become very frequent even though it is very rare in the general domain. For example the geometric sense of plane is very frequent in a corpus made of math books, while it is very rare in a general domain dataset. In this thesis we address both these problems. Inter alia, we focus on relieving the burden of human annotations in Word Sense Disambiguation thus enabling the automatic construction of high-quality sense-annotated dataset not only for English, but especially for other languages where sense-annotated data are not available at all. Furthermore, recognising in word-sense distribution one of the main pitfalls for WSD approaches, we also alleviate the dependency on most frequent sense information by automatically inducing the word-sense distribution in a given text of raw sentences. In the following we propose a language-independent and automatic approach to generating semantic annotations given a collection of sentences, and then introduce two methods for the automatic inference of word-sense distributions. Finally, we combine the two kind of approaches to build a semantically-annotated dataset that reflect the sense distribution which we automatically infer from the target text

    Fully-unsupervised embeddings-based hypernym discovery

    Get PDF
    Funding: Supported in part by Sardegna Ricerche project OKgraph (CRP 120) and MIUR MIUR PRIN 2017 (2019-2022) project HOPE—High quality Open data Publishing and Enrichment.Peer reviewedPublisher PD

    Meemi: A Simple Method for Post-processing and Integrating Cross-lingual Word Embeddings

    Get PDF
    Word embeddings have become a standard resource in the toolset of any Natural Language Processing practitioner. While monolingual word embeddings encode information about words in the context of a particular language, cross-lingual embeddings define a multilingual space where word embeddings from two or more languages are integrated together. Current state-of-the-art approaches learn these embeddings by aligning two disjoint monolingual vector spaces through an orthogonal transformation which preserves the structure of the monolingual counterparts. In this work, we propose to apply an additional transformation after this initial alignment step, which aims to bring the vector representations of a given word and its translations closer to their average. Since this additional transformation is non-orthogonal, it also affects the structure of the monolingual spaces. We show that our approach both improves the integration of the monolingual spaces as well as the quality of the monolingual spaces themselves. Furthermore, because our transformation can be applied to an arbitrary number of languages, we are able to effectively obtain a truly multilingual space. The resulting (monolingual and multilingual) spaces show consistent gains over the current state-of-the-art in standard intrinsic tasks, namely dictionary induction and word similarity, as well as in extrinsic tasks such as cross-lingual hypernym discovery and cross-lingual natural language inference.Comment: 22 pages, 2 figures, 9 tables. Preprint submitted to Natural Language Engineerin
    corecore