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Abstract

Communicating and understanding each other is one of the most important human

abilities. As humans, in fact, we can easily assign the correct meaning to the

ambiguous words in a text, while, at the same time, being able to abstract, summarise

and enrich its content with new information that we learned somewhere else. On the

contrary, machines rely on formal languages which do not leave space to ambiguity

hence being easy to parse and understand. Therefore, to fill the gap between humans

and machines and enabling the latter to better communicate with and comprehend

its sentient counterpart, in the modern era of computer-science’s much effort has

been put into developing Natural Language Processing (NLP) approaches which

aim at understanding and handling the ambiguity of the human language.

At the core of NLP lies the task of correctly interpreting the meaning of each

word in a given text, hence disambiguating its content exactly as a human would do.

Researchers in the Word Sense Disambiguation (WSD) field address exactly this

issue by leveraging either knowledge bases, i.e. graphs where nodes are concept and

edges are semantic relations among them, or manually-annotated datasets for training

machine learning algorithms. One common obstacle is the knowledge acquisition

bottleneck problem, id est, retrieving or generating semantically-annotated data

which are necessary to build both semantic graphs or training sets is a complex

task. This phenomenon is even more serious when considering languages other

than English where resources to generate human-annotated data are scarce and

ready-made datasets are completely absent. With the advent of deep learning this

issue became even more serious as more complex models need larger datasets in

order to learn meaningful patterns to solve the task.

Another critical issue in WSD, as well as in other machine-learning-related fields,

is the domain adaptation problem, id est, performing the same task in different

application domains. This is particularly hard when dealing with word senses, as,

in fact, they are governed by a Zipfian distribution; hence, by slightly changing the

application domain, a sense might become very frequent even though it is very rare

in the general domain. For example the geometric sense of plane is very frequent in

a corpus made of math books, while it is very rare in a general domain dataset.

In this thesis we address both these problems. Inter alia, we focus on relieving

the burden of human annotations in Word Sense Disambiguation thus enabling the
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automatic construction of high-quality sense-annotated dataset not only for English,

but especially for other languages where sense-annotated data are not available at

all. Furthermore, recognising in word-sense distribution one of the main pitfalls

for WSD approaches, we also alleviate the dependency on most frequent sense

information by automatically inducing the word-sense distribution in a given text of

raw sentences.

In the following we propose a language-independent and automatic approach to

generating semantic annotations given a collection of sentences, and then introduce

two methods for the automatic inference of word-sense distributions. Finally, we

combine the two kind of approaches to build a semantically-annotated dataset that

reflect the sense distribution which we automatically infer from the target text.
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Chapter 1

Introduction

Word Sense Disambiguation (WSD) is one of the oldest problem which resides at

the basis of Natural Language Processing. Indeed, it provides explicit semantic

annotations to the words in a text, which may be beneficial to other down-stream

applications, such as Machine Translations (Pu et al., 2018), Information Extraction

(Delli Bovi, Espinosa Anke, and Navigli, 2015a), etc. Weaver (1949) was the first

formulating it as a computational task where, given N tokens surrounding a target

word w, a system has to choose the w’s meaning that best fits the context. While

seemingly simple at first sight, Mallery (1988) and Ide and Véronis (1993) described

WSD as an AI-complete problem, i.e. its resolution is central to building intelligent

computers. Its complexity mostly derives from the fact that disambiguating a word

often requires prior knowledge that is only implicitly expressed in the text (Navigli,

2009). Therefore, to provide machines with such information – hence enabling them

to either learn or reason over it – different knowledge representations have been

proposed, inter alia: knowledge bases and annotated corpora.

A knowledge base is a graph having concepts as nodes that are in their turn

connected via different kinds of connections which can be either typed, i.e., express-

ing a specific relation such as hypernymy, meronymy, etc., or untyped, i.e., simply

expressing relatedness. For example, the concept of MUG (a large cup, typically

cylindrical with a handle.) may be connected via a meronymy relation to HANDLE

(he appendage to an object that is designed to be held in order to use or move

it) and via a related to edge to COFFEE (A beverage consisting of an infusion of

ground coffee beans). Hence, we can distinguish between two types of relations:

syntagmatic, which connect mainly co-occuring concepts, and paradigmatic, which,
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instead, connect concepts that can be substituted with each other. The latter are

encoded into ontologies, i.e., structures where concepts are connected to each other

via formal semantic relations. On the contrary, semantic networks (a.k.a. knowledge

graphs, semantic graphs, knowledge bases) follow a more relaxed definition and

encompass both types of relations. Therefore, building a knowledge base from

scratch implies different steps each with its difficulties:

1. Select the set of words and build the set of senses (comprising definition and

usage examples) that those words may assume in whatever text.

2. Identify the set of relations that should be included in the resource.

3. Connect the senses previously defined via one or more relations.

Each of these steps, depending on the desired size of the final resource, may take a

long time and that is why fully-manual knowledge bases are rare and most of the

time of modest size.

WordNet (Fellbaum, 1998a) is one of the most famous and used resources for

English comprising 117,798 synsets, i.e. set of synonyms, connected via typed

relations1 for 155,287 distinct lemmas covering the four most important Part-Of-

Speech (POS), namely: nouns, verbs, adverbs and adjectives2. Since WordNet is

fully manual it is of high quality, however it has three main drawbacks: it does

not cover most of the named entities, it mainly comprises paradigmatic relations

and it covers only English lemmas. On the contrary, Wikipedia, a collaborative

electronic encyclopedia, covers mainly nouns and named entities connected only

via edges expressing relatedness. Thanks to 270,000 active contributors since 2001,

it counts now more than 40M articles in 280 different languages. Hence, it took 18
years and hundred-thousand contributors to reach the current state, nevertheless, it

lacks non nominal concepts, such as those expressing actions (there is no Wikipedia

article for the concept RUN (move fast by using one’s feet)), and typed relations.

Moreover, Wikipedia does not offer a unified representation for concepts that are

expressed in different languages, instead it has separate pages expressing the same

concept for each language. To overcome both WordNet and Wikipedia issues, Nav-

igli and Ponzetto (2012) introduced BabelNet, a huge knowledge base created by
1The complete list of WordNet relations (pointers) can be found at https://wordnet.

princeton.edu/documentation/wninput5wn
2Statistics for version 3.1 of WordNet

https://wordnet.princeton.edu/documentation/wninput5wn
https://wordnet.princeton.edu/documentation/wninput5wn
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automatically merging many different lexical resources, such as WordNet, Open

Multilingual WordNet, Wikipedia, Wikidata, etc., in a unified multilingual encyclo-

pedic dictionary where lemmas representing the same concept in different languages

are clustered together in the same synset. Thanks to its intrinsic multilingual nature

it makes it easy to scale over new languages as long as they are integrated into the

knowledge base. Moreover, the relations extracted from Wikipedia expressing the re-

latedness between two concepts integrate well WordNet’s paradigmatic connections,

thus making it a more complete resource.

BabelNet inspired and lays as underlying knowledge base and sense inventory

in many works in the field of lexical semantics, inter alia, Moro, Raganato, and Nav-

igli (2014a, Babelfy), Camacho-Collados, Pilehvar, and Navigli (2015, NASARI),

Iacobacci, Pilehvar, and Navigli (2015, SensEmbed), Pasini and Navigli (2017,

Train-O-Matic), Bovi et al. (2017, EuroSense). Furthermore it paved the way for

multilingual and language-agnostic Word Sense Disambiguation, as proved by Moro,

Raganato, and Navigli (2014b).

On the other part of the spectrum there are sense-annotated corpora which

enclose the knowledge into unstructured texts. The problem, this time, resides

mainly in the Zipfian distribution of the senses in a corpus, which makes it unlikely

to find sentences expressing the less frequent senses. This leads to build incomplete

corpora which fail to cover a meaningful set of senses and words (Kilgarriff and

Rosenzweig, 2000; Atkins, 1993; Ng and Lee, 1996). The two biggest and most used

corpora are OntoNotes (Hovy et al., 2006) and SemCor (Miller et al., 1993a). The

former comprises 233,616 words annotated with roughly 12,000 WordNet senses and

2,475,987 tokens in total. The latter, instead, is divided in 352 documents for a total

of 802,443 tokens, 226,036 of which are associated with roughly 33,000 WordNet

senses. Even though SemCor comprises a slightly lower number of annotated tokens,

it covers 3 times more senses than OntoNotes, and, in fact, it is the most used corpus

for WSD.

Nevertheless, both corpora have a limited coverage of word senses, thus limiting

the supervised models in the number of senses they can classify. Moreover, SemCor

has never been updated in terms of covered senses or words since its first release

(1993), hence, the sense distribution may not reflect anymore the current one. For

example, consider the noun pipe, its most frequent sense in SemCor is PIPE (a tube

with a small bowl at one end), while nowadays it would be more natural to think
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about PIPE (a long tube made of metal or plastic that is used to carry water or oil

or gas etc.). This affects the performance and generalisation power of supervised

models, which learn an outdated distribution, and thus, perform poorly on new and

unseen data.

The Knowledge Acquisition Bottleneck Building both these kind of knowledge

resources, i.e., knowledge bases and sense-annotated corpora, is very expensive in

terms of time and money (Ng and Lee, 1996). In fact, this problem is known as

the knowledge acquisition bottleneck problem. Resources for WSD are particularly

affected by this issue for several reasons:

1. The need for linguistic expertise.

2. Each language of interest needs separate efforts and experts.

3. The knowledge acquired for a domain cannot be transferred easily to other

domains.

4. The labels, i.e., senses, are typically in the order of the hundreds of thousands,

hence, even if one would like to collect just ten examples for each label she

would ends up annotating hundreds of thousands of instances.

Therefore, while on the one hand, BabelNet attempts to mitigate the knowledge

acquisition bottleneck for knowledge bases by taking the best of many worlds (i.e.

WordNet, Wikipedia, Omegawiki, etc.) and automatically merging their senses

across different languages, on the other hand, the knowledge acquisition bottleneck

problem for sense-annotated corpora have been tackled by different automatic

and semi-automatic approaches that have been proposed to relieve the burden of

manual annotations. Taghipour and Ng (2015, OMSTI) and Bovi et al. (2017,

EuroSense) exploited parallel data, e.g., United Nations Parallel Corpus (Ziemski,

Junczys-Dowmunt, and Pouliquen, 2016) and EuroParl (Koehn, 2005a), for building

semantic-annotated data for either English and each language comprised in the

parallel corpus respectively. In an alternative approach, Raganato, Delli Bovi, and

Navigli (2016, SEW) additionally avoided the need of parallel corpora as well and

developed a set of heuristics that, by exploiting the links available in a Wikipedia

page, annotate unlinked words with a BabelNet synset. However, these attempts
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failed to enable supervised models to perform competitively with knowledge-based

methods on multilingual all-words WSD tasks, inasmuch their data were either too

noisy (Eurosense) or not available at all for languages other than English (SEW).

Besides the knowledge acquisition bottleneck problem, which prevents easy

acquisition of statistically significant amount of data for each sense, hence making

training data sparse, another important issue affecting the WSD field is the Zipfian

shape of sense distributions.

Word Sense Distributions Sense Frequency distributions follow a Zipfian dis-

tribution (McCarthy et al., 2007), thus, given a corpus of texts, a word would

typically have only one or two of its meanings occurring frequently, while many

other meanings would be rare or not appear at all. Moreover, the distribution highly

depends on the main topic expressed across the documents within the corpus. Indeed,

when changing domain, each sense frequency may drastically change. For example,

consider a corpus of texts built from travel magazines, the word plane will appear

mainly (if not all the time) in its airplane sense and very few times (if ever) in its

carpenter tool or geometric sense. On the opposite, when considering a corpus of

math books the frequency of plane senses changes completely. The geometric sense

will be the most frequent one while the others will be very rare. Hence, in addition

to the paucity of data, WSD models have to face the not easy challenge of handling

very skewed distributions of data which may drastically change according to the

corpus. This has a huge impact on supervised models, which, while excelling in

predicting the most frequent senses of words, achieve poor performance on least

frequent ones (Postma, Bevia, and Vossen, 2016a; Postma et al., 2016b). This is a

direct effect of sense distribution skewness and data sparsity, which contribute to

bias a supervised model towards the most frequent sense of a word, as it is one of

the few which has a meaningful amount of annotated data. For example, the sense

WORD (a unit of language that native speakers can identify.) appears more than 100
times in SemCor, while WORD (a brief statement.) less than 20. Hence, a model will

be able to effectively build a representation for the first sense of word, while, at the

same time, fail to correctly model its second meaning and the contexts it appears in.

Another issue deriving from the sense distribution skewness is the way a model

is tested. In fact, when the distributions in the training and test sets match, the

model will achieve excellent results (Postma, Bevia, and Vossen, 2016a). On the
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contrary, when those two diverge, also by a small factor, the performance will be

poor as we will show in the experimental part of this thesis. The sense distribution,

therefore, plays a key role in supervised as well as in knowledge-based WSD, as, in

fact, it influences the knowledge base connectivity, making the most frequent senses

more connected than the least frequent ones, hence raising their probability of being

chosen by a knowledge-based algorithm.

Despite the large impact that sense distributions have on WSD models, most

of the effort has been put only in recognising the predominant meaning of a word

(McCarthy et al., 2004; Bhingardive et al., 2015) and when it is advisable to output

the most frequent sense of a word (Jin et al., 2009). Bennett et al. (2016), instead,

was one of the few in the most recent years proposing a topic modelling approach

based on Lau et al. (2014) to estimate the distribution of word senses in a given

corpus, providing also a corpus for testing the quality of the induced distributions.

In this thesis we study both the aforementioned problems and propose different

approaches for tackling them. We first focus on the knowledge acquisition bottleneck

problem by studying the manual, semi-automatic and automatic resources available

for WSD and then proposing a language-independent approach for generating sense

annotations for a hundred-thousand sentences which lead a supervised model to

remarkable results, and enabling multilingual WSD for supervised models. Then, we

tackle the sense-distribution problem by proposing two knowledge-based approaches

for learning the distribution of senses given a corpus of raw texts. We prove they are

effective in capturing the high-level semantics of the input corpus and in correctly

predicting the probabilities of most word senses. We finally integrate the learned

distributions into our automatic approach for generating sense-annotated data, thus

making it aware of each sense probability of appearing in the corpus and making

it possible to shape the training data on the desired distribution. We show that the

empirical results obtained prove that the sense distribution is key for automatically

building high-quality sense-annotated datasets, especially when dealing with domain-

specific applications of WSD.

The remainder of the thesis is organised as follows: In Chapter 2 we discuss the

relevant works for this thesis ranging over several WSD subfields such as knowledge

acquisition, supervised and knowledge-based models for WSD. In Chapter 3 we

introduce basic concepts we use across the whole manuscript, while, in Chapter 4 we
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introduce Train-O-Matic (Pasini and Navigli, 2017), a knowledge-based approach for

disposing of human annotations and automatically generating hundreds of thousands

of sense-annotated examples for potentially any languages available in BabelNet.

In Chapter 5, we present EnDi and DaD, two knowledge-based and language-

independent methods for automatically inducing the distribution of words’ meanings

from a collection of raw texts. In Chapter 6 we couple Train-O-Matic with the

two sense-distribution learning approaches that we mentioned above and study the

impact that automatically-generated datasets tailored on a specific distribution have

on a supervised model. Finally, in Chapter 7 we give in-depth insights on all the data

produced in our works and put at the research community disposal and in Chapter 8

we draw the conclusions and the possible future directions this work may lead.

1.1 Objectives

In this Section we briefly summarise and make it clear the objectives of the thesis.

In this work, we focus on mitigating the knowledge acquisition bottleneck problem

in WSD and to provide a valuable solution for overcoming the paucity of sense-

annotated data. Then we study the word senses’ distribution and introduce two

knowledge-based approaches to automatically learn them given only one or more

documents of raw texts as input. Finally, we study the impact of automatically

induced distribution of senses on the creation of sense-annotated data and the

possibility of cutting the dataset distribution on a specific domain or collection of

input raw text documents. Therefore, the main objectives of this thesis are:

• Study the knowledge acquisition bottleneck problem in English and multilin-

gual WSD, with the aim of mitigating it leveraging knowledge bases (Chapter

4).

• The design of unsupervised approaches for automatically inducing the word

sense distribution within a given corpus of raw text (Chapter 5).

• The study of the impact that the word senses’ distribution of the training set

has on a supervised model (Chapter 6).
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1.2 Contributions

This thesis provides the following significant contributions to each objective:

• Train-O-Matic (Pasini and Navigli, 2017): we present a knowledge-based ap-

proach for automatically generating sense-annotated datasets for any language

supported by BabelNet (Chapter 4). We show that a supervised model trained

on Train-O-Matic attains better performance across several all-words WSD

tasks than when trained on other automatic and semi-automatic alternatives

and on the same ballpark with those achieved when using manually-curated

data as training set.

• Sense distribution learning (Pasini and Navigli, 2018): we present EnDi &

DaD, two knowledge-based approaches for automatically inducing the word

senses’ distribution given as input a corpus of raw text (Chapter 5). Our

approaches are language independent and outperforms all their competitors

on the intrinsic and extrinsic evaluations.

• Target-text driven WSD (Pasini and Navigli, 2019): we incorporated the

two methods for inducing the distribution of word senses in Train-O-Matic

and fully automatise the process of generating datasets tailored on a given

document or set of documents (Chapter 6). We show that, shaping the train-

ing set senses’ distribution on the one induced by EnDi or DaD results in

higher performance of the supervised model. Moreover, DaD proved to be a

valid alternative to the WordNet MFS especially on the domain-specific and

multilingual benchmarks.

1.2.1 Individual Contributions

I personally contributed to the design and the implementation of all the algorithms

and the evaluation setups presented in this thesis, as, in fact, I am the main author

and contributor of all the presented approaches and corresponding papers.

Published material not included in this thesis Other works, which did not con-

tribute directly to this thesis or done before starting the Ph.D. program, and are
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thus not included but represent valuable effort and contribution, are, in order of

publication:

• Two is bigger (and better) than one: the Wikipedia Bitaxonomy project (Flati

et al., 2014)

• MultiWiBi: The multilingual Wikipedia Bitaxonomy project (Flati et al.,

2016)

• SemEval-2018 Task 9: hypernym discovery (Camacho-Collados et al., 2018).

• Just “OneSeC” for Producing Multilingual Sense-Annotated Data (Scarlini,

Pasini, and Navigli, 2019)
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Chapter 2

Related Work

2.1 History in Brief

Word Sense Disambiguation (WSD) has been first formally introduced in 1949 by

Weaver, in the context of Machine Translation as the task of identifying the correct

meaning of a target word given its surrounding tokens. Following this definition, the

research community focused on answering the most basic questions raised by this

formulation such as the number of surrounding tokens needed to disambiguating

the central word correctly (Kaplan, 1950; Koutsoudas and Korfhage, 1956), or the

kind of features that would have a positive impact on the task (Reifler, 1955). These

preliminary studies laid the foundation for the first approaches to WSD, that, in the

beginning, were usually combined with methods for solving more general problems

such as text understanding. These leveraged the semantic networks available during

the 60s (Quillian, 1961; Masterman, 1961) and were based on psycholinguistics

studies. The latter, paved the way to the so-called connectionist methods (Ide

and Véronis, 1998), i.e., those considering the previously disambiguated words as

additional context to infer the meanings of the subsequent tokens (Collins and Loftus,

1975; Anderson, 1976). Despite the excitement towards this new research field, most

of the works were based on datasets that were very limited in terms of the number of

distinct words, meanings covered and domains of application. Hence, while on the

one hand it started becoming evident that WSD models needed increasingly more

data in order to generalise over new and previously unseen examples, on the other

hand, the knowledge acquisition bottleneck problem began to take shape, making
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it clear that gathering large sets of manually-annotated data was very expensive in

terms of both time and resources. For these reasons, the subsequent two decades (the

80s and the 90s) were devoted to the creation of comprehensive machine-readable

resources, such as thesauri, dictionaries and sense-annotated corpora (Miller et al.,

1990; Fellbaum, 1998a; Lenat, 1995a; Roget, 2000, first made available in digital

format during the 50s).

These new resources enabled new and more sophisticated approaches to WSD.

Lesk, in fact, introduced a dictionary-based algorithm in 1986 (Lesk, 1986) which,

given a sentence and a target word therein, it iterates over the target senses (i.e., the

possible senses in a dictionary for the target word) and, for each of them, counts

the number of overlapping tokens between the sense’s gloss and the input sentence.

Finally, the target word is disambiguated with the meaning corresponding to the

gloss with the highest number of common words. This approach was more efficient

than other expert systems available at that time (Granger, 1982; Sowa, 1983; Walker

and Amsler, 1986), as it only relied on the local context of a word and a list of glosses.

Moreover, it could be easily applied to a large number of texts. Therefore, exploiting

knowledge bases such as thesauri, dictionaries, etc. looked very promising and, to

stimulate further research on this topic, Miller et al. and Fellbaum developed the two

resources that would become, from a little later, the most used within the Word Sense

Disambiguation community and in other related areas: WordNet (Miller et al., 1990;

Fellbaum, 1998a) and SemCor (Miller et al., 1993a). WordNet is a lexical database

of senses where synonyms are grouped into synsets, which, in turn, are linked via

paradigmatic relations (i.e., hypernymy, meronymy, etc.). SemCor, instead, is a

subset of the Brown corpus (Kucera and Francis, 1967) where each content word

(noun, adjective, adverb or verb) is annotated with its WordNet sense. These two

resources, together, paved the way to the knowledge-based paradigm for Word Sense

Disambiguation and steered WSD research in the direction of enumerative lexicons,

opposing to Pustejovsky (1995), which was proposing a generative lexicon to induce

the possible meanings of a word in a specific context by means of hand-crafted rules.

Enumerative inventories, in fact, proved to offer a more flexible framework

for Word Sense Disambiguation inasmuch they allow to express the problem as

a classification one, where, given a target word and its context, one has to select

the most suitable sense among the possible ones. Despite the longstanding debate

about which of the two linguistic theories better describe how the human thought
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understands word meanings, enumerative lexicons have received more attention

and are, nowadays, the most used in WSD as well as in other research areas, e.g.,

in vision with ImageNet (Deng et al., 2009), question answering (Ferrucci et al.,

2010), etc. Nevertheless, WordNet, similarly to other enumerative lexicons, suffers

from the sense granularity problem, i.e., it makes very fine-grained distinctions

between senses. Just consider the noun line, WordNet enumerates 30 different senses

distinguishing, among others, between a line organised horizontally (a formation

of people or things one beside another) or vertically (a formation of people or

things one behind another). Recently, Pilehvar et al. (2017) investigated the impact

of word senses at different granularities on a down-stream application, i.e., text

classification. They showed that explicit information of meaning is beneficial to

categorise a text. However, Pilehvar et al. proved that super senses, i.e., forty-five

coarse-grained labels that cluster WordNet synsets, are more effective than their

fine-grained counterpart – at least in the text classification task –. Despite this

interesting result, we cannot conclude that coarse-grained senses are always better

and, in fact, this is still an open problem which leaves unanswered three critical

questions: i) are enumerative lexicons the best way of representing word meanings?

ii) do they scale well on different tasks and scenarios? iii) while favouring the

enumerative lexicons, what is the granularity level that brings the highest benefit

to a task? In the next few years, the WSD research community should focus on

answering these three questions in order to let semantics have a more significant

impact on downstream applications.

Moving forward to the 2000s, the researchers focused, again, on harvesting

new and of better quality data. One of the most significant efforts that contributed

largely to NLP research was Wikipedia. Launched in 2001, it aimed at collecting

encyclopedic knowledge about the world by putting together the efforts of the whole

internet community. Nowadays, it counts more than 50M articles written in 303
distinct languages maintained by more than 200,000 active contributors. It was

the base for many projects such as Wikidata, Wiktionary, OmegaWiki1, DBPedia2

(Auer et al., 2007), Freebase3 (Bollacker et al., 2008) and an underlying corpus in

many works. One of the most interesting aspects of Wikipedia is its multilingual

1http://www.omegawiki.org/Meta:Main_Page
2https://wiki.dbpedia.org/
3https://developers.google.com/freebase

http://www.omegawiki.org/Meta:Main_Page
https://wiki.dbpedia.org/
https://developers.google.com/freebase
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nature. Indeed, whenever it is possible, an article is linked to its counterpart in

another language. Moreover, the text within a page can be linked via hyperlinks

to other pages in the same language, hence making Wikipedia interpretable as a

semantic network with syntagmatic relations between its pages. These two peculiar

aspects led Navigli and Ponzetto to introduce a novel knowledge base named Ba-

belNet (Navigli and Ponzetto, 2010, 2012) with the aim of unifying encyclopedic

and lexicographic knowledge by merging together several resources, e.g., WordNet,

Wikipedia, Wikidata, etc4. BabelNet nodes, i.e., synsets, in fact, can represent both:

real entities, such as persons and companies, and abstract concepts, such as THING

(an entity that is not named specifically) or ATTRIBUTE (an abstraction belonging to

or characteristic of an entity) and may comprise lexicalisation in multiple languages.

Therefore, the same concept is represented with the same node across different

languages. Similarly, but focusing mainly on abstract concepts, Pease, Niles, and Li

(2002, SUMO) aimed at merging together several upper-level ontologies. YAGO

(Suchanek, Kasneci, and Weikum, 2007; Mahdisoltani, Biega, and Suchanek, 2013),

instead, exploited data from Wikipedia to build a multilingual semantic network

comprising entities and facts about them. Thanks to the proliferation of semantic

resources, in the most recent years the research community could focus on de-

veloping novel knowledge-based Word Sense Disambiguation approaches (Moro,

Raganato, and Navigli, 2014b; Agirre, de Lacalle, and Soroa, 2014; Tripodi and

Pelillo, 2017; Chaplot and Salakhutdinov, 2018). However, while this kind of meth-

ods largely benefited from the resources above and are very flexible when it comes

to disambiguate texts in different languages (as long as they are supported by the

underlying knowledge base), supervised approaches proved to perform generally

better on the all-words WSD English task at the cost of less flexibility on language

dimension. Indeed, by relying on sense-annotated corpora for training, they directly

depend on the availability of such datasets on each language of interest. One of the

most successful models for supervised WSD was IMS (Zhong and Ng, 2010), a

system comprising a distinct SVM classifier for each target word one is interested in

disambiguating. It was the state-of-the-art model before the deep learning advent

and only relied on the features extracted from the target word context, such as the

surrounding words, the surrounding POS tags, etc. More recently, instead, feature-

4Refer to https://babelnet.org/about for a comprehensive list of resources included

in BabelNet.

https://babelnet.org/about
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based approaches left the way to deep learning models which permeated most of

the NLP fields inexorably. Thanks to this new paradigm, more and more complex

neural models started to spawn here and there showing promising results on WSD.

Unfortunately, only a small boost in performance was recorded since 2010, and, thus,

deep learning models mainly contributed to confirm what has been already noted by

Agirre and Edmonds (2006), i.e., the lack of decent-size sense-annotated datasets

for WSD. Indeed, in a 8-year time span (2010-2018) since IMS was first introduced,

the overall F-score on the most important WSD benchmarks has increased by only 3
points5, even though much more complex models (Luo et al., 2018; Vial, Lecouteux,

and Schwab, 2018) are now available. Compared to the results attained on the

object recognition task in the context of ImageNet (Deng et al., 2009) competitions,

this is a disappointing result. Indeed, when AlexNet (Krizhevsky, Sutskever, and

Hinton, 2012) was first introduced, it brought an improvement over the previous

non-neural state-of-the-art systems of roughly 10 points on the error rate. Moreover,

also considering the time span, since neural models were first introduced in computer

vision (2012 - 2018), deep networks brought a performance boost of more than 20
points in top-1 prediction accuracy, i.e., from a 63.3 points (Krizhevsky, Sutskever,

and Hinton, 2012), to 84.3 points (Huang et al., 2018). This breakthrough was

possible not only thanks to the novel paradigm of deep learning but mainly because

of ImageNet (Deng et al., 2009). The dataset provided, in fact, 14M images tagged

with classes from WordNet and thus created the perfect condition for a deep neural

model to shine. Therefore, even though the WSD task is inherently more complex

than the image labelling one – trivially by just considering the number of possible

classes the models have to deal with –, the impact of neural models for WSD has

been unsatisfactory so far. We argue that this has to be attributed to the paucity of

sense-annotated data for English, and even more for other languages, which stems

the impact of deep neural models on the field, which, now more than ever, needs

new data at its disposal.

5IMS performs 68.4 (Raganato, Camacho-Collados, and Navigli, 2017), while UFSAC (Vial,

Lecouteux, and Schwab, 2018) – the best performing systems nowadays – scores 71.8
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2.2 Resources for Word Sense Disambiguation

The need of encoding knowledge has been clear since the 60s; however, large scale

semantic networks and sense-annotated corpora have been only introduced in the last

15 years (refer to the previous Section for a historical excursus of WSD and related

resources). In what follows, we present the most important works in the context

of encoding semantic knowledge either with knowledge bases or sense-annotated

corpora.

2.2.1 Knowledge Bases

WordNet (Miller et al., 1990; Fellbaum, 1998a) is a lexical database for English

comprising 155,287 unique lexemes (i.e. lemma and Part of Speech pairs) of the

English vocabulary organised in more than 117,000 synsets6 connected through 19
types of paradigmatic relations7. For each concept it also provides a definition (i.e.,

gloss) and one or more examples of usage. WordNet is the de facto standard sense

inventory for English Word Sense Disambiguation, indeed, it has been employed as

tag set in several SemEval and Senseval competitions (Edmonds and Cotton, 2001;

Snyder and Palmer, 2004; Pradhan et al., 2007; Navigli, Jurgens, and Vannella,

2013a; Moro and Navigli, 2015). While it mainly encompasses lexicographic knowl-

edge, other resources were built to encode different aspects of semantic knowledge.

Lenat (1995b) encoded practical information about concepts in Cyc, a hand-made

resource comprising roughly 100K concepts and axioms about them, on the other

hand, (Niles and Pease, 2001) aimed at capturing the high-level semantic knowledge

into SUMO, an upper-level ontology that can be employed across different domains.

The proliferation of English resources encouraged more and more researchers

to transfer English knowledge to other languages. Indeed, many semi-automatic

WordNet-like resources were built for each language of interest, inter alia, Emanuele,

Luisa, and Christian (2002); Sagot and Fišer (2008) and Huang et al. (2010) built

Italian, French and Chinese versions of WordNet. These versions were later merged

together by de Melo and Weikum (2009, Universal WordNet – UWN) and Bond

and Foster (2013, Open Multi WordNet – OMN). However, even though all these

6 we will use synsets and concepts interchangeably through this thesis.
7A complete list of relations can be found at https://wordnet.princeton.edu/

documentation/wninput5wn

https://wordnet.princeton.edu/documentation/wninput5wn
https://wordnet.princeton.edu/documentation/wninput5wn
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resources provide a valuable semantic knowledge for each language, they leave

out many words of a language vocabulary since a tremendous manual-effort would

be required to cover them all. Moreover, even if such a complete resource were

available, it would need constant updates to add new words, remove unused words

and update the possible meanings of each entry. The language, indeed, is always

changing and adapting to the way it is conveyed. This is happening even faster since

social networks appeared, hence making it easier to create new words or change

the way a word is intended (think about the verb tweet before and after the lunch

of Twitter). Therefore, recently, automatic approaches for acquiring and mapping

knowledge across different sources have been proposed in order to mitigate these

issues. Navigli and Ponzetto proposed BabelNet, a method for merging WordNet

and Wikipedia in different languages, hence building a large knowledge base of

lexicographic and encyclopedic information in 284 languages (Navigli and Ponzetto,

2010, 2012). Differently, from UWN and OMW, BabelNet goal was to enrich

WordNet with real world entities and syntagmatic relations. As an alternative to

Navigli and Ponzetto, Suchanek, Kasneci, and Weikum (2007); Mahdisoltani, Biega,

and Suchanek (2013) proposed YAGO which takes advantage of WordNet taxonomy

and encodes factual relation among entities thanks to Wikipedia infoboxes and

categories. Similarly, WikiNet (Nastase et al., 2010) is a multilingual knowledge

base comprising concepts from Wikipedia and relation extracted by means of textual

content, infoboxes, page interlinks and category graph. These resources contributed

to advance several fields in NLP, such as Word Sense Disambiguation (Moro,

Raganato, and Navigli, 2014b), document classification (Pilehvar et al., 2017),

taxonomy extraction (Flati et al., 2014, 2016), textual similarity (Pilehvar and

Navigli, 2015), etc. However, supervised WSD methods did not benefit particularly

from the information comprised in those resources, and kept relying on sense-

annotated corpora which can be directly used as training sets. One recent effort in

the direction of including the information comprised by a knowledge-base into a

supervised model has been introduced by Luo et al. (2018, GAS). They provided

a neural network with a memory of word sense’s glosses, i.e., additionally to the

context of a word, the model has also access to the word senses’ definitions. GAS

showed encouraging results beating most of the time the previous state of the art

models that used to rely only on the context provided by a sentence only. This prove

that lexical-semantic resources still have uncovered potential that can also impact
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English

Resource Type #Langs #Annotations #Tokens #Annotations Amb Entropy

SemCor WordNet M 1 226,036 802,443 226,036 6.8 0.27

OntoNotes WordNet M 1 264,622 1,445,000 264,622 - -

Princeton Gloss WordNet SA 1 449,355 1,621,129 449,355 3.8 0.45

OMSTI WordNet SA 1 911,134 30,441,386 911,134 8.9 0.94

SEW Wikipedia SA 1 162,614,753 1,357,105,761 162,614,753 7.9 0.40

SenseDefs BabelNet A 263 163,029,131 71,109,002 37,941,345 4.6 0.04

EuroSense BabelNet A 21 122,963,111 48,274,313 15,502,847 6.5 0.21

Train-O-Matic BabelNet A 6 17,987,488 291,550,966 12,722,530 3.6 0.48

Table 2.1. Statistics of the sense-annotated corpora across languages and resources. Type

“M" stands for Manual, “SA" stands Semi-automatic, “C" for Collaborative and “A" for

Automatic.

the supervised side of Word Sense Disambiguation.

2.2.2 Sense-Annotated Corpora

Sense-annotated corpora tie the concepts represented in a knowledge base with the

lexical information contained in a sentence, i.e., one can build a relation between the

lexical content and a specific meaning. For example, given the sentence the plane,

after a long flight, landed safely in Rome. and the annotation PLANE (an aircraft

that has a fixed wing [...]) for the word plane, one can derive that contexts similar

to the one in the sentence trigger the aircraft meaning of plane. Moreover, they also

provide syntagmatic relations among synsets appearing within the same contexts.

In Table 2.1 we report the statistics for each automatic semi-automatic and manual

corpus that we introduce in what follows.

Manually-annotated Corpora

SemCor (Miller et al., 1993a) is a subset of the Brown corpus (Kucera and Francis,

1967) and comprises more than 200,000 tokens annotated with a WordNet sense.

It is the corpus with the wider coverage of words and senses8, hence is the most

8Through the thesis we use sense as the tuple lemma, POS and synset, thus it is a synset bound to

a specific lemma and POS.
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obvious choice when it comes to training a supervised model. However, even though

the coverage of senses is one of its strengths when compared to other corpora, it

is a weakness when considering the absolute numbers of covered senses. Indeed,

only the 16% of WordNet senses appear at least in one sentence of the corpus. This

issue is compounded with the WordNet’s fine granularity and the Zipfian nature of

word senses, in fact, it is hard to cover the least common concepts since they occur

rarely. Hence, while the fine-granularity problem (that we discussed in the previous

Section) is more a problem of WordNet than SemCor itself, the latter suffers its

consequences showing a limited coverage. Moreover, the Zipfian distribution of

senses also plays an essential role in making SemCor outdated. Indeed, since the

corpus dates back to the 60s, the frequency of a word senses has changed (see the

example in Section 1), meaning that, a model trained on SemCor is biased towards

an outdated distribution that does not reflect the current one anymore.

To overcome some of these issues, Hovy et al. (2006) introduced OntoNotes,

a corpus tagged with senses from the Omega ontology (Philpot, Hovy, and Pantel,

2005). The latter is organised hierarchically with an upper-level ontology where

the macro senses contain fine-grained specialised senses. Thanks to this structure,

Hovy et al. (2006) managed to reach 90% inter-annotator agreement during the

annotation of the resource. Therefore, even though OntoNotes resolves in part the

fine-granularity problem of SemCor, it is still limited by the number of distinct

words covered, in fact, it only comprises 3380 different lemma-pos pairs tagged

with at least one sense, a number that is not sufficient for large-scale WSD and does

not even cover half the tagged words in the 5 standard WSD benchmarks9. Another

valuable resource is “Princeton WordNet Gloss Corpus” (2008)10, i.e., a corpus

comprising all WordNet glosses where annotators semantically tagged each content

word manually. This has been used to extend SemCor with new annotated data by

(Vial, Lecouteux, and Schwab, 2018) and to extract relations between WordNet

synsets (Mihalcea and Moldovan, 2001; Cuadros and Rigau, 2008; Espinosa-Anke

et al., 2016). More recently, Passonneau et al. (2012) introduced MASC, a manually

annotated corpus with senses from WordNet 3.1. Despite being the most recent one,

9Senseval-2(Edmonds and Cotton, 2001), Senseval-3 (Snyder and Palmer, 2004), SemEval-2007

(Pradhan et al., 2007), SemEval-2013 (Navigli, Jurgens, and Vannella, 2013a) and SemEval-2015

(Moro and Navigli, 2015)
10http://wordnetcode.princeton.edu/glosstag.shtml

http://wordnetcode.princeton.edu/glosstag.shtml
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it only covers roughly 100 distinct words. Moreover, it is not freely available; thus

its contribution to WSD is limited both in terms of coverage and availability.

Even though manually-annotated corpora largely contributed to advance the

research in Word Sense Disambiguation and allowed the development of high-

performance supervised models – hence establishing supervised WSD as the most

effective approach on English all-words WSD tasks – we are now approaching

a plateau of model performances which mainly depend on the training corpora.

As also noted before, in fact, in the last 18 years supervised WSD performance

increased by roughly 3 points despite the growth in models’ complexity and the

availability of more considerable computational power. This highlight the urge of

new and more complete sense-annotated datasets to be fed into supervised models

and unleash their power that is still unexpressed.

Automatic and Semi-automatic Corpora

Manually annotating large datasets, as we already discussed extensively, is expen-

sive; therefore different approaches have been developed during the years in order

to automatise, in part or completely, this process.

Ng, Wang, and Chan (2003) proposed a semi-automatic approach to align

English and Chinese sentences at the word level. Moreover, they exploited the

parallel data (i.e., the English words that are aligned to the same word in Chinese

are considered unambiguous) and manual annotations to build a sense-annotated

training set. While it was already evident even before 2003 that parallel data

were an excellent pivotal point for disambiguating words in two languages (Resnik

and Yarowsky, 1997), this was one of the first attempts to confirm this intuition

empirically. Following this approach, Chan and Ng (2005a) proposed a similar

method that considers English words having the same meaning whenever they were

translated with the same Chinese word. Differently from Ng, Wang, and Chan

(2003), when more than one word-senses were associated with the same Chinese

word, they considered valid only the most frequent one according to WordNet. Later,

Zhong and Ng (2009) refined the method proposed by Chan and Ng (2005a) and

introduced a novel approach to retrieve high-quality Chinese sentences for WordNet

senses. Hence, by aligning new English sentences to those retrieved for the target

word sense makes it possible to build a semantically annotated dataset by exploiting
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bilingual corpora, thus relieving the burden of manual aligning Chinese tokens with

WordNet senses.

Taghipour and Ng (2015) summarised the outcome of these aforementioned

methodologies, and, by following Chan and Ng (2005a), produced OMSTI, a

corpus of 1 Million sense-tagged instances by exploiting Chinese-English part of

the MultiUN corpus (Ziemski, Junczys-Dowmunt, and Pouliquen, 2016). Following

the same line of research, Bovi et al. (2017) proposed a method that, by exploiting a

language agnostic WSD system, i.e., Babelfy (Moro, Raganato, and Navigli, 2014b),

disambiguated each set of aligned sentences in Europarl (Koehn, 2005b) at the

same time. This allows Babelfy to leverage a broader context coming from all the

aligned sentences hence making it more precise in the disambiguation. The very

same approach has been then applied to BabelNet glosses in multiple languages

(Camacho-Collados et al., 2016) producing a corpus of 35 million definitions for

256 distinct languages.

To finally dispose of the need of aligned corpora, Raganato, Delli Bovi, and

Navigli (2016) introduced SEW, a heuristic-based approach to automatically produce

sense-annotated corpora from Wikipedia. This approach benefits from the large

number of tokens annotated in Wikipedia – those words linked via a hyperlink to a

Wikipedia page – and exploit them to propagate their links. As a result, their corpus

is large in terms of number of tokens and annotations, however, due to the nature of

Wikipedia, it mostly covers named entities and concrete concept while lacks many

abstract concepts. A key factor that had been ignored by all the approaches above is

the senses’ distribution within the corpus, i.e., the probability of a given sense to

appear in a sentence. Indeed, they did not even consider this phenomenon, relying on

the natural distribution that senses had in the various input corpora (i.e., Wikipedia,

Europarl, United Nations Parallel corpus, etc.). However, depending on the corpus,

the output dataset may also lack frequent senses or may be biased toward a specific

domain. This happens, for example, when using topic-specific corpora such as

Europarl or the United Nations Parallel corpus, as well as for encyclopedic resources

(e.g., Wikipedia) which are usually full of named entity and concrete concepts but

lack many abstract meanings. The importance of controlling the distribution of

senses within a corpus has been largely explored by Postma, Bevia, and Vossen

(2016a), where they show that, by mimicking the test-set distribution in the training

set, supervised models had a boost of dozens of points (more on sense distributions is
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presented in the following Section). The most recent effort in this field (which is also

part of this thesis) has been carried by Pasini and Navigli (2017, Train-O-Matic) who

introduced a knowledge-based approach to automatically generate sense-annotated

corpora in potentially any language available in BabelNet. In contrast to all the other

approaches, Train-O-Matic – in its extended version (Pasini and Navigli, 2019) –

takes directly into account a target sense distribution during the process of generating

a dataset, being also able to automatically infer it from a collection of texts given as

additional input. Furthermore, it proved to lead a supervised model to results that

are sometimes higher or on par with those attained when using a manually-curated

resource as training set, i.e., SemCor, and, in general, higher than those achieved

when using the best performing corpora among those previously introduced. We

will extensively describe Train-O-Matic in Chapter 4.

To wrap-up, a plethora of different approaches have been proposed across

the years to mitigate the knowledge acquisition bottleneck. Most of them relied

on aligned-corpora (Chan and Ng, 2005a; Zhong and Ng, 2009; Taghipour and

Ng, 2015; Camacho-Collados et al., 2016; Bovi et al., 2017), on the structure of

Wikipedia (Raganato, Delli Bovi, and Navigli, 2016), or on BabelNet, i.e., Train-

O-Matic (Pasini and Navigli, 2017; Pasini, Elia, and Navigli, 2018; Pasini and

Navigli, 2019). However, even though some of them demonstrated enabling a

supervised model to achieve higher performance when merged with SemCor itself

(Taghipour and Ng, 2015), or managed to beat SemCor on some of the tested datasets

(Pasini and Navigli, 2017) on the English all-words WSD task, all of them failed

to become a valid alternative to manually-curated corpora. Their contribution, in

fact, can be more appreciated on languages different from English, where it was

not even possible to train a supervised model due to the lack of annotated data.

This was, therefore, a first step into making richer the set of semantically-tagged

corpora available for languages other than English, thus enabling supervised model

to compete with knowledge-based and unsupervised approaches on the all-words

multilingual tasks of WSD.
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2.3 Word Sense Distribution

The distribution of senses, as many other language phenomena, follows the Zipf’s

distribution, with a few word’s senses that are very frequent and a long tail of rare

ones. Moreover, the sense distribution may vary drastically from corpus to corpus

depending on the topic encompassed by the documents therein. Therefore, ignoring

the distribution of senses during the automatic building of an annotated corpus may

lead to unbalance the dataset which, in turn, would mislead a supervised model

towards a wrong sense distributions. However, despite its central role in creating

sense-annotated corpora, only a few efforts have been put on investigating how to

automatically infer the distribution of senses or leverage it to bias the dataset towards

a specific domain. Inducing the word sense distribution, indeed, is strictly correlated

to predicting the topic of a document (Escudero, Màrquez, and Rigau, 2000; Chan

and Ng, 2005b) since each topic may have a different distribution. Moreover, due

to the skew nature of sense distributions (McCarthy et al., 2004), changing topic

means drastically changing the sense distribution in its most important components.

This was also the focus of the paper by Escudero, Màrquez, and Rigau (2000). They

studied the behaviour of several Word Sense Disambiguation supervised models

when trained on a domain-specific corpus and tested on documents from a different

domain. As expected, they reported a drop in results of more than 20 points, hence

confirming the drastic change in sense distribution from one domain to the other.

Furthermore, they investigated the performance of the classifiers when a small

portion of annotated data from the target domain were added to the training set,

showing an increase in models’ accuracy of roughly 12 points. Following a similar

intuition, Chan and Ng (2005b) designed two algorithms for inferring the word

sense distribution given a corpus of sentences. They fed the learned priors to a naive

Bayes WSD classifier and showed improvement in the performance of more than 1
point on WSD standard benchmarks.

A similar line of research was the one followed by McCarthy et al. (2004), Mo-

hammad and Hirst (2006) and McCarthy et al. (2007), who focused on determining

the most frequent sense of a word in a given corpus. Due to the sense distribution

skewness, determining the most frequent sense means disambiguating correctly the

vast majority of a word occurrences; moreover, this can be used as a strong backoff

strategy which can also be tuned depending on the texts one expects as input.
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More recently, Lau et al. (2014) proposed a topic-modelling-based approach for

estimating the word sense distributions in a corpus and was followed two years later

by Bennett et al. (2016) who optimised and refined their method and introduced

LexSemTM, a sense-annotated corpus to evaluate the induced sense distributions.

It has better coverage than SemCor over polysemous words, and better reflects the

real distribution of word senses in contemporary English. The last effort in this field,

to the best of my knowledge, is Hauer, Luan, and Kondrak (2019). In this work,

the authors propose two methods that, given a target word, they can estimate the

word sense distribution by looking at the co-occurring senses. Postma et al. (2016b),

differently from the other approaches, put the focus on determining when a word is

intended with its most frequent sense and when it is not. This allows the authors to

focus on the disambiguation of the least frequent senses, improving UKB (Agirre,

de Lacalle, and Soroa, 2014) performance, a knowledge-based WSD approach,

by roughly 8 points. Following the same philosophy, Postma, Bevia, and Vossen

(2016a), showed that bigger datasets do not always lead a WSD model to better

performance. Indeed, they proved that a WSD model benefits more from additional

automatically-generated training instances that follow the test set distribution, than

from adding a more significant number of manually annotated examples with a

different distribution.

In this thesis, we contributed to mitigating the knowledge acquisition bottleneck

problem in WSD by proposing a method for the automatic generation of sense-

annotated corpora in any language that is supported by BabelNet (Pasini and Navigli,

2017; Pasini, Elia, and Navigli, 2018). The proposed approach differs from all the

ones mentioned above since it mainly relies on a knowledge base, i.e., BabelNet,

and does not need parallel data (Ng, Wang, and Chan, 2003; Chan and Ng, 2006;

Taghipour and Ng, 2015; Camacho-Collados et al., 2016) or a set of manually

annotated words (Raganato, Delli Bovi, and Navigli, 2016). Moreover, it can be

easily applied to any language that is supported by BabelNet (more than 200) and

proved to lead a supervised WSD model to results better than those attained by the

same model trained on other automatically-, semi-automatically- and sometimes

manually-annotated corpora. These works naturally led us to investigate on the

sense distribution of the generated dataset and if it would have been beneficial

to encode specific distributions based on the final application of the WSD model
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(e.g., the various test sets). Therefore, we followed our study by developing two

knowledge-based methods for inducing the sense distribution from the raw text

(Pasini and Navigli, 2018) and studying the effect of shaping the automatically

generated datasets according to the learned distribution (Pasini and Navigli, 2019).

The two approaches are language-independent and rely on BabelNet. They differ

to the other approaches proposed over the years since, i) they infer the whole

distribution of senses and do not compute only the most frequent sense of a word

(McCarthy et al., 2004; Mohammad and Hirst, 2006; McCarthy et al., 2007) and

ii) they only rely on the underlying semantic network and are language agnostic in

the sense that they can be applied to any language supported by BabelNet. Thanks

to these approaches it was possible to relieve the need of humans in the process of

shaping the training data with respect to the test sense distribution. Moreover, the

results confirm on a larger scale the hunch of Escudero, Màrquez, and Rigau that

adding annotated examples from the target domain to the training set is beneficial to

the overall performance of a WSD model.

We think that, while on the one hand taking advantage of the new technologies

in the hardware and machine learning fields is necessary in order to push as forward

as possible the performance of WSD models with the currently available data,

on the other hand, too little attention is paid to the developing of new and richer

sense-annotated dataset. To overcome this limitation, general models that can take

advantage from very large amount of unlabelled data have been developed and

successfully applied to many different NLP tasks (Howard and Ruder, 2018; Peters

et al., 2018; Devlin et al., 2018; Radford et al., 2018, 2019). However, these models

are very large and sometimes even too large to fit in a single top-tier gpu, hence,

feeding inductive bias directly into the network instead of letting it learn its own

rules from enormous amount of data, is another research path that is worth a mention.

This kind of approaches, in fact, are catching on also thanks to the recent effort of

Luo et al. which aim at providing additional semantic information via sense glosses

to a neural model. Nevertheless, even though the performance attained by Luo et al.

(2018) are slightly better than the previous state of the art, they are still in the same

ballpark, proving that it is not clear which is the best way for exploiting such kind

of semantic data into a neural architecture.

Therefore, in this thesis, we focused on the study and development of novel

approaches to mitigate the need for human intervention in the process of creating
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semantically-annotated datasets despite of building incrementally complicated new

models. The results attained show that the automatic generation of training data

is a viable way of tackling the knowledge acquisition bottleneck problem in WSD.

Indeed they lead to performance that is sometimes better, and in general, in the

same ballpark than those attained when the training is performed on a manually-

annotated dataset. Moreover, predicting the sense distribution of a target text, and

shaping the training data accordingly, proved to be very useful and worthy of further

investigation.
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Chapter 3

Preliminaries

In this Chapter we provide some important background knowledge that is needed to

put the rest of this thesis in context. In what follow, we introduce the resources that

have been used across the works presented in the thesis and the algorithms which

we leveraged.

3.1 WordNet

WordNet (Miller et al., 1990; Fellbaum, 1998a) is undoubtedly the most used a

lexical knowledge resource in NLP and is manually built based on psycholinguistic

principles. It is organised in group of words with the same part of speech that share

a common meaning, i.e., synonyms, that are called synset. For example, the synset

comprising the noun plane in its airplane meaning is the following:

{plane1
n, airplane1

n, aeroplane1
n}

where subscripts and superscripts represent the part of speech and the sense number

of each word, respectively. Therefore, all those three words may evoke this specific

synsets since all of them share this specific meaning. However, since plane is

ambiguous and may be used in different contexts, it also appear in four synsets, e.g.,

the one expressing its mathematical meaning:

{plane2
n, sheet4n}

or its more abstract meaning:

{plane3
n}
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Each synset is then provided with a definition (gloss) and a few usage examples.

E.g., the airplane meaning of plane has the following definition: an aircraft that

has a fixed wing and is powered by propellers or jets and only one examples of use:

the flight was delayed due to trouble with the airplane.

Synsets are connected to each other via semantic relation which can express

different types of connections such as:

• hypernymy when a concept is generalised by another one. For example,

aircraft1n and vehicle1
n are two parent concept in the hypernymy path from

airplane1
n to the root.

• meronymy when a concept is part of another one. For example, wing2
n has a

meronymy relation with airplane1
n.

WordNet counts, in its last version (3.1), 117,659 synsets for all the open class part of

speech, i.e., noun, adjective, verb and adverb, and 364,569 lexico-semantic relations

between them. It inspired several works in the field and have been largely used

as reference knowledge base. For example, the Princeton WordNet Gloss Corpus1

comprises all the WordNet definitions where the content words were manually

disambiguated with the WordNet synsets. Moreover, it serves as a pivoting point for

several editions in different languages of WordNet, e.g., Italian WordNet (Toral et al.,

2010), German WordNet (Hamp and Feldweg, 1997) and many others. Recently,

different attempts have been made to conflate all the language-specific versions

into a unique multilingual edition of WordNet, it is the case of Open Multilingual

WordNet (Bond and Foster, 2013) or MultiWordNet (Pianta, Bentivogli, and Girardi,

2002).

3.2 Wikipedia

Wikipedia is a multilingual encyclopedic resource created thanks to the efforts of

hundreds of thousands contributors across the world. It is structured in pages, each

representing a concept such as PHILOSOPHY2, or a real world entity, e.g., BARACK

OBAMA3 and categories, which groups pages that share common properties together,
1http://wordnetcode.princeton.edu/glosstag.shtml
2https://en.wikipedia.org/wiki/Philosophy
3https://en.wikipedia.org/wiki/Barack_Obama

https://en.wikipedia.org/wiki/Philosophy
https://en.wikipedia.org/wiki/Barack_Obama
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Figure 3.1. An illustration of BabelNet mapping between WordNet and Wikipedia drawn

from the original article (Navigli and Ponzetto, 2012). The labeled edges come from

WordNet (e.g., Grand Guignol1n is-a play1
n) while the others from Wikipedia hyperlinks

(MUSICAL THEATRE is related to play1
n).

for example, the category ANIMATED COMEDY FILMS comprises all the pages

representing an animated comedy. They, in turn, are organised in a Directed Acyclic

Graph and are hence connected by some sort of is-a connections. Each Wikipedia

article comprise a textual description and several information regarding the concept

or the entity it represents. For example, the BARACK OBAMA page comprises not

only a brief description of his life and activities, but also many sections describing

in details his political and professional career. The text within an article can contains

hyperlink to other Wikipedia pages, hence, the resource can be organised in a graph

where a page is connected to another one if one of the two has a hyperlink towards

the other. Furthermore, Wikipedia can also be seen as a general-purpose corpus of

sentences that express concepts or describe named entities across different domains.

3.3 BabelNet

BabelNet (Navigli and Ponzetto, 2010, 2012) is a knowledge graph which encom-

passes several lexical-semantic resources such as WordNet (Miller et al., 1990;

Fellbaum, 1998a), Wikipedia, Wikidata, etc. It was originally created by automati-

cally mapping Wikipedia and WordNet, hence integrating the orthogonal dimensions

of the two resources, i.e., the set of nominal and non nominal concepts of WordNet

and the large amount of articles dedicated to real world entities. Moreover, while

on the one hand, WordNet encompasses lexico-semantic relations that typically

describe paradigmatic relations, Wikipedia provide more general connection rep-
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resenting relatedness between concepts. Hence, as one can see in Figure 3.1 the

information comprised by the two resources are complementary and both contribute

to build the rich set of information comprised in a BabelNet synset. The synsets

are then organised into a graph structure where edges represent lexico-semantic

relations. The latter may be either typed, hence expressing paradigmatic connections,

e.g., hypernymy, meronymy, etc., or simply indicating semantic relatedness, thus

connecting synsets that may occur together in the same text or sentence. BabelNet

nodes group together set of synonyms across languages, therefore, it is possible to

represent the same meanings across many different languages (more than 200 at the

time of writing) with the same set of concepts. In this thesis, BabelNet has been

leveraged to dispose of the need for distinct approaches for each specific language of

interest. Specifically we exploited the semantic network and its structure to measure

the relatedness among concepts and compute the probability of a meaning to appear

in a sentence as later illustrated in Section 4.1.1

3.4 Personalised PageRank

The PageRank (Brin and Page, 1998) is an algorithm that operates on graphs which

is designed to compute the importance of each node therein. In fact, a node may

be more or less important depending on the number of connections and on the

importance of its neighbours. The approach can be approximated by means of

random walks on the graph with a restart probability that is uniform between all the

nodes. Hence, the PageRank score of node represents the probability of landing on

that node when starting the navigation to any other random node in the graph. A

variant of this algorithm is the so called Personalised PageRank (PPR) (Haveliwala,

2002), which, instead of uniformly distributing the restart probability across all the

nodes, it focuses on one node only which becomes the only possible restarting point.

With this change, each PageRank score represents the conditional probability of

arriving on a certain node when starting the navigation from the restarting vertex.

In NLP and especially in Word Sense Disambiguation, the Personalised PageRank

has been largely exploited for different purposes, e.g., to compute the probabilities

of each synset in a semantic network given another concept (Moro, Raganato, and

Navigli, 2014b; Agirre, de Lacalle, and Soroa, 2014), or, more recently, to compute
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dense representation of nodes (Perozzi, Al-Rfou, and Skiena, 2014). In this thesis,

we used the PPR implementation by Lofgren et al. (2014)4 to compute the probability

of a concept given a specific context of words (Chapter 4).

4https://github.com/plofgren/fast-ppr-scala/

https://github.com/plofgren/fast-ppr-scala/
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Chapter 4

Gathering Large-Scale and
Multilingual Sense Annotations

The semantically-annotated datasets are a rare commodity since they are expensive

to create in terms of both time and resources. Indeed, the few corpora that are

available for English, i.e., SemCor (Miller et al., 1993a) and OntoNotes (Hovy et al.,

2006) are still limited in coverage and outdated. The situation is even more critical

when also considering other languages. Note that sense-tagged corpora are missing

for Spanish, German, French and Italian, languages that count millions of Wikipedia

articles and which have available NLP tools such as POS-taggers, lemmatisers,

dependency parsers, etc. This castrated the development of multilingual WSD

supervised models and, in general, circumscribed the research mostly to the English

language. Similarly, knowledge-based approaches, which leverage graph algorithms

on semantic networks, also suffer from the paucity of sense-tagged datasets. Indeed,

since the underlying knowledge bases usually lack syntagmatic relations between

concepts (i.e., those connecting meanings occurring often together in the same

sentence), their performance is limited and usually lower than those attained by

supervised models.

Several approaches have been therefore introduced in the past to overcome this

scarcity of annotated data. However, most of them failed to scale easily on different

languages and to offer a valid alternative to SemCor. Thus, to cope with all the

problems mentioned above and dispose of the burden of annotating senses on a

large number of texts, we developed a language-independent approach which, by

exploiting a knowledge base, can provide hundreds of thousands of semantically-



34 4. Gathering Large-Scale and Multilingual Sense Annotations

annotated examples for potentially all the senses of the words in a language. In

what follows, we first introduce Train-O-Matic (Pasini and Navigli, 2017) and then

evaluate the quality of its automatically-generated corpora by means of several

all-words English and multilingual WSD tasks.

4.1 Train-O-Matic

In this Section we present Train-O-Matic, a language-independent approach to the

automatic construction of a sense-tagged training set. Train-O-Matic takes as input

a corpus C (e.g., Wikipedia) and a semantic network G = (V,E). We assume a

WordNet-like structure of G, i.e., V is the set of concepts (i.e., synsets) such that,

for each word w in the vocabulary, Senses(w) is the set of vertices in V that are

expressed by w, e.g., the WordNet synsets that include w as one of their senses.

Train-O-Matic is divided in the following three steps:

• Lexical profiling: for each vertex in the semantic network, we compute

its Personalized PageRank (Haveliwala, 2002) vector, which provides its

lexical-semantic profile (Section 4.1.1).

• Sentence scoring: For each sentence containing a word w, we compute a

probability distribution over all the senses of w based on its context by means

of two alternative methods: a knowledge-based approach (Section 4.1.2) and

a semi-supervised approach (Section 4.1.3).

• Sentence ranking and selection: for each sense s of a word w in the vocab-

ulary, we select those sentences that are most likely to use w in the sense of s

(Section 4.1.4).

4.1.1 Lexical profiling

In a semantic network, the distance between 2 vertices can be intended as a measure

of relatedness between the two concepts. Similarly, the probability of reaching a

node v′ starting from v can be intended as the probability of finding the concept

v′ given that we have already found the concept v in a sentence or in a text. We

thus define the lexical profile of a vertex v in a graph G = (V,E) as the probability



4.1 Train-O-Matic 35

match1
n = 0.15

m
atch 1

n

0.08
fire 11v

... 0.03
cigarette 1

n

0.01

w
ood 1
n

...

Figure 4.1. Personalized PageRank vector for the lighter sense of match.

distribution over all the vertices v′ in the graph. Such distribution is computed by

applying the Personalized PagaRank (PPR) (Haveliwala, 2002) algorithm, a variant

of the traditional PageRank Brin and Page (1998). While the latter is equivalent to

performing random walks with uniform restart probability on every vertex at each

step, PPR, on the other hand, makes the restart probability non-uniform, thereby

concentrating more probability mass in the surroundings of those vertices having

higher restart probability. Formally, (P)PR is computed as follows:

v(t+1) = (1− α)v(0) + αMv(t) (4.1)

where M is the row-normalized adjacency matrix of the semantic network, the

restart probability distribution is encoded by vector v(0), and α is the well-known

damping factor usually set to 0.85 (Brin and Page, 1998). If we let v(0) diverge to a

unit probability vector (0, . . . , 0, 1, 0, . . . , 0), i.e., restart is always on a given vertex,

PPR outputs the probability of reaching every vertex starting from the restart vertex

after a certain number of steps. This approach has been used in the literature to

create semantic signatures (i.e., profiles) of individual concepts, i.e., vertices of the

semantic network by Pilehvar, Jurgens, and Navigli (2013), and then to determine

the semantic similarity of concepts. As also done by Pilehvar and Collier (2016), we

instead use the PPR vector as an estimate of the conditional probability of a word

w′ given the target sense1 s ∈ V of word w:

P (w′|s, w) = maxs′∈Senses(w′) vs(s′)
Z

(4.2)

where Z = ∑
w” P (w”|s, w) is a normalization constant, vs is the vector resulting

from an adequate number of random walks used to calculate PPR, and vs(s′) is the

vector component corresponding to sense s′. For example, given the PPR vector v
1Note that we use senses and concepts (synsets) interchangeably, because – given a word – a

word sense unambiguously determines a concept (i.e., the synset it is contained in) and vice versa.
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of the lighter sense of match s (Figure 4.1), we compute the probability of the word

cigarette given the sense s and the target word match by applying Formula 4.2, i.e,

by picking the highest scored synset in v which comprise cigarette among its senses

(i.e., cigarette1
n). Thus P (cigarette |match1

n,match) = 0.03 . To fix the number of

iterations needed to have a sufficiently accurate vector, we follow Lofgren et al.

(2014) and set the error δ = 0.00001 and the number of iterations to 1
δ

= 100, 000.

As a result of this lexical profiling step we have a probability distribution over

vocabulary words for each given word sense of interest.

4.1.2 Knowledge-based Sentence Scoring

The objective of the second step is to score the importance of word senses for

each of the corpus sentences which contain the word of interest. Given a sentence

σ = w1, w2, . . . , wn, that has been tokenised, lemmatised and POS-tagged, we

want to compute the probability of a given sense s to appear therein. Therefore,

for each given target word wi in the sentence (wi ∈ σ), and for each of its senses

s ∈ Senses(wi), we compute the probability P (s|σ,wi). Thanks to Bayes’ theorem

we determine the probability of sense s of wi given the sentence as follows:

P (s|σ,wi) = P (σ|s, wi)P (s|wi)
P (σ|wi)

(4.3)

= P (w1, . . . , wn|s, wi)P (s|wi)
P (w1, . . . , wn|w)

∝ P (w1, . . . , wn|s, wi)P (s|wi) (4.4)

≈ P (w1|s, wi) . . . P (wn|s, wi)P (s|wi) (4.5)

where Formula 4.4 is proportional to the original probability (due to removing

the constant in the denominator) and is approximated with Formula 4.5 due to

the assumption of independence of the words in the sentence. Hence, P (wj|s, wi)
with j ranging in [1, n] is calculated thanks to the PPR vectors (Formula 4.2) and

P (s|wi) is set to 1/|Senses(wi)| (recall that s is a sense of wi), thus, no bias is

given towards any of the word senses. For example, given the sentence σ = “A

match is a tool for starting a fire”, the target word w = match and its set of senses

Smatch = {s1
match, s

2
match}, where s1

match is the sense of lighter and s2
match is the

sense of game match, we want to calculate the probability of each simatch ∈ Smatch



4.1 Train-O-Matic 37

of being the correct sense of match in the sentence σ. Following Formula 4.5 we

have:

P (s1
match|σ,match) ≈ P (tool|s1

match,match)

· P (start|s1
match,match)

· P (fire|s1
match,match)

· P (s1
match|match)

= 2.1 · 10−4 · 2 · 10−3 · 10−2 · 5 · 10−1

= 2.1 · 10−9

P (s2
match|σ,match) ≈

P (tool|s2
match,match)

· P (start|s2
match,match)

· P (fire|s2
match,match)

· P (s2
match|match)

= 10−5 · 2.9 · 10−4 · 10−6 · 5 · 10−1

= 1.45 · 10−15

As one can see, the first sense of match has a much higher probability due to its

stronger relatedness to the other words in the context (i.e. start, fire and tool). Note

also that all the probabilities for the second sense are at least one magnitude less

than the probability of the first sense.

4.1.3 Sentence Scoring with Word Embeddings

The second approach is semi-supervised and exploits the lexical context of synsets

available in an annotated corpus (e.g., SemCor) to compute a latent representation

for each concept. Such vector is computed as the average of the word vectors across

all sentences in the corpus where the synset appears. Thus, for each sentence σ

containing a given synset s, we first average the vectors of words in a window

surrounding s in σ and then average all the vectors computed for each sentence.
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More formally, given a synset s and a set of sentences ξ were s appears as sense

of the word w, we compute the vector for s as follows:

v(s, w) = 1
|ξ|
∑
σ∈ξ

vec(σ,w,W ) (4.6)

vec(σ,w,W ) = 1
2W + 1

w.index+W∑
i=w.index−W

word2vec(σ[i]) (4.7)

where the function vec(σ,w,W ) is the average of the word vectors surrounding w

in the given window W and word2vec(w) returns the vector representation for w.

Note that, we can now compare word senses and sentences as they all lie in the same

vector space defined by the word vectors. Thanks to this, given a target word w and

a new sentence where w appears, we compute its vector as in Formula 4.6 (i.e., by

averaging the word vectors in the surroundings of the target word), and we compute

the probability distribution over the senses of w by assigning a score defined by the

cosine similarity between the sentence and the senses’ vectors. More formally we

compute the probability of a sense s of a word w in a sentence σ as follows:

P (s|σ,w) = softmax(sim(vec(σ,w,W ), v(s, w))) (4.8)

where vec(σ,w,W ) and v(s, w) are the two functions we introduced in Formula 4.6

and 4.7, and sim(x, y) is the cosine similarity between the two input vectors.

4.1.4 Sense-based Sentence Ranking and Selection

We are now ready to rank the sentences where a given sense s appears so that to

assign a lower score to those having least reliable disambiguations.

Given word w and a sense s1 ∈ Senses(w), we score each sentence σ in which

w appears and s1 is its most likely sense according to a formula that takes into

account the difference between the first (i.e., s1) and the second most likely sense of

w in σ:

∆s1(σ) = P (s1|σ,w)− P (s2|σ,w) (4.9)

where s1 = arg maxs∈Senses(w) P (s|σ,w), and s2 = arg maxs∈Senses(w)\{s1} P (s|σ,w).

We then sort all sentences based on ∆s1(·) and return a ranked list of sentences where

the word w is most likely to be sense-annotated with s1. Although we recognise

that other scoring strategies could have been used, this was experimentally the most
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effective one when compared to alternative strategies, i.e., the sense probability, the

number of words related to the target word w, the sentence length or a combination

thereof.

4.2 Creating a Denser and Multilingual Semantic Net-

work

In the previous Section we assumed that WordNet was our semantic network, with

synsets as vertices and edges represented by its semantic relations. However, while

its lexical coverage is high, with a rich set of fine-grained synsets, at the relation level

WordNet provides mainly paradigmatic information, i.e., relations like hypernymy

(is-a) and meronymy (part-of). It lacks, on the other hand, syntagmatic relations,

such as those that connect verb synsets to their arguments (e.g., the appropriate

senses of eatv and foodn), or pairs of noun synsets (e.g., the appropriate senses of

busn and drivern).

Intuitively, Train-O-Matic would suffer from such a lack of syntagmatic relations,

as the relevance of a sense for a given word in a sentence depends directly on the

possibility of visiting senses of the other words in the same sentence (see Formula

4.5) via random walks as calculated with Formula 4.1. Such reachability depends

on the connections available between synsets within the semantic network. Because

syntagmatic relations are sparse in WordNet, if it was used on its own, we would

end up with a poor estimation of senses’ probabilities and ranking of sentences for

any given word sense. Moreover, even though the methodology presented in Section

4.1 is language-independent, Train-O-Matic would lack information (e.g. senses for

a word in an arbitrary vocabulary) for languages other than English.

To cope with these issues, we exploit BabelNet2 (Navigli and Ponzetto, 2012)

a huge multilingual semantic network obtained from the automatic integration of

WordNet, Wikipedia, Wiktionary and other resources, and create the BabelNet

subgraph induced by the WordNet vertices. The result is a graph whose vertices

are BabelNet synsets that contain at least one WordNet sense and whose edge set

includes all those relations in BabelNet coming either from WordNet itself or from

links in other resources mapped to WordNet (such as hyperlinks in a Wikipedia

2http://babelnet.org

http://babelnet.org
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mouse (animal) mouse (device)

WordNet WordNetBN WordNet WordNetBN

mouse1
n mouse1

n mouse4
n mouse4

n

tail1n little1
a wheel1n computer1

n

hairless1
a rodent1n electronic_device1

n pad4
n

rodent1n cheese1
n ball3n cursor1

n

trunk3
n cat1n hand_operated1

n operating_system1
n

elongate2
a rat1n mouse_button1

n trackball1n
house_mouse1

n elephant1n cursor1
n wheel1n

minuteness1
n pet1n operate3

v joystick1
n

nude_mouse1
n experiment1n object1n Windows1

n

Table 4.1. Top-ranking synsets of the PPR vectors computed on WordNet (first and third

columns) and WordNetBN (second and fourth columns) for mouse as animal (left) and

as device (right).

article connecting it to other articles). The greatest contribution of syntagmatic

relations comes, indeed, from Wikipedia, as related articles are interlinked (e.g., the

English Wikipedia Bus article3 is linked to Passenger, Tourism, Bus lane, Timetable,

School, and many more).

Because not all Wikipedia (and other resources’) pages are connected with

the same degree of relatedness (e.g., countries are often linked, but they are not

necessarily closely related to the source article in which the link occurs), we apply

the following weighting strategy to each edge (s, s′) ∈ E of our WordNet-induced

subgraph of BabelNet G = (V,E):

w(s, s′) =


1 (s, s′) ∈ E(WordNet)

WO(s, s′) otherwise
(4.10)

where E(WordNet) is the edge set of the original WordNet graph and WO(s, s′) is

the weighted overlap measure which calculates the similarity between two synsets:

WO(s, s′) =
∑|S|
i=1(r1

i + r2
i )−1∑|S|

i=1(2i)−1
(4.11)

3Retrieved on April 20th, 2019.
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where r1
i and r2

i are the rankings of the i-th synsets in the set S of the components

in common between the vectors associated with s and s′, respectively. Because at

this stage we still have to calculate our synset vector representation, we use the

pre-computed NASARI vectors (Camacho-Collados, Pilehvar, and Navigli, 2015) to

calculate WO. This choice is due to WO’s higher performance over cosine similarity

for vectors with explicit dimensions (Pilehvar, Jurgens, and Navigli, 2013).

As a result, each row of the original adjacency matrix M of G will be replaced

with the weights calculated in Formula 4.10 and then normalized in order to be

ready for PPR calculation (see Formula 4.1). An idea of why a denser semantic

network has more useful connections and thus leads to better results is provided by

the example in Table 4.14, where we show the highest-probability synsets in the PPR

vectors calculated with Formula 4.1 for two different senses of mouse (its animal

and device senses) when WordNet (left) and our WordNet-induced subgraph of

BabelNet (WordNetBN , right) are used as the underlying semantic network for PPR

computation. Note that, WordNet’s top synsets are related to the target synset via

paradigmatic (i.e., hypernymy and meronymy) relations, while WordNetBN includes

many syntagmatically-related synsets (e.g., experiment for the animal, and operating

system and Windows for the device sense, among others).

4.3 Experimental Setup

We now present our setup for evaluating the datasets produced by Train-O-Matic

and define, in details, each competitor, external WSD system, test set, etc. that we

used to that end.

Corpora for sense annotation We used two different corpora to extract sentences:

Wikipedia and the United Nations Parallel Corpus (Ziemski, Junczys-Dowmunt,

and Pouliquen, 2016). The first is the largest and most up-to-date encyclopedic

resource, containing definitional information, the second, on the other hand, is a

public collection of parliamentary documents of the United Nations Parallel Corpus.

The application of Train-O-Matic to the two corpora produced two sense-annotated

datasets, which we named T-O-MWiki and T-O-MUN , respectively.
4We use the notation wk

p introduced in Navigli (2009) to denote the k-th sense of word w with

part-of-speech tag p.
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Semantic Network We created sense-annotated corpora with Train-O-Matic both

when using PPR vectors computed from vanilla WordNet and when using WordNetBN ,

our denser network obtained from the WordNet-induced subgraph of BabelNet (see

Section 4.2).

Gold standard datasets We performed our evaluations using the framework made

available by Raganato, Camacho-Collados, and Navigli (2017) on five different

all-words datasets, namely: the Senseval-2 (Edmonds and Cotton, 2001), Senseval-3

(Snyder and Palmer, 2004), SemEval-2007 (Pradhan et al., 2007), SemEval-2013

(Navigli, Jurgens, and Vannella, 2013b) and SemEval-2015 (Moro and Navigli, 2015)

WSD datasets. We focused on nouns only, given the fact that Wikipedia provides

connections between nominal synsets only, and therefore contributes mainly to

syntagmatic relations between nouns.

Comparison sense-annotated corpora To show the impact of our T-O-M cor-

pora in WSD, we compared its performance on the above gold standard datasets,

against training with:

• SemCor5 (Miller et al., 1993b), a corpus containing about 226,036 words

annotated manually with WordNet senses.

• One Million Sense-Tagged Instances6 (Taghipour and Ng, 2015, OMSTI), a

sense-annotated dataset obtained via a semi-automatic approach based on the

disambiguation of a parallel corpus, i.e., the United Nations Parallel Corpus,

performed by exploiting manually translated word senses. Because OMSTI

integrates SemCor to increase coverage, to keep a level playing field we

excluded the latter from the corpus.

• SenseDefs7 (Camacho-Collados et al., 2016), a multilingual corpus built by

jointly disambiguating the glosses of the same BabelNet synset in multiple

languages. It contains almost 250 million sense annotations in 256 different

languages.

5http://lcl.uniroma1.it/wsdeval/
6http://lcl.uniroma1.it/wsdeval/
7http://lcl.uniroma1.it/disambiguated-glosses/

http://lcl.uniroma1.it/wsdeval/
http://lcl.uniroma1.it/wsdeval/
http://lcl.uniroma1.it/disambiguated-glosses/
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• EuroSense8 (Bovi et al., 2017), similarly to SenseDefs, it exploits the parallel

data of EuroParl (Koehn, 2005a) in order to augment the context and increase

disambiguation precision. It contains more than 123 million sense annotations

in 21 languages.

We note that T-O-M, instead, does not require any parallel corpus.

Reference system In all our experiments, we used It Makes Sense (Zhong and

Ng, 2010, IMS), a WSD system based on linear Support Vector Machines, as

our reference system for comparing its performance when trained on Train-O-

Matic, against the same WSD system trained on other sense-annotated corpora (i.e.,

SemCor, OMSTI, SenseDefs and EuroSense). Following the WSD literature, unless

stated otherwise, we report performance in terms of F1, i.e., the harmonic mean of

precision and recall.

We note that it is not the purpose of this paper to show that T-O-M, when

integrated into IMS, beats all other configurations or alternative systems, but rather

to fully automatize the WSD pipeline with performances which are competitive with

the state of the art.

Baseline As a traditional baseline in WSD, we used the Most Frequent Sense

(MFS) baseline given by the first sense in WordNet. The MFS is a very competitive

baseline, due to the sense skewness phenomenon in language (McCarthy et al., 2004;

Navigli, 2009).

Number of training sentences per sense Given a target word w, we sorted its

senses Senses(w) by following the WordNet ordering and selected the top ki

training sentences according to Formula 4.9 for the i-th sense, where:

ki = 1
iz
∗K (4.12)

we set K = 500 and z = 2 by tuning the system on a separate small in-house

development dataset9.

8http://lcl.uniroma1.it/eurosense/
950 word-sense pairs annotated manually.

http://lcl.uniroma1.it/eurosense/
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Dataset T-O-MWiki BN T-O-MWiki WN

Senseval-2 70.5 70.0

Senseval-3 67.4 63.1

SemEval-2007 59.8 57.9

SemEval-2013 65.5 63.7

SemEval-2015 68.6 69.5

ALL 67.3 65.7

Table 4.2. F1 of IMS trained on T-O-M when PPR is obtained from the WordNet graph

(WN) and from the WordNet-induced subgraph of BabelNet (BN).

4.4 Results

4.4.1 Impact of syntagmatic relations

The first result we report regards the impact of vanilla WordNet vs. our WordNet-

induced subgraph of BabelNet (WordNetBN ) when calculating PPR vectors. As can

be seen from Table 4.2 – which shows the performance of the T-O-MWiki corpora

generated with the two semantic networks – using WordNet for PPR computation

decreases the overall performance of IMS from 0.5 to around 4 points across the

five datasets, with an overall loss of 1.6 F1 points. Similar performance losses

were observed when using T-O-MUN (see Table 4.3). This corroborates our hunch

discussed in Section 4.2 that a resource like BabelNet can contribute important

syntagmatic relations that are beneficial for identifying (and ranking high) sentences

which are semantically relevant for the target word sense. Therefore, in the following

experiments, we report only results using WordNetBN .

4.4.2 Comparison against sense-annotated corpora

We now move to comparing the performance of Train-O-Matic against corpora which

are annotated manually (SemCor) and semi-automatically (OMSTI). In Table 4.3 we

show the F1-score of IMS on each gold standard dataset in the evaluation framework

and on all datasets merged together (last row), when it is trained with the various

corpora described above.

As one can see, OMSTI manages to beat Train-O-Matic when using the United
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Dataset Train-O-MaticWiki Train-O-MaticUN OMSTI SemCor MFS

Senseval-2 70.5 69.0 74.1 76.8 72.1

Senseval-3 67.4 68.3 67.2 73.8 72.0

SemEval-2007 59.8 57.9 62.3 67.3 65.4

SemEval-2013 65.5 62.5 62.8 65.5 63.0

SemEval-2015 68.6 63.5 63.1 66.1 66.3

ALL 67.3 65.3 66.4 70.4 67.6

Table 4.3. F1 of IMS trained on Train-O-Matic, OMSTI and SemCor, and MFS for the

Senseval-2, Senseval-3, SemEval-2007, SemEval-2013 and SemEval-2015 datasets.

Nations parallel corpus as sentences’ source, i.e., the same used by OMSTI itself.

However, we argue that Train-O-Matic is more flexible than its competitor since

it is not tied to that specific corpus and, instead, can be used to annotate sentences

from any source. OMSTI, on the contrary, can only be applied to parallel corpora

comprising texts in Chinese and, moreover, needs the manual intervention of human

annotators to disambiguate the Chinese words. Hence, when Train-O-Matic is

applied to a larger and more complete corpus such as Wikipedia (Train-O-MaticWiki)

we show in Table 4.3 that it obtains higher performance than OMSTI (up to 5.5 points

above) on three out of 5 datasets, performing overall 1 point above its competitor.

The MFS, instead, is in the same ballpark as Train-O-MaticWiki, performing better

on some datasets and worse on others.

Interestingly enough, we note that IMS trained on Train-O-MaticWiki succeeds

in surpassing or obtaining the same results as IMS trained on SemCor on SemEval-

2015 and SemEval-2013. We view this as a significant achievement given the total

absence of manual effort involved in Train-O-Matic.

Because overall Train-O-MaticWiki outperforms Train-O-MaticUN , in what fol-

lows we report all the results with Train-O-MaticWiki, except for the domain-

oriented evaluation (see Section 4.4.4).

4.4.3 Performance without backoff strategy

IMS uses the MFS as a backoff strategy when no sense can be output for a target

word in context (Zhong and Ng, 2010). Consequently, the performance of the MFS
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Dataset OMSTI EuroSense SenseDefs Train-O-Matic Total

Senseval-2 197 388 399 400 436

Senseval-3 197 420 422 435 469

SemEval-2007 68 126 123 127 127

SemEval-2013 249 628 625 629 751

SemEval-2015 102 218 224 226 253

ALL 456 1311 1334 1350 1557

Table 4.4. Number of nominal tokens for which at least one training example is provided

by OMSTI or Train-O-Matic for each English dataset.

Dataset
OMSTI Train-O-Matic EuroSense SenseDefs

P R F1 P R F1 P R F1 P R F1

Senseval-2 64.8 28.5 39.6 69.5 65.5 67.4 63.1 55.2 58.9 67.4 67.4 67.4
Senseval-3 55.7 31.0 39.8 66.1 63.1 64.6 49.4 45.1 47.2 61.1 56.3 58.6

SemEval-2007 64.1 35.9 46.0 59.8 59.8 59.8 40.4 39.6 40.0 51.7 48.3 49.9

SemEval-2013 50.7 23.4 32.0 61.3 53.3 57.0 56.7 48.2 52.1 41.1 39.0 40.0

SemEval-2015 57.0 26.7 36.4 67.0 62.3 64.6 56.7 51.2 53.8 50.4 42.2 46.0

ALL 56.5 27.0 36.5 65.1 59.7 62.3 56.0 49.3 52.5 55.7 49.5 52.4

Table 4.5. Precision, Recall and F1 of IMS trained on OMSTI, EuroSense, SenseDefs

and Train-O-Matic corpus without MFS backoff strategy for Senseval-2, Senseval-3,

SemEval-2007, SemEval-2013 and SemEval-2015.

is mixed up with that of the SVM classifier. As shown in Table 4.4, OMSTI is

able to provide annotated sentences for roughly half of the tokens in the datasets.

Train-O-Matic together with EuroSense and SenseDefs, instead, is able to cover

almost all words in each dataset with at least one training sentence. This means that

in around 50% of the cases, OMSTI, gives an answer based on the IMS backoff

strategy, i.e., the MFS.

To determine the real impact of the different training data, we therefore decided

to perform an additional analysis of the IMS performance when the MFS backoff

strategy is disabled. Because we suspected the system would not always return a

sense for each target word, in this experiment we measured precision, recall and

their harmonic mean, i.e., F1. The results in Table 4.5 confirm our hunch, showing

that OMSTI’s recall drops heavily, thereby affecting F1 considerably. Train-O-
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Domain Backoff
T-O-MWiki T-O-MUN OMSTI SemCor MFS

Size
P R F1 P R F1 P R F1 F1 F1

Biology
MFS 63.0 63.0 63.0 65.9 65.9 65.9 65.9 65.9 65.9 66.3

64.4 135
- 59.0 53.3 56.0 62.3 56.3 59.2 48.1 18.5 26.7 -

Climate
MFS 68.1 68.1 68.1 63.4 63.4 63.4 68.0 68.0 68.0 70.1

67.5 194
- 63.4 50.0 55.9 57.5 45.4 50.7 58.0 24.2 34.2 -

Finance
MFS 68.0 68.0 68.0 56.6 56.6 56.6 64.4 64.4 64.4 63.7

56.2 219
- 62.1 51.6 56.4 48.4 40.2 43.9 57.4 28.3 37.9 -

Health Care
MFS 65.2 65.2 65.2 60.1 60.1 60.1 52.9 52.9 52.9 62.7

56.5 138
- 61.3 55.1 58.0 55.6 50.0 52.6 34.6 18.4 24.0 -

Politics
MFS 65.2 65.2 65.2 66.3 66.3 66.3 63.4 63.4 63.4 69.5

67.7 279
- 62.5 54.8 58.4 63.9 55.9 59.6 54.1 21.5 30.8 -

Social Issues
MFS 68.5 68.5 68.5 63.6 63.6 63.6 65.6 65.6 65.6 66.8

67.6 349
- 63.1 53.0 57.6 57.2 47.9 52.1 54.7 25.2 34.5 -

Sport
MFS 60.3 60.3 60.3 60.9 60.9 60.9 58.8 58.8 58.8 60.4

57.6 330
- 58.3 54.6 56.4 58.1 53.3 55.5 45.0 23.0 30.4 -

Table 4.6. Performance comparison over SemEval-2013 domain-specific datasets.

Matic performances, instead, remain high in terms of precision, recall and F1. This

confirms that OMSTI relies heavily on data (those obtained for the MFS and from

SemCor) that are produced manually, rather than semi-automatically. EuroSense

and SenseDefs, instead, managed to lead IMS to better results than OMSTI but fail

to beat Train-O-Matic on all datasets. This is because both approaches only rely

on the disambiguation provided by Babelfy without applying any sentence filtering

mechanism and hence including more noise in the training data which unavoidably

confuses IMS.

4.4.4 Domain-specific Evaluation

To further inspect the ability of T-O-M to enable disambiguation in different domains,

we decided to evaluate on specific documents from the various gold standard datasets

which could be clearly assigned a domain label. Specifically, we tested on 13

SemEval-2013 documents from various domains10 and 2 SemEval-2015 documents

(namely, maths & computers, and biomedicine) and carried out two separate tests

and evaluations of Train-O-Matic on each domain: once using the MFS backoff

strategy, and once not using it. In Tables 4.6 and 4.7 we report the results of both

T-O-MWiki and T-O-MUN to determine the impact of the corpus type. As can

10Namely biology, climate, finance, health care, politics, social issues and sport.
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T-O-MWiki T-O-MUN OMSTI SemCor MFS
Tokens

Domain Backoff P R F1 P R F1 P R F1 F1 F1

Biomedicine
MFS 76.3 76.3 76.3 66.0 66.0 66.0 64.9 64.9 64.9 70.3

71.1 100
- 76.1 72.2 74.1 64.4 59.8 62.0 60.5 26.8 37.2 -

Maths & MFS 50.0 50.0 50.0 48.0 48.0 48.0 36.0 36.0 36.0 40.6
40.9 97

Computer - 50.0 47.0 48.5 47.8 44.0 45.8 21.2 11.0 14.5 -

Table 4.7. Performance comparison over the Biomedical and Maths & Computer domains

in SemEval-2015.

be seen in the tables, T-O-MWiki systematically attains higher scores than OMSTI

(except for the biology domain), and, in most cases, attains higher scores than MFS

when the backoff is used, with a drastic, systematic increase over OMSTI with both

Train-O-Matic configurations in recall and F1 when the backoff strategy is disabled.

This demonstrates the usefulness of the corpora annotated by Train-O-Matic not

only on open text, but also on specific domains. We note that T-O-MUN obtains the

best results in the politics domain, which is the closest domain to the UN corpus

from which its training sentences are obtained.

4.5 Scaling up to Multiple Languages

4.5.1 Multilingual Experimental Setup

In this section we investigate the ability of Train-O-Matic to scale to low-resourced

languages, such as Italian, Spanish, German and French, for which training data for

WSD is not available.

Thanks to BabelNet, in fact, Train-O-Matic can be used to generate sense-

annotated data for any language supported by the knowledge base. Thus, in order to

build new training datasets for the two languages, we ran Train-O-Matic on their

corresponding versions of Wikipedia, then we tuned the two parameters K and z

on an in-house development dataset11. In contrast to the English setting, in order

to calculate Formula 4.12 we sorted the senses of each word by vertex degree in

BabelNet. Finally we used the output data to train IMS.

11We set K = 100 and z = 2.3 for Spanish and French, K = 100 and z = 2.5 for Italian and

K = 100 and z = 2.0 for German.
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Language Dataset
Best System Train-O-Matic

F1 P R F1

Italian

ALL 56.6 65.1 55.6 59.9
Computers & Math 46.6 52.7 43.3 47.6
Biomedicine 65.9 76.6 67.6 71.8

Spanish

ALL 56.3 61.3 54.8 57.9
Computers & Math 42.4 53.3 44.4 48.5
Biomedicine 65.5 71.8 65.5 68.5

Table 4.8. Performance comparison between T-O-M and SemEval-2015’s best SUDOKU

Run.

Language
Best System Train-O-Matic

F1 P R F1

German 62.0 65.8 60.8 63.2
French 60.5 61.1 59.9 60.5
Spanish 71.0 68.2 65.7 66.9

Italian 65.8 70.8 65.7 68.2
Table 4.9. Precision, Recall and F1 of IMS trained on Train-O-Matic, against SemEval-

2013’s best UMCC-DLSI run.

4.5.2 Multilingual Results

We performed the multilingual evaluation on all the available all-words WSD

multilingual tasks, i.e., SemEval-2013 task 12 (Navigli, Jurgens, and Vannella,

2013a) and SemEval-2015 task 13 (Moro and Navigli, 2015). As can be seen from

Table 4.8 and 4.9 Train-O-Matic enabled IMS to perform better than the SemEval-

2015 best participating system (Manion and Sainudiin, 2014, SUDOKU) in all

three settings (All domains, Maths & Computer and Biomedicine). Its performance

was in fact, 1 to 3 points higher, with a 6-point peak on Maths & Computer in

Spanish and on Biomedicine in Italian. On SemEval-2013, instead, Train-O-Matic

manages to lead IMS to state of the art results on most of the datasets, achieving

up to 2.2 F1 points more than the best scoring system on the Italian test set. This

demonstrates Train-O-Matic to enable supervised WSD systems to surpass state-of-
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the-art knowledge-based WSD approaches in most of the test sets without relying

on manually curated data for training.

4.6 Conclusion

In this Chapter we presented Train-O-Matic, a knowledge-based approach to the

automatic construction of large training sets for supervised WSD in an arbitrary

language. Train-O-Matic removes the burden of manual intervention by leveraging

the structural semantic information available in the WordNet. Furthermore, we

proved that our denser version of WordNet – created by adding connections from

BabelNet – is beneficial to Train-O-Matic and led IMS to even higher results across

the datasets. What is most interesting, however, is that our automatically-generated

training set can lead a supervised model to performance that are higher than those

attained when trained on a semi-automatically built dataset, and, sometimes, of

those achieved when trained on manually-curated training data. A result that none

of the other automatic approaches have managed to achieve. Train-O-Matic, in

fact, was shown to provide training data for virtually all the target ambiguous

nouns, in marked contrast to alternatives like OMSTI, which covers in many cases

around half of the tokens, resorting to the MFS otherwise. When compared to

other automatic alternatives, which, differently from OMSTI, were able to provide

annotated sentences for most of the tokens, Train-O-Matic proved to provide higher

quality data by leading IMS to attain 10 F1 points more than when trained on

EuroSense or SenseDefs. Furthermore, the experiments on multilingual all-words

WSD, showed that Train-O-Matic can scale well to other languages, for which

no manually annotated dataset exists, surpassing the current state of the art of

knowledge-based systems and paving the way to supervised all-words WSD on

multilingual data. We made available for research purposes all the data generated by

Train-O-Matic at http://trainomatic.org.

http://trainomatic.org
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Chapter 5

Inducing Senses’ Distribution from
Raw Text

Word senses’ distributions have been proved to play a fundamental role in Word

Sense Disambiguation (Agirre and Martinez, 2004; Postma, Bevia, and Vossen,

2016a; Postma et al., 2016b) either to extract the most frequent sense of a word

or to shape training data for supervised WSD models. In this Chapter, we present

EnDi and DaD: two language-independent and fully automatic methods for inducing

the distribution of words’ meanings directly from a raw text (Section 5.2 and 5.3).

We show that our learnt distributions are of better quality than those extracted

by other automatic methods (Bennett et al., 2016), when evaluated intrinsically

(Section 5.5), by means of Kullback-Leibler divergence with a gold distribution,

and extrinsically, by means of all-words WSD tasks comprised in the framework

of Raganato, Camacho-Collados, and Navigli (2017) (Section 5.6). Finally, we

prove that our approaches scale well on different languages and provides a valuable

alternative to the MFS baselines across different languages.

5.1 Preprocessing

Before we dive deep in the description of our two approaches for learning the

distribution of senses in a given corpus, we introduce a preprocessing step that

is shared by both our methods for inducing a sense probability distribution at

the sentence level for a given word. It takes as input a lexicon L, a raw corpus
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of sentences C and a semantic network G = (V,E). We assume a WordNet-

like structure for G (Fellbaum, 1998b), i.e., the vertices in V are synsets that

contain different lexicalizations, possibly in multiple languages, of the same concept.

Sentence-level sense distribution learning is performed in two steps:

• Semantic vector computation: in this step we compute a vector for each

synset in the semantic network. Its components are all the synsets in the graph

and their values can be interpreted as a measure of relatedness between the

starting synset and the corresponding component.

• Sentence-level word sense distribution: in this step, for each sentence in

C and for each word w ∈ L we compute a probability distribution over its

senses by exploiting the lexical vectors computed in the previous step.

The two steps are the same of those introduced in Section 4.1.1 and 4.1.2 and we

will briefly review them in what follows for completeness and the sake of clarity.

5.1.1 Semantic Vector Computation

The first step aims at computing a semantic vector for each synset, i.e., node,

in the semantic graph that has as components all the others nodes in the graph.

Similarly to what explained in Section 4.1.1, we compute the probability value by

applying Personalized PageRank (PPR) Haveliwala (2002), a variant of PageRank

Brin and Page (1998) in which the uniform restart probability is changed to a custom

probability. Also in this case, we concentrate all the restart probability mass onto

the synset for which the vector is calculated, so as to increase the probability of

reaching nodes in the surroundings of the synset of interest.

Running PPR with restart on a given synset s produces a semantic vector which

represents the probability distribution over the synsets in the network (including s

itself) of being reachable from, and thus related to, s.

5.1.2 Shallow Sense Distribution Learning

In the second step, each sentence in C in processed separately by considering all

its content words1 and building, for each of them, a probability distribution over

1We filter out non-content words and stopwords.
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their senses. Thus, given a word w ∈ L contained in a sentence σ ∈ C, we want to

score each of the meanings of w (available in the WordNet-like semantic network)

with the probability of seeing that sense in the given sentence. Such probability is

computed with the following formula:

P (s|σ,w) = P (σ|s, w)P (s|w)
P (σ|w) (5.1)

= P (w1, . . . , wn|s, w)P (s|w)
P (w1, . . . , wn|w) (5.2)

∝ P (w1, . . . , wn|s, w)P (s|w) (5.3)

≈
∏
w′∈σ

P (w′|s, w) (5.4)

=
∏
w′∈σ

find(−−−→PPRs, w
′) (5.5)

where s is a sense of w, which, in its turn, is contained in σ. We approximate the

probability in Equation 5.3 by making the independence assumption between words

in the sentence and calculate the probability in Equation 5.4 with the function find

in Equation 5.5 which returns the highest-probability synset in the first-argument

vector v which has the word w as one of its lexicalizations:

find(−→v , w) = max
s∈Cvw

−→v (s) (5.6)

where Cv
w is the set of all the components of −→v that have w among their lexicaliza-

tions.

Once we have applied this procedure to all the sentences in the corpus C for each

given word w ∈ L, we obtain a sense probability distribution for all the sentences w

occurs in. For example, given a sentence σ in the corpus (e.g. The coordinate plane

is a two-dimension surface), a lexicon L = {plane, surface} and G = WordNet,

the above procedure outputs two distributions (for plane and surface) as shown in

Figure 5.1. Such distributions are used in our two methods, described below, to

compute a unified distribution of senses for each word in the lexicon. Hence, in

what follows, we assume that the input corpus comes with the senses’ distributions

annotated by this preprocessing step.
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Figure 5.1. Probability of the senses of plane (left) and surface (right).

5.2 Entropy-Based Distribution Learning (EnDi)

We now introduce the first method for calculating a sense distribution for a given

word. This method takes as input the lexicon L, the set of sense distributions

Γw = {γσw : w ∈ σ} for each word w ∈ L, which have been computed in the

previous step, and a threshold θ.

In order to build a single sense distribution Dw for each word w in L, we first

select the set of sense distributions for all its sentences which have low entropy as

follows:

Γ̂w = {γσw ∈ Γw : H(γσw) ≤ θ} (5.7)

where γσw is the distribution over w’s senses in the sentence σ and H(γ) is the

entropy of the input distribution γ:

H(γ) = −
∑
s∈γ

γ(s)log2(γ(s))

As a result Γ̂w contains only skewed sense distributions computed from sentences

for which the sense bias is stronger and, therefore, the final decision is clearer. Finally

the unified probability mass function Dw for a word w is computed so as to have,

for each sense s of w, the following value:

Dw(s) = 1
|Γ̂w|

∑
γσw∈Γ̂w

γσw(s) (5.8)



5.3 Domain-Aware Distribution Learning (DaD) 55

Sentence plane1
n (aircraft) plane2

n (geometry) plane5
n (carpentry)

Two people on the plane died. 0.92 0.01 0.07

The flight was delayed due to trouble with the plane. 0.82 0.07 0.11

Only one plane landed successfully. 0.73 0.10 0.17

The cabinetmaker used a plane for the finish work. 0.20 0.18 0.62

A catalog of special plane curves. 0.10 0.85 0.05

Dplane 0.55 0.24 0.21

Table 5.1. A sense distribution computation example for the word plane.

For example, let’s consider the word plane and 5 sentences that contain it (see Table

5.1, left column): we compute its sense distribution by summing the probability of

each sense across the sentences and then renormalizing the results by their sum (last

row of the Table).

5.3 Domain-Aware Distribution Learning (DaD)

The second method for sense distribution learning, again, takes as input the lexicon

L, the set of sense distributions Γw = {γσw : w ∈ σ} for each word w ∈ L, and a

semantic network G = (V,E). The idea, for this second approach, is to exploit the

associations between synsets in V and domains from a fixed set D.2

Note that each synset might be associated with zero, one or more domains,

and that these associations come from an off-the-shelf resource, such as BabelNet

domains (Camacho-Collados and Navigli, 2017).

We learn the sense distribution in two steps:

1. Domain distribution: we compute the distribution of the domains in the

shallow disambiguated corpus.

2. Sense distribution computation: we augment the semantic network with

domain nodes and connect them to the synsets in the semantic network they

are associated with. We then run Personalized PageRank on the augmented

semantic graph and obtain a sense distribution over all the synsets in the graph.

2 The list of domains can be found at:

http://babelnet.org/javadoc/it/uniroma1/lcl/babelnet/data/

BabelDomain.html

http://babelnet.org/javadoc/it/uniroma1/lcl/babelnet/data/BabelDomain.html
http://babelnet.org/javadoc/it/uniroma1/lcl/babelnet/data/BabelDomain.html
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5.3.1 Domain distribution.

Given the set of sense distributions for all the words in L and all the sentences in

the input corpus, we calculate the following probability for each domain d ∈ D:

C(d) = 1
|Γ|

∑
γ ∈Γ

∑
s∈ γ :

d∈ domains(s)

γ(s) (5.9)

where domains(s) is the set of domains s is associated with. Thus, each sense

in a distribution γ contributes to the probability of each domain it belongs to

proportionally to its probability in γ. The average of these contributions provides

the final probability of domain d in the input corpus.

The hunch behind this step is that, if a corpus is domain-biased, then synsets

belonging to that domain should appear more often and with higher probabilities,

therefore contributing to increasing the corresponding domain probability. A second

hunch is that, even though the shallow distributions inherently come with some

unavoidable noise, sometimes due to fine-grained sense distinctions, abstracting

synsets with domains enables a coarser, hopefully more accurate and wider coverage,

level.

5.3.2 Sense Distribution Computation.

Now that we have a distribution over domains, we add a node for each domain to

the original semantic network. We then connect with a direct edge each domain

node to all the synsets it is associated with. We finally compute a probability for

each synset by applying Personalized PageRank and setting the restart probability

vector with the domain distribution that we computed with Formula 5.9. Therefore,

given the PageRank formula as defined by Formula 4.1, we set v(0) to 0 except for

those components (i.e. nodes) corresponding to each domain d, which, instead are

set to the corresponding domain probability C(d). Thus, using the analogy of the

random walker, it means that every time the walker decides to restart its walk, it will

move to a new domain node according to its probability.

As a result of the PageRank computation we have a distribution over all the

semantic network’s nodes, i.e., synsets. Note that at this stage the distribution is not

specific to a given word, but is general for all synsets in G. Thus the sense distribu-

tion of a word can be retrieved by considering the probabilities of all the synsets of
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that word (i.e., its senses) in the resulting PageRank vector and normalizing them so

as to obtain a sense distribution of the word’s senses.

5.4 Experimental Setup

We carried out both intrinsic and extrinsic evaluations in order to have a measure of

how well the two methods perform both theoretically and in practice. Both methods

for sense distribution learning have some parameters, namely: the semantic network,

the corpus and, for the first method, the entropy threshold θ.

Semantic Network We started from BabelNet, which is currently the largest

multilingual semantic network, with around 14 million synsets covering hundreds

of languages and dozens of domains (Navigli and Ponzetto, 2012). BabelNet is a

superset of WordNet, Wikipedia, Wiktionary and other resources and therefore is

richer in terms of lexicalizations and semantic relations than any of the resources it

integrates. However, because – similarly to alternatives in the literature – we focused

only on common nouns, we followed Pasini and Navigli (2017) and chose the

WordNet-induced subgraph of BabelNet as the underlying network for the semantic

vector computation. In other words, the graph contained only BabelNet synset nodes

that comprise at least one WordNet sense but with the considerably larger set of

relation edges and multilingual lexicalizations coming from BabelNet.

Corpus We chose Wikipedia as our input corpus because it is available in hundreds

of languages and it covers all domains of human knowledge. We used the October

2016 dump of Wikipedia.

Entropy threshold For EnDi we tried different values of the threshold θ, ranging

from 0.1 to 4.0 with step 0.1, and tested the results on an in-house development set

of 25 lemmas for which we computed the sense distribution in Wikipedia and then

selected the value of θ based on the best results in terms of similarity to the SemCor

distribution (as explained below). We thus set θ to 1.0.

Comparison sense distributions and gold standard We compared the two sense

distribution learning methods against several alternative methods for deriving sense
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distributions for words, namely:

• EuroSense Bovi et al. (2017): a sense-annotated resource based on the mul-

tilingual joint disambiguation of the Europarl corpus Koehn (2005c). For a

given word, its sense distribution is obtained by computing the normalized

frequency of its senses in the corpus.

• LexSemTM Bennett et al. (2016): an approach which builds on top of Lau

et al. (2014) and exploits sense glosses and usage examples of the target

lemma to build a topic model and then a distribution of the target word’s

senses.

• WordNet and BabelNet degree: we created sense distributions based on

the normalized out-degrees of the various senses of the target word in two

different semantic networks: WordNet and BabelNet. Given one of the two

graphs, we calculated the distribution as follows:

Dw(s) = out-deg(s)∑
s′∈senses(w) out-deg(s′)

• SemCor gold-standard sense distribution: we also compared against the

sense distribution computed based on sense frequencies in SemCor Miller

et al. (1993b). Notice that this is a gold-standard distribution, as it is the only

distribution obtained from manually-annotated data.

5.5 Intrinsic Evaluation

5.5.1 Evaluation measures

For the intrinsic evaluation we evaluated the similarity between the two distributions

learned with our entropy and domain-based methods and all other comparison sense

distributions introduced above. We used two different measures for performing the

comparison, i.e., Jensen-Shannon divergence and Weighted Overlap. Both measures

were computed separately for each pair of distributions and then averaged by the

total number of words.
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Jensen-Shannon divergence (JSD) This measure is based on the Kullback-Leibler

divergence and equals 0 when the two distributions are identical, and is greater than

0 when they are different in some way. It is computed as follows:

JSD(γ, γ′) = D(γ,M)
2 + D(γ′,M)

2 (5.10)

where M = γ+γ′

2 and D is the Kullback-Leibler divergence which is given by the

following formula:

D(γ, γ′) =
∑
s

γ(s)log
(
γ(s)
γ′(s)

)
(5.11)

where, in our case, s are synsets in our sense distributions.

Weighted Overlap This measure (Pilehvar, Jurgens, and Navigli, 2013, WO)

determines how similar are the sense rankings of the two distributions. It is 1 when

the two distributions have the same ranking of the components and lower than 1
when they are different. It is defined as follows:

WO(γ, γ′) =
|O|∑
i=1

(ri + r′i)−1

(2i)−1 (5.12)

where O is the intersection of the components of γ and γ′ and ri and r′i are the

ranks of the i-th component in the respective distribution γ and γ′. The rank of

a component (i.e., sense) of the distribution vector is the position at which the

component can be found in the distribution vector when sorted in descending order.

The Weighted Overlap is thus a measure that does not consider the value of the

components in the distributions, but only their ranking.

These two measures provide different insights about how the sense frequencies

of a given word are distributed both numerically and when we only consider the

components position when the distributions are sorted by value.

5.5.2 Results

Similarity to SemCor distributions The first experiment we performed aimed at

investigating the similarity between the various automatically learned distributions

(both with our two methods and the comparison distributions) and the gold-standard

SemCor distribution. In Table 5.2 we show the JSD and WO (note that for JSD the

lower the better, while for WO the higher the better) averaged among all the words
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Method JSDgold WOgold JSDsys WOsys

EnDi 0.29 0.70 0.06 0.89

DaD 0.17 0.91 0.12 0.92
LexSemTM 0.29 0.67 0.07 0.89

EuroSense 0.60 0.39 0.24 0.75

BabelNet Degree 0.09 0.87 0.09 0.87

WordNet Degree 0.07 0.88 0.07 0.88

Table 5.2. Similarity with SemCor in terms of Jensen-Shannon divergence and Weighted

Overlap (gold evaluates against all words in SemCor; sys evaluates only against the

words for which each method can provide a sense distribution).

Method Missing Lemmas

EnDi 2655
DaD 23
LexSemTM 2783
EuroSense 5378
BabelNet Degree 23
WordNet Degree 23

Table 5.3. Lemmas for which a method was not able to build a distribution.

in the test set. Both measures were computed, first, by considering all the lemmas in

the test set and assigning 1 and 0 to JSD and WO, respectively, when the method

was not able to build a distribution for a given lemma (second and third column),

and then considering only the lemmas for which the method was able to build the

distribution (fourth and fifth columns of the table). As can be seen both our methods

built distributions that are generally most similar to SemCor, in terms of both JSD

and WO, than the state-of-the-art LexSemTM and that are either better or on a par

with alternative approaches. More in detail, DaD performs best in the gold setting,

showing wide coverage of words, but a bit worse in numerical terms according to

JSDsys. In contrast, EnDi performs best in terms of JSDsys, due to its ability to

prune out noisy sentences, slightly worse in the ranking evaluation and on a par with

LexSemTM across the board. Degrees fare well, especially on JSD, but, as we will

see, their extrinsic evaluation results turn out to be considerably lower.
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Method JSD WO

EnDi 0.099† 0.937
DaD 0.204 0.902

LexSemTM 0.116† 0.932

EuroSense 0.344 0.713

BabelNet Degree 0.224 0.832

WordNet Degree 0.166 0.858

SemCor 0.255 0.837

Table 5.4. Similarity with the gold standard from Bennett et al. (2016) in terms of JSD and

Weighted Overlap. Values tagged with † are statistical significant with each other for

p < 0.1.

We show lemma coverage in Table 5.3: DaD and the degree-based distribu-

tions have the highest coverage of words, which is WordNet’s, while EnDi and

LexSemTM – due to filtering mechanisms – and EuroSense – due to lack of sense

annotations – have much lower word coverage.

Similarity to Bennett et al.’s (2016) distributions So far we have shown that our

methods produced high-quality sense distributions when compared against SemCor.

While this is a good result, we should consider that SemCor dates back to almost

30 years ago and since then sense distributions have surely changed over time for a

number of ambiguous words (e.g. troll, tweet, etc.). To work on more recent data,

we performed a second intrinsic evaluation using a gold standard dataset proposed

by Bennett et al. (2016), which provides distributions manually annotated for 50

lemmas. In this experiment we also evaluated the SemCor-derived distribution

against the 50-lemma gold standard. In Table 5.4 we report the results in terms of

JSD and WO on this dataset3: our methods have lower JSD values than SemCor

distribution. Another interesting result is that both WordNet and BabelNet degree

baselines also beat SemCor by 0.09 and 0.03 points, while EuroSense achieved the

worst results. LexSemTM, instead, scored pretty well according to both measures,

achieving 0.116 on JSD and 0.932 on WO. DaD on the other hand scored better

than SemCor but worse than LexSemTM on JSD and slightly worse on WO; in

3We note that, here, all the systems were able to generate a distribution for each lemma.
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contrast, EnDi turned out to be the best method according to the JSD measure and

was equivalent to LexSemTM on WO, achieving the state of the art on this dataset.

Note also that JSD values are statistical significant for p < 0.1.

5.6 Extrinsic Evaluation

We now move to the extrinsic evaluation, which was performed in the context

of all-words Word Sense Disambiguation. It is well known in the literature that

always outputting the most frequent sense for each ambiguous word in context – the

so-called Most Frequent Sense (MFS) baseline – is a hard-to-beat disambiguation

strategy (Navigli, 2009). The MFS for English is usually calculated based on

frequencies as reported in WordNet, which exploit those in the SemCor corpus.

Therefore, we can evaluate each sense distribution method by i) for each word,

identifying the predominant (i.e., highest-probability) sense according to the returned

sense distribution, and ii) always outputting that sense every time in a WSD dataset

we are required to disambiguate the given word. By applying this procedure, we

compared the results of the various approaches against the WordNet MFS and

BabelNet and WordNet degree. As test sets, we used the benchmark from Raganato,

Camacho-Collados, and Navigli (2017) which is the union of all the past Senseval

and SemEval for all-words WSD, namely: Senseval-2 (Edmonds and Cotton, 2001),

Senseval-3 (Snyder and Palmer, 2004), SemEval-2007 (Navigli, Litkowski, and

Hargraves, 2007), SemEval-2013 (Moro and Navigli, 2015) and SemEval-2015

(Moro and Navigli, 2015).

As shown in Table 5.5, both EnDi and DaD beat LexSemTM by several points.

Moreover, especially DaD, shows performance close to the WordNet MFS baseline

with a gap of 6.7 points. Both BabelNet and WordNet degree strategies, instead,

scored lower or equal to LexSemTM. This result corroborates the high performance

of DaD in terms of WO that we have shown in the previous Section. Moreover

we think that this is a very significant outcome since a fully automatic system was

able to learn sense distributions that perform very close to a hard-to-beat baseline

obtained from a manually sense-annotated dataset.

This is again a good result, but, as mentioned above, annotated data exists for

English from which usable sense distributions can be derived (however, this data is
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Method Precision Recall F1

EnDi 54.3 50.1 52.1

DaD 61.0 61.0 61.0

LexSemTM 51.4 47.9 49.6

BabelNet degree 51.3 38.4 43.9

WordNet degree 55.1 44.3 49.1

WordNet MFS 67.7 67.7 67.7
Table 5.5. Most Frequent Sense performance averaged on all Senseval/SemEval test sets

from Raganato et al. (2017).

outdated and limited in size, while our distributions can be updated over time and

cover much of the lexicon). To further show the effectiveness of our methods, we

performed experiments in other languages, for which manually annotated data is

not available on a reasonable scale. Our methods are indeed language-independent

and, thanks to BabelNet lexicalizations, we can apply them to arbitrary languages.

We therefore calculated sense distributions from the Italian and Spanish Wikipedia

(dumps from October 2016) and compared their performance on the SemEval-2015

all-words multilingual Word Sense Disambiguation task. We set the threshold θ

for Italian and Spanish to 1.0 and 0.001 experimentally, equally to how we did for

English. The difference is due to the fact that the Spanish part of BabelNet contains

more ambiguous data.

Results for Italian are shown in Table 5.6. We compared our two methods against

the BabelNet Degree and the BabelNet First Sense (BFS) baseline, a dictionary-

based baseline which was used as baseline in the task (due to the lack of a manually

annotated dataset from which an MFS could be estimated in Italian). The results

show that our method performs better than the current best baseline. In particular,

DaD outperforms the BFS by 9 F1 points. The gap is even bigger when looking at

precision, where our two methods gain from 6 to 13 points, while recall is increased

by 6 points with DaD. BabelNet degree also performed better than the BFS but

is anyway less effectively than both our systems. A similar trend is observed for

Spanish (Table 5.6), with DaD attaining a 5% F1 improvement over the Spanish

BFS.
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Language Method Precision Recall F1

Italian

EnDi 60.3 50.0 54.6

DaD 66.7 56.1 60.9
BabelNet Degree 57.3 52.4 54.7

BFS 54.3 50.2 52.2

Spanish

EnDi 57.7 48.1 52.4

DaD 63.6 54.1 58.4
BabelNet Degree 54.7 52.4 53.5

BFS 54.5 50.6 52.5

Table 5.6. Comparison of Most Frequent Sense performance for Italian and Spenish on the

SemEval-2015 WSD task.

5.6.1 Domain-Specific Evaluation

We next investigated how well our methods were able to produce skewed distribu-

tions of senses in specific domains.

Learning domain-specific sense distributions To bias sense distributions to-

wards specific domains, we exploited the 34 domains available in BabelNet (Camacho-

Collados and Navigli, 2017). For each domain d, we collected all the synsets in

BabelNet tagged with that domain and which contain a Wikipedia page. We then

used all the sentences from the retrieved pages to build a corpus for domain d. On

each corpus, we then applied EnDi and DaD to obtain sense distributions that were

biased towards the domain of interest.

Evaluation We tested our domain-biased sense distributions against domain-

specific documents from the same SemEval-2013 and SemEval-2015 test sets used

in the above extrinsic experiment, as tagged by the task organizers. In contrast to

the above experiments, results are therefore reported individually for each domain

where EnDi and DaD used the corresponding distributions learned for that domain4.

Results are shown in Tables 5.7. EnDi and DaD outperforms LexSemTM on all

domains across the two datasets. While the latter performances are always lower

4We note that, here, the only additional information provided as input to the methods was the

domain label.
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Dataset Domain EnDi DaD LexSemTM WN MFS

SemEval-2013

Biology 70.9 79.0 55.6 61.4

Climate 52.7 63.0 46.6 59.2

Finance 60.5 63.9 49.2 51.9

Medicine 46.1 64.3 41.7 49.6

Politics 62.1 66.7 51.3 63.9

Social Issues 63.4 67.5 52.3 58.2

Sport 57.2 53.6 34.8 56.0

SemEval-2015
Math & Computer 63.1 66.3 47.3 46.8

Biomedicine 63.3 62.6 62.6 68.0
Table 5.7. Domain evaluation on SemEval-2013 and SemEval-2015 WSD.

than the WordNet MFS baseline, EnDi is instead able to surpass the baseline on 5

out of 7 domains on SemEval-2013 and on one of the two domains of SemEval-

2015. As regards DaD, not only does it consistently beat LexSemTM, achieving

up to 23 points higher in F1 on the Biology domain, but it also beats the WordNet

MFS on every domain but one of SemEval-2013 and one of the two domains of

SemEval-2015, performing on average 8 F1 points higher.

5.7 Conclusions

In this Chapter we introduced the problem of automatically inducing the distribution

of senses within a corpus of raw texts and presented EnDi and DaD, two knowledge-

based, language-independent methods for tackling such problem. They have been

shown to perform well on intrinsic and extrinsic evaluations, outperforming the

other baselines. Thanks to effective entropy-based filtering, EnDi outperformed

LexSemTM, the previous state of the art in sense distribution learning, in all evalua-

tions for the English language. We also showed that, in contrast to other approaches,

both methods scale well to other languages, with DaD surpassing all alternative

methods in the two SemEval multilingual disambiguation tasks. Thanks to its

domain awareness, not only has DaD proven to generalize well across languages,

but also to surpass the F1 performance of the hard-to-beat WordNet MFS on 7

out of 9 domains from two SemEval tasks. LexSemTM is, instead, surpassed by
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both methods across all domains. All the data is available for research purpose at

http://trainomatic.org.

http://trainomatic.org
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Chapter 6

Train-O-Matic++: Leveraging Sense
Distributions

6.1 Coupling Train-O-Matic with EnDi and DaD

In the previous Chapters we introduced Train-O-Matic to automatically building

semantically-annotated training data and EnDi and DaD to learning word senses’

distributions given a corpus of sentences. Train-O-Matic exploited WordNet sense

ordering in order to assign a certain number of sentences (ki) to a given sense si
(see Formula 4.12) that we report here for clarity:

ki = 1
iz
∗K

In this Chapter, we aim at coupling Train-O-Matic with EnDi and DaD and present

Train-O-Matic++, which, not only can generate training data in any language sup-

ported by BabelNet, but it can also adapt the produced datasets to the domain of

application or, more in general, to the distribution of senses that we can induce

directly from a set of input documents of raw sentences. Therefore, given an input

text that we are interested in disambiguating, we first run EnDi or DaD in order to

build a distribution for senses of all the target words of the input text. Then, we

plug the sense ordering induced by the learnt distributions into Formula 4.12 in

order to shape the training data on the sense distribution of the input documents.

We therefore dispose of WordNet sense ordering – which depends on the senses’

frequencies in SemCor – and remove also the last bit of manual effort that was

needed by Train-O-Matic. Indeed, thanks to EnDi and DaD, Train-O-Matic++ can



68 6. Train-O-Matic++: Leveraging Sense Distributions

now induce its own ordering of senses based only on the input text or collection

of documents that one is interested in disambiguating. This, for example, may be

a sample set of texts that is representative of a target domain in which the final

supervised WSD model will be applied. In what follows, we first show the perfor-

mance attained by IMS trained on Train-O-Matic++, and put them in comparison

with those attained by the vanilla Train-O-Matic and when is is coupled with other

types of distributions (Section 6.2). Second, we prove that, a good estimation of

the target sense distribution is effective only when accompanied by high-quality

sense-tagged data. (Section 6.3). Third we show that EnDi and DaD outperforms

the manually-curated sense distribution and the MFS strategy provided by WordNet

on the domain-oriented evaluation on SemEval-2013 and SemEval-2015 all-words

WSD tasks (Section 6.4). Finally, we prove that EnDi and DaD, when used as

backoff strategy in the multilingual settings, provide a boost of several points across

all the tested datasets (Section 6.5), which crown them as the best backoff strategies

when it comes to multilingual all-words WSD.

6.2 Comparing Senses’ Distributions

We now study the impact of different training-set-shaping strategies on the final WSD

model. Specifically, we generate different datasets by means of Train-O-Matic++

when coupled with different sense distributions that can be either automatically or

manually induced.

6.2.1 Experimental Setup

Reference System We use IMS (Zhong and Ng, 2010) as WSD system across all

the experiments to measure the impact of each training set on a supervised model.

Comparing Distributions Across the section we put in comparison the following

distributions:

1. Uniform: we assign the same number of training samples to each meaning.

In the case Train-O-Matic could not find enough sentences for a given sense,

then we associate it with all the samples that Train-O-Matic was able to find.
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2. WordNet: we rank the senses of each word according to WordNet ordering

and then apply the Zipf’s law (see Formula 4.12) to compute the number of

sampled sentences for each synset according to its rank.

3. Automatic: we rank the word senses of each word according to either DaD

or EnDi (see Section 5) and then apply Formula 4.12 as described before.

4. Random: we assign a random number of examples to each synset of a word.

When the random number is higher than the available examples, we assign

the maximum number of examples available.

5. Oracle: we rank the word senses according to the sense frequency in the test

set. Later, we assign a number of examples to each sense following a Zipfian

distribution as in Formula 4.12.

6. Oracle 1-2: acts as Oracle but exchanges the first and the second sense in

the synset ranking. For example, being [s3, s1, s2] the ordering of the senses

for the word w according to the Oracle distribution, then, Oracle 1-2 would

provide the following distribution for w: [s1, s3, s2], i.e., where s1 and s3 have

been swapped.

7. Oracle 2-3: acts as Oracle 1-2 but exchanges the second and the third sense in

the synset ranking. Therefore, given the Oracle distribution [s3, s1, s2], Oracle

2-3 would output the distribution [s3, s2, s1].

The Oracle variants are designed to prove the importance of identifying the predom-

inant sense of a word, and especially, how much mistaking the first sense for the

second one would affect the performance (Oracle 1-2) with respect to mistaking the

second and the third ones (Oracle 2-3).

We measure the impact of each distribution to the final reference model (i.e.,

IMS) by building 7 distinct datasets with Train-O-Matic, each following one of the

aforementioned distributions. Then we use a all-words WSD task to measure the

performance of IMS trained on each dataset.

Test set We use the ALL dataset comprised in the Raganato, Delli Bovi, and

Navigli (2016) evaluation framework which is the concatenation of all the past

Senseval and SemEval datasets.



70 6. Train-O-Matic++: Leveraging Sense Distributions

Measure WordNet EnDi DaD Uniform-100 Random Oracle Oracle 1-2 Oracle 2-3

Precision 65.1 48.0 60.3 47.1 45.3 81.3 47.6 79.8

Recall 59.7 43.5 54.3 42.7 41.0 73.5 43.1 72.2

F1 62.3 45.6 57.3 44.6 43.0 77.2 45.3 75.8

Table 6.1. Evaluation on the ALL dataset of the same WSD system trained on training sets

balanced in different ways.

6.2.2 Results

In Table 6.1 we report the results of IMS trained on different training data, each

following a different sense distribution that is induced by one of the aforementioned

approaches. We note that, the results are computed without the backoff strategy,

therefore, there may be words for which the classifier does not output any answer

and thus precision and recall and F1 may be different. The Random method, that

assigns a random number of examples to each synset, is the one that performed the

worst with 43 points in F1. Interestingly we note that the Uniform strategy (which

assigns the same number of examples to each sense) lead IMS to achieve only 1.6

points more then the Random approach, hence proving that, uniform balancing is not

a viable options when dealing with senses. This is because the classifier learns an

unnatural distribution that will never be encountered in real-world scenarios (which

are usually represented in the test sets). Moreover, with a perfectly balanced training

set, the classifier tries to model each sense equally, while, given the Zipfian nature of

meanings’ distribution, it would be more optimal to learn a good representation for

the most frequent senses and a less accurate one for the others. Another interesting

result is the one achieved with the Oracle strategy. As one can see, in fact, the vanilla

Oracle leads IMS to 77.2 F1 points on the ALL dataset which is almost 10 points

higher than the current state-of-the-art WSD model (Luo et al., 2018) on the same

dataset. This raise an important question about the generalisation capabilities of the

WSD models presented so far in the literature. In fact, it seems like, IMS, and all

the models presented so far, are not taking into account some important aspect of a

sentence semantic which, instead, may allow them to better shape a word senses’

distribution based on the given context. This is further corroborated by the results

attained when the Oracle 1-2 and Oracle 2-3 strategies are followed to shape the

training data. With Oracle 1-2, in fact, IMS performs 45.3 F1 points, only 1 point
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higher than the Uniform strategy, while, in strong contrast, Oracle 2-3 performed

more than 30 F1 points than the Uniform strategy and just 2 points less than the

plain Oracle. This shows how sensitive the model is to the sense distribution in the

training data and, more interestingly, how identifying the most common sense of a

word is actually more important than correctly estimating the rest of the distribution.

In fact, swapping the senses in the distribution from the second position onwards,

does not degrade the performance to the same extent as when the first sense is

swapped with the second one.

Together with all these baselines, we also report the performance achieved by

IMS when we use the sense distribution induced by WordNet, EnDi and DaD.

As expected the WordNet ordering outpeformed the two automatic baselines as

it takes advantage of the manual annotations available in SemCor. While we note

that EnDi performed poorly, slightly more than the Oracle 1-2, we stress the fact

that DaD, even though fully unsupervised, enables IMS to achieve 57.3 F1 points, 5
less than when WordNet is used.

These outcomes are encouraging and show the impact that a good estimation of

the target sense distribution may have on a supervised WSD model, hence proving

that, better distribution learning techniques could highly affect the results on the

WSD task. Moreover, considering the huge gap between the learnt distributions and

the Oracle one, there is still a large room for improvement which should motivate

researchers to further contribute to this field.

6.3 Word Sense Distribution vs. Data Quality

We now want to study whether the distribution of senses encodes enough information

to steer a supervised WSD model to achieve decent results. Therefore, to give a

measure of how good a model could perform by only having information regarding

the sense distribution, we evaluate the results of a supervised model, i.e., IMS,

trained on data shaped according to the best possible distribution (i.e., the one

computed on the test set (Oracle)) and collected at random, i.e., we assign a random

sense to each target word in each sentence.
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Method Precision Recall F1

Oracle-T-O-M 500 81.3 73.5 77.2

noisy-T-O-M 100 51.7 48.8 50.2
noisy-T-O-M 200 51.1 48.4 49.7

noisy-T-O-M 500 49.0 46.4 47.6

Table 6.2. Evaluation of IMS with Oracle distribution when random senses are assigned to

each word occurrence.

6.3.1 Experimental Setup

Reference System We use IMS (Zhong and Ng, 2010) as supervised model to

measure the effectiveness of each produced dataset.

Comparing Datasets We compare the results of IMS trained on four different

training set automatically generated with Train-O-Matic:

• Oracle T-O-M 500: It is generated by following the Oracle distribution and

with each target word disambiguated according to Train-O-Matic pipeline

(see Chapter 4). We set K, i.e., the number of sentences assigned to the most

frequent sense of each word, to 500.

• noisy-T-O-M 100/200/500: It is generated by disambiguating each target

word at random and then sampling the set of sentences for each sense accord-

ing to ordering given by the Oracle distribution. We produced three variants

of this corpus with K set to 100, 200 and 500.

Test Set We test IMS trained on each noisy-Train-O-Matic on the ALL dataset

included in Raganato, Delli Bovi, and Navigli (2016).

6.3.2 Results

In Table 6.2 we prove that the quality of the contexts provided by a training set

matter and that mimicking the test set distribution of senses is not enough to build a

well-performing classifier. As one can see, in fact, when we use Train-O-Matic with

the Oracle distribution and K = 500 to generate the dataset (Train-O-Matic 500),
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IMS achieves 77.2 F1 points. However, when we generate noisy datasets, i.e., by

assigning random examples for a target sense – instead of those that are most likely

to contain the word with the given sense – the performance drops heavily. Indeed,

noisy-Train-O-Matic 100 attains 27 points less than Oracle-T-O-M 500 proving that,

having a good sense distribution estimator would not be enough if not coupled with

high-quality data. This is also confirmed by the fact that, increasing the number

of examples each synset can receive (from 100 to 500), makes the performance

decrease. Intuitively this happens because more noise is added to the dataset and

thus the classifier gets increasingly confused. To conclude, this further corroborate

our claim that Train-O-Matic produces high-quality examples since, if they were

too noisy, then even when following the Oracle distribution the training set would

have not led IMS to attain results 10 points higher than the state-of-the-art model

reported by Raganato, Camacho-Collados, and Navigli (2017).

6.4 Domain-oriented WSD

Now that we proved the importance of sense distribution when coupled with high-

quality data, we show the EnDi and DaD distributions impact on the final WSD

model when tested on a domain-specific setting. Inter alia, we are interested in

showing that, by including specific sense distributions into the training data, we

bring two main benefits to both Train-O-Matic and supervised models: i) we make

Train-O-Matic more flexible, hence enabling it to build training sets tailored to a

specific distribution and ii) we boost the performance of a supervised model which

can now be trained on data specific for a target domain (see the Test Sets section of

this Chapter for the complete list of domains comprised by the two SemEval).

6.4.1 Experimental Setup

Comparing Systems For each testing domain we compared three different con-

figurations of Train-O-Matic++:

1. +MFS: Original Train-O-Matic is used to build the training corpus and the

MFS learnt by DaD or EnDi is set as backoff strategy, and therefore the data

are sorted according to WordNet ordering.
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Domain Backoff
T-O-M T-O-M++DaD T-O-M++EnDi SemCor WN MFS

Size
P R F1 P R F1 P R F1 F1 F1

Biology

+MFS 63.0 63.0 63.0 63.7 63.7 63.7 63.7 63.7 63.7

66.3 64.4 135+SD 59.0 53.3 56.0 69.8 65.2 67.4 54.8 51.1 52.9

+MFS+SD 63.0 63.0 63.0 71.1 71.1 71.1 57.0 57.0 57.0

Climate

+MFS 68.1 68.1 68.1 66.0 66.0 66.0 65.5 65.5 65.5

70.1 67.5 194+SD 63.4 50.0 55.9 64.5 56.2 60.1 52.7 45.9 49.0

+MFS+SD 68.1 68.1 68.1 66.5 66.5 66.5 55.7 55.7 55.7

Finance

+MFS 68.0 68.0 68.0 58.9 58.9 58.9 58.9 58.9 58.9

63.7 56.2 219+SD 62.1 51.6 56.4 62.0 58.0 59.9 52.2 48.9 50.5

+MFS+SD 68.0 68.0 68.0 63.9 63.9 63.9 54.8 54.8 54.8

Health Care

+MFS 65.2 65.2 65.2 58.0 58.0 58.0 58.7 58.7 58.7

62.7 56.5 138+SD 61.3 55.1 58.0 66.4 60.1 63.1 50.4 45.7 47.9

+MFS+SD 65.2 65.2 65.2 68.1 68.1 68.1 54.3 54.3 54.3

Politics

+MFS 65.2 65.2 65.2 72.4 72.4 72.4 71.3 71.3 71.3

69.5 67.7 279+SD 62.5 54.8 58.4 70.2 65.9 68.0 59.9 55.9 57.7

+MFS+SD 65.2 65.2 65.2 72.0 72.0 72.0 60.9 60.9 60.9

Social Issues

+MFS 68.5 68.5 68.5 67.6 67.6 67.6 67.9 67.9 67.9

66.8 67.6 349+SD 63.1 53.0 57.6 72.2 63.9 67.8 59.5 52.7 55.9

+MFS+SD 68.5 68.5 68.5 73.9 73.9 73.9 63.0 63.0 63.0

Sport

+MFS 60.3 60.3 60.3 55.5 55.5 55.5 55.5 55.5 55.5

60.4 57.6 330+SD 58.3 54.6 56.4 53.4 50.6 51.9 46.3 43.9 45.1

+MFS+SD 60.3 60.3 60.3 53.6 53.6 53.6 47.0 47.0 47.0

Table 6.3. Performance comparison over SemEval-2013 domain-specific datasets when

WordNet EnDi and DaD are used to compute MFS (+MFS) and sense distribution

(+SD).

2. +SD: We used sense distribution learnt by EnDi and DaD to order the word

senses and decide the amount of training examples to assign to each one. We

note that in this setting no backoff strategy is used.

3. +MFS+SD: We used both: the EnDi and DaD learnt MFS and sense dis-

tribution as backoff strategy and sense distribution to shape the training set

respectively.

Original Train-O-Matic (T-O-M) follows, by design, the WordNet sense ordering

to shape the training data, therefore, the results in its +MFS and +MFS+SD rows

are identical. The two versions of Train-O-Matic++ (T-O-M++ EnDi and T-O-M++

DaD), instead, use WordNet ordering in the +MFS setting to shape the training data,

and either EnDi or DaD in the +MFS+SD version.
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T-O-M T-O-M++DaD T-O-M++EnDi SemCor MFS
Size

Domain Backoff P R F1 P R F1 P R F1 F1 F1

Biomedicine

+MFS 76.3 76.3 76.3 68.0 68.0 68.0 68.0 68.0 68.0

70.3 71.1 100+SD 76.1 72.2 74.1 75.0 71.1 73.0 48.9 45.4 47.1

+MFS+SD 76.3 76.3 76.3 75.3 75.3 75.3 51.5 51.5 51.5

Maths &

Computer

+MFS 50.0 50.0 50.0 51.0 51.0 51.0 50.3 50.3 50.3

40.6 40.9 97+SD 50.0 47.0 48.5 62.1 59.0 60.5 40.9 38.0 39.4

+MFS+SD 50.0 50.0 50.0 62.0 62.0 62.0 41.4 41.4 41.4

Table 6.4. Performance comparison over the Biomedical and Maths & Computer domains

in SemEval-2015 when DaD and EnDi are used to predict the sense distribution of the

test set..

Test Sets We tested on the 13 documents of SemEval-2013 belonging to different

domains, namely: biology, climate, finance, health care, politics, social issues and

sport, and 2 documents of SemEval-2015 in 2 different domains, i.e., Maths &

computers and biomedicine.

6.4.2 Results

The results in Table 6.3 show that EnDi and DaD are more effective when used

to shape the dataset (+SD) than as backoff strategy (+MFS). By only shaping the

training data with the distribution learnt by DaD, in fact, we see the highest gain in re-

sults with respect to the plain Train-O-Matic. IMS trained on Train-O-Matic++DaD,

in fact, attains from 3.5 to 10.2 F1 points more than Train-O-Matic (+SD rows),

proving that DaD captured a sense distribution that better represent the testing

documents than the WordNet one. Even higher results are achieved when using both

the learnt sense distributions and the learnt most frequent sense (+MFS+SD). In

this last configuration, in fact, IMS trained on Train-O-Matic++DaD achieved the

highest scores across the board with a boost over vanilla Train-O-Matic between

2.9 and 8.1. Especially, when compared to Train-O-Matic, Train-O-Matic++DaD
shows consistent improvements over the Biology, Health Care, Politics and Social

Issues domains, while performing worse on the 3 remaining domains. We also

note that Sport is the only domain where the Train-O-Matic++DaD has a significant

decrease in performance. Therefore, we further investigated this case and noticed

that the most misclassified word is game. This happened because two reasons: i)

The domain distribution built by DaD in its first phase is skewed towards Sport
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and recreation, that received the highest probability (0.19), and Philosophy and

Psichology with a probability of 0.18. Hence, there is not a clear domain for the

document and thus, the synsets close to each of the two domains will receive similar

probabilities, ii) the Sport sense of game in BabelNet is not associated with the

Sport domain, therefore it did not benefit from the direct connection with the domain

during the propagation step of DaD (see Section 5.3) so it does not result as one of

the most frequent senses of game in the document even if it should be. We further

note that a few mistakes may correspond to big differences in performance inasmuch

the domain datasets comprise only 300 instances each on average. Moreover, a few

words, such as game, are very frequent (23 occurrences in the sport test set), hence

several F1 points can be gained or lost by simply classifying correctly or not one or

two distinct word types.

Finally, when compared against IMS trained on SemCor, Train-O-Matic coupled

with both the learnt MFS and distribution is able to beat it on all domains but 2

(Climate and Sport) by 0.2 to 7.1 points. A similar behaviour is observed in Table

6.4 where Train-O-Matic +MFS +SD always beats IMS trained on SemCor. When

compared to WordNet, instead, DaD lead IMS to attain more than 10 F1 points on

the Biomedicine domain, at the very small cost of only 1 F1 point less on the Maths

& Computer domain. In summary, our domain-specific evaluation confirmed the

intuition that WSD is more effective when domain information is provided. While

we note that there might be many different ways to provide such information, we

prove that, balancing the training set according to the learned distribution of word

senses, which in DaD directly depends on the domain distribution of the document,

is an effective way for providing domain information to the classifier and to increase

performance by several F1 points without any human intervention, nor explicitly

providing domain labels to the classifier.

6.5 Multilingual WSD

We now measure the benefits carried by EnDi and DaD to IMS in the multilingual

setting of the all-words WSD task.
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Dataset Language Method
Best System Train-O-Matic

F1 P R F1

SemEval-2013

Italian

Vanilla 65.8 69.6 65.7 67.6
+MFSDaD 65.8 71.0 71.0 71.0
+MFSEnDi 65.8 70.9 70.9 70.9

Spanish
Vanilla 71.0 68.0 65.6 66.8

+MFSDaD 71.0 69.0 69.0 69.0

+MFSEnDi 71.0 68.6 68.6 68.6

French
Vanilla 60.5 61.1 59.9 60.5

+MFSDaD 60.5 61.4 61.4 61.4
+MFSEnDi 60.5 61.1 61.1 61.1

German
Vanilla 62.1 65.9 60.8 63.2
+MFSDaD 62.1 67.5 67.5 67.5
+MFSEnDi 62.1 67.2 67.2 67.2

SemEval-2015

Italian

Vanilla 56.6 65.1 55.6 59.9
+MFSDaD 56.6 65.9 65.9 65.9
+MFSEnDi 56.6 64.7 64.7 64.7

Spanish

Vanilla 56.6 53.3 53.3 53.3

+MFSDaD 56.3 62.6 62.6 62.6
+MFSEnDi 56.3 61.0 61.0 61.0

Table 6.5. Performance comparison between T-O-M and SemEval-2013’s best UMCC-DLSI

Run.

6.5.1 Experimental Setup

Reference Model We use IMS (Zhong and Ng, 2010) as reference model to

evaluate extrinsically the quality of the generated multilingual training data.

Comparing Systems We compare the best performing system on SemEval-2013

and 2015 with Train-O-Matic in 3 different settings:

• Vanilla: The plain Train-O-Matic as introduced in Chapter 4 with the Babel-

Net Most Frequent Sense as IMS backoff strategy.

• +MFSDaD Train-O-Matic++ coupled with the backoff strategy computed
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according to DaD distribution.

• +MFSEnDi Train-O-Matic++ coupled with the backoff strategy computed

according to EnDi distribution.

We note that, we do not test the +SD setting since we are not evaluating each domain

separately, hence, for the multilingual setting, we only keep the distribution induced

by the BabelNet ordering of synsets.

Test Sets We tested IMS trained on different settings of Train-O-Matic on all

the available multilingual all-words WSD tasks, i.e., SemEval-2013 task 12 and

SemEval-2015 task 13.

6.5.2 Results

As can be seen from Table 6.5 Train-O-Matic enabled IMS to perform better than

the best participating system to SemEval-2013 (Manion and Sainudiin, 2014, SU-

DOKU) and SemEval-2015 (Fernández-López, Gómez-Pérez, and Suárez-Figueroa,

2013, UMCC-DLS) across most of the datasets. In fact, IMS trained on Train-O-

Matic++ with either EnDi or DaD consistently achieves higher performance than its

competitor with a boost that ranges between 0.6 (on SemEval-2013 French dataset)

and 9.3 (on SemEval-2015 Italian dataset) points. Furthermore, we note that EnDi

and DaD always improve the performance of Train-O-Matic which uses BabelNet

to determine the most frequent sense of each lemma, hence proving to be a valuable

alternative across different languages.

6.6 Conclusion

In this Chapter we showed that the sense distribution that we automatically induce

from an input corpus of raw text by means of EnDi and DaD can be very valuable

for Train-O-Matic, hence enabling it to generate datasets that are tailored to a

specific distribution and domain. We first proved that there is still a large margin

of improvements over automatic approaches for word sense distribution learning.

Indeed, the Oracle distribution extracted from the test set, allow the supervised

model to achieve very high performance, almost 10 points higher than the current
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state of the art in supervised WSD (Luo et al., 2018). Moreover, we proved that

learning the most frequent sense of a word in a corpus is way more important than

learning the whole distribution. In fact, when confusing the first and the second

most frequent sense of a word, we noticed a drop of more than 30 F1 points in the

model performance, which, instead, did not happen when confusing the second and

the third senses. We than proved that, by only relying on good estimation of sense

distributions and totally ignoring the quality of the annotated data, does not even

lead a supervised model to decent results, hence showing that the two properties,

i.e., high-quality data and good sense distribution estimator, are complementary to

each other. We continued our experiments by comparing Train-O-Matic++ coupled

with EnDi and DaD with the original version of Train-O-Matic (i.e., which makes

use of WordNet sense ordering for shaping the training data). The results proved

that Train-O-Matic++ training sets, which are tailored to the sense distribution

automatically extracted from the target documents, lead IMS to consistently attain

higher performance across the domains. Moreover, we showed that using the most

frequent sense identified by DaD as backoff strategy for IMS is beneficial and further

improve the supervised model performance. Finally, we leverage EnDi and DaD to

extract the Most Frequent Sense information from the test set documents and used it

as backoff strategy of IMS on the all-words multilingual WSD setting. The results

proved that they are a better alternative than the BabelNet ordering (i.e., based on

the node degree) boosting the classifier performance by several points across all the

languages.

Train-O-Matic++ proved to be a valuable alternative to manually-curated datasets

(e.g., SemCor) when it comes to disambiguate texts in specific domains. In fact,

thanks to EnDi and DaD it is able to tailor the training data on a sense distribution

that can be automatically induced from a collection of raw texts. Therefore, it makes

it possible to customise the training data according to the expected application

domain of a supervised WSD model.
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Chapter 7

Data Produced

In this Chapter we summarise the data produced by each of the presented works

and that which we believe represent a valuable and tangible contribution of this

theses. All the data produced were publicly released to the community for research

purposes.

1. Train-O-Matic dataset. This is a sense-annotated dataset which has been au-

tomatically produced by Train-O-Matic1. It comprises 1,012,021 annotations

for English, Italian and Spanish which cover 2844 distinct lexemes (those

used for as testing instances in all the past all-words English WSD Senseval

and SemEval tasks and SemEval-2015 multilingual all-words WSD task.).

This data were produced in the context of Pasini and Navigli (2017).

2. Train-O-Matic dataset large. This is an extension of the Train-O-Matic

dataset, which also comprises annotated data for Chinese, German and French

and an improved coverage2. Indeed, it contains 8,053,721 semantic annota-

tions for 94,591 distinct lexemes. In Table 7.1 are reported the statistics for

each covered language. This data were produced in the context of Pasini, Elia,

and Navigli (2018).

3. EnDi and DaD annotations. This dataset comprises the distributions com-

puted by both EnDi and DaD on the SemEval-2013 and SemEval-2015 and

each of the domains therein in three languages, i.e., English, Italian and Span-

1Available at http://trainomatic.org
2Available at http://trainomatic.org

http://trainomatic.org
http://trainomatic.org
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ish3. This data were produced in the context of Pasini and Navigli (2018) and

Pasini and Navigli (2019).

Language Annotations Unique Lexemes

EN 2,788,763 11,402
FR 1,597,230 25,690
DE 1,213,634 22,300
IT 1,037,253 19,192
ES 935,713 14,596
ZH 481,128 12,897

TOT. 8,053,721 94,591
Table 7.1. Statistics by language for Train-O-Matic enlarged dataset.

3Available at http://trainomatic.org

http://trainomatic.org
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Chapter 8

Conclusion

In this thesis we addressed the long standing problem of the knowledge acquisi-

tion bottleneck in Word Sense Disambiguation. This hampers the development

of semantic resources and WSD models and hinders the performance of both,

knowledge-based and supervised approaches, on the all-words WSD task. Further-

more, despite the many efforts put in solving this problem, English has always been

the main focus of most of the previously proposed approaches (Ng, Wang, and

Chan, 2003; Chan and Ng, 2005a; Zhong and Ng, 2009; Taghipour and Ng, 2015).

This made it completely impossible to have supervised models for languages other

than English, where, indeed, no sense-annotated corpora with decent coverage of a

language lexicon were available until the most recent years when Camacho-Collados

et al. (2016); Bovi et al. (2017); Pasini, Elia, and Navigli (2018); Pasini and Nav-

igli (2019); Scarlini, Pasini, and Navigli (2019) introduced novel methods for the

automatic harvesting of sense-annotated datasets for WSD.

Therefore, as primary effort in this direction we introduced Train-O-Matic,

a knowledge-based and language-independent approach for generating hundreds

of thousands sentences where a target word is annotated with one of its possible

meanings. Train-O-Matic relies only on the BabelNet structure for computing the

probability of a sense to appear in a given sentences, and on the sense ordering of

WordNet to determine the number of sentences to be associated with each sense

(see Chapter 4). Its main novelty with respect other approaches that were previously

introduced in the literature, inter alia, (Ng, Wang, and Chan, 2003; Chan and Ng,

2005a; Zhong and Ng, 2009; Taghipour and Ng, 2015; Camacho-Collados et al.,

2016; Bovi et al., 2017), is that it does not rely nor on parallel data neither on ready-
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made WSD systems. Moreover, it comprises a scoring mechanism to filter out the

sentences which are the least reliable and takes advantage of WordNet ordering of

sense to mimic the sense distribution one can find in manually-annotated data such as

SemCor. This, especially, was never directly took into account by the aforementioned

approaches, which, instead, were limited to follow the distributions drawn by the

input corpora. Differently from all the parallel-corpus-based approaches, Train-

O-Matic, can also scale easily to any language supported by BabelNet and for

which a POS-tagger and a lemmatiser are available1. Moreover, we proposed a

semi-supervised variant of Train-O-Matic to represent, both sentences and senses,

in a shared latent space so that we could score a sentence with respect to a sense

directly by computing their cosine similarity. This approach showed encouraging

results, sometimes better than those achieved by the knowledge-base one.

We then focused our efforts on studying the distribution of word senses within a

corpus (Chapter 5) . As was noted also before by McCarthy et al. (2007), it has a

Zipfian shape and hence for a given word there are usually a few senses that are very

frequent in a corpus and most of the others that are very rare. This makes it harder

to find a good balancing of the training corpus since, on the one hand, flattening

the distribution and making it uniform would not serve our purpose as the classifier

would learn the wrong senses’ distribution, on the other hand, maintaining a skewed

distribution towards one or two meanings of each target word may bias the model

too much and it would not be able to scale over different domains. In fact, changing

application domain, often coincides with changing distribution of senses, at least

for the word that are most peculiar for that specific domain. Therefore, to mitigate

these issues, we proposed EnDi and DaD, two knowledge-based approaches for

inducing the senses’ distribution given a corpus of raw texts, hence allowing to

shape the training data according to it, and to learn the MFS of a word and using it

as backoff strategy in a general-purpose model applied to a specific domain. EnDi

(Chapter 5.2)only exploits the local distribution of senses computed at sentence level

to filter out those that have greater entropy and hence more noisy. Then, by relying

only on the most informative ones, it counts the number of times a word meaning

has been ranked first in all the distribution associated to each sentence in the given

corpus. DaD (Chapter 5.3), instead, aggregates the sense distribution computed at

1We note that, nowadays, POS-taggers and lemmatisers are available for a plethora of languages

thanks to the Universal Dependencies (Nivre et al., 2016)
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the sentence level into the domains corresponding to each concept. Therefore, it

propagates the new and coarser distribution of the domains, over the entire WordNet

graph thanks to the PageRank algorithm, which assigns a probability to each synset.

Finally, given a word, it retrieve its meanings with their associated probabilities and

compute the final distribution. We proved, both intrinsically and extrinsically, that

our approaches are valuable and achieved excellent results across all the experiments

and especially on the domain-specific and multilingual evaluation. In fact, they

proved to achieve a higher similarity, in terms of Kullback-Leibler divergence, with

manually-annotated distributions and to be a good estimator of the most frequent

sense of a word in a given corpus of raw texts.

Lastly, we studied the impact of shaping the training data according to a specific

senses’ distribution on a supervised model (Chapter 6). To this end, we coupled

Train-O-Matic with EnDi and DaD (hence building Train-O-Matic++) so that it can

decide, according to either EnDi or DaD distributions, the number of sentences to

assign to each word meaning. This allows Train-O-Matic++ to build training data

that are cut on a specific distribution, which, eventually can be induced either on the

target text that one is interested in disambiguating, either from a set of documents

which represent the specific domain of application where the final WSD system will

be applied. This added a huge flexibility to Train-O-Matic, which is now able to

customise the training data on the need of its user. Moreover, a supervised model

trained on Train-O-Matic++ showed higher performance than when trained on the

vanilla Train-O-Matic on both domain-specific and multilingual settings.

8.1 Future Work and Perspectives

Train-O-Matic, together with EnDi and DaD, lay the foundation for building high-

quality sense-annotated corpora in potentially any language. The key contributions

brought by this thesis represent, in fact, a step forward to the resolution of the

problems they address, namely, the knowledge acquisition bottleneck and the word

sense distribution learning, and open up new paths in the Word Sense Disambigua-

tion field. Train-O-Matic, indeed, can provide semantically-annotated resources for

languages other than English that were not available before and hence shedding the

light on scenarios for multilingual Word Sense Disambiguation that were before
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neglected from the supervised systems point of view. A short-term evolution of this

work is, therefore, to measure the performance of more complex models trained on

our datasets and, eventually, develop new approaches for getting rid of the possible

noise that is encompassed by the automatically-generated datasets. Train-O-Matic

method, moreover, can be put at the disposal of human annotators and, by coupling

it with an active learning mechanism, it could speed up by a large margin the process

of annotating a corpus of raw texts. Especially, it would be a valuable approach to

retrieving and ranking the sentences for a given sense which could then be kept or

discarded by simply specifying whether they were correctly tagged or not.

EnDi and DaD contributed to revalue and bring again to the attention of the

community the importance of the word sense distributions and showed the high

impact that they have on the newly opened scenario of supervised multilingual

Word Sense Disambiguation. Indeed, most of the WSD approaches neglected the

information provided by the sense distributions. Therefore, a short-term extension

of EnDi and DaD is to develop new supervised and unsupervised approaches to

WSD for taking directly into account the expected distribution of meanings instead

of relying only on the implicit bias given by the training data.

Mid-term Perspectives Some mid-term directions that are worth to mention and

that are inspired by the work presented in this thesis are the followings:

1. Multilingual Semi-supervised Train-O-Matic. Semi-supervised Train-O-

Matic showed encouraging results, however, due to its need of annotated data

for building the sense representation it was limited to the English language

only. Therefore, a natural extension would be to study more complex model

to build senses and sentences embeddings that lay in the same latent space

that is shared across languages. One starting point for this direction could be

the MUSE vectors (Conneau et al., 2017) which provide word embeddings for

multiple languages in the same space. Moreover, instead of simply averaging

the word embeddings of the words in a sentence, one could think of more

complex aggregating functions which could be learnt by means of neural net-

works. Thus, finding a model for building multilingual latent representations

of words and sentences that lay within the same latent space, would be highly

beneficial for developing a new and more powerful version of Train-O-Matic.
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2. Neural Sense Distribution Induction. The senses’ distributions proved to

be a key point for effective WSD, being able to boost, by several points,

the performance of a supervised model. Therefore, an interesting direction

would be to encode the distribution information in a latent space, so that it

could be directly used within another WSD neural model. A starting point for

this line could be the variational eutoencoder architecture which is already

capable of encoding the gaussian distribution of the data by means of two

latent vectors which represent µ and σ. This could lead to neural models that

can easier generalise to new domains while at same time reducing the number

of annotated data that a general purpose WSD model may need. Moreover,

similar to what we showed with EnDi and DaD, it would allow to customise

the WSD model by simply changing the distribution encoder without the need

of retraining the whole model.

3. Language-agnostic Document-level Embeddings Since the domain infor-

mation is nowadays discarded by supervised WSD, a promising and interest-

ing research topic could involve the creation of document level emebddings,

which would naturally bring the high-level semantic information carried by

the whole text, and their integration with supervised WSD model. This would

carry document-level information at the service of supervised models, which,

nowadays, only rely on sentence-level context to disambiguate each word.

Similarly to the previous point, this could help the systems to better generalise

over new topics without the need of additional semantically-annotated training

data.

4. Sense-annotating as a Game. A topic that has remained underexplored is

the use of reinforcement learning in NLP and especially in WSD, where no

efforts, to the best of our knowledge, have been ever spent to formalise WSD

in terms of this paradigm. However, while it is hard to express the WSD

puzzle in terms of the reinforcement learning method (i.e., with an agent, a

policy, environment and feedback), it seems more reasonable to formulate the

problem of creating a sense-annotated dataset in its terms. Indeed, selecting a

sentence as example for a sense and scoring the decision seems reasonable

if a very small amount of sense-annotated data are available. Therefore, this

track would be worth at least a try, considering the important results attained
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recently thanks to this technique (Silver et al., 2016).

5. ImageNet for WSD Least but not last, an important and maybe essential step

for WSD, is a newer, updated, and multilingual SemCor, in other words, an

ImageNet for WSD. Semantically annotating parallel corpora may be one of

the best solutions in order to build a large, multilingual, and at the same time,

parallel dataset for WSD, which could highly benefit the field and therefore

affect also related down-stream application such as machine translation. In-

deed, not only machine translation models would have semantic annotations

across languages at their disposal, but also, foreseeing a considerable increase

in the WSD models performance, they could also benefit from higher accu-

racy automatic disambiguations thus finally closing the loop with the idea of

Weaver, that, back in 1949, formulated the Word Sense Disambiguation task

to solve the machine translation problem.

Long-term Perspectives Looking forward to a more distant future and consider-

ing the advancements brought by the work described in this thesis, we expect that the

WSD field will catch up with other NLP tasks2 where, thanks to the advent of deep

learning, important milestones have been achieved in terms of results. Therefore, by

starting from what has been introduced in Chapter 4 and Chapter 6, in order to pur-

sue this goal, it will be crucial to develop and refine methodologies for augmenting

the volume of semantically-annotated data not only for English but also for other

languages, while, at same time, maintaining a high quality of the annotations. What

mostly differentiate WSD from other tasks, in fact, is the availability of sense-tagged

data, which, nowadays, play a key role in the training of deep neural networks which

proved to be capable of effectively capturing different aspects and phenomena of a

language.

A parallel path which we explored with Train-O-Matic++, EnDi and DaD

(Chapter 5 and 6), would be to develop new methods for providing prior knowledge

about a language or a corpus to supervised models. We want to further extend this

concept, not only to models that leverage the knowledge available in a semantic

network, but also to those approaches which aim at encoding explicitly inductive

bias in their architecture. An interesting direction would be, in fact, to brush up

2Sentiment analysis, paraphrase detection, textual similarity, natural language inference.
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the generative lexicon theory (Pustejovsky, 1995) and build a parallelism with the

current neural language models which are capable of dynamically creating word

representations that are dependent on the context. Pustejovsky’s theory, in fact,

could directly benefit and leverage these models thanks to its dynamic nature of

inducing word senses from the context of a word, and, on the other way around,

help to encode the dynamic structure of a sentence semantics directly into a neural

network.

To conclude, while the first direction seems more tempting since deep neural

networks already proved to be effective in exploiting a large amount of data, encod-

ing linguistic structure within a model, as shown by the self attention mechanism

(Bahdanau, Cho, and Bengio, 2015; Vaswani et al., 2017; Devlin et al., 2018),

proved to be successful and beneficial to a large set of different tasks in NLP. Being

able to encode some linguistic priors, in fact, could help to reduce the amount of

data needed for training and increase the generalisation capabilities of the models.

Therefore, instead of providing prior knowledge only in the form of training data as

we did with Train-O-Matic++, we should decouple the training observations from

the linguistic biases and move the latter within the learning model. Hence, based on

the outcomes shown along this thesis which proved the effectiveness of linguistic

priors, such as sense distribution, to a supervised model, we should encode this

knowledge in the architecture itself, hence providing the latter with human-like

capabilities of structured reasoning and making it a less superficial learner.





91

Bibliography

Agirre, Eneko and Philip Edmonds, editors. 2006. Word Sense Disambiguation:

Algorithms and Applications. Springer.

Agirre, Eneko, Oier Lopez de Lacalle, and Aitor Soroa. 2014. Random walks

for knowledge-based word sense disambiguation. Computational Linguistics,

40(1):57–84.

Agirre, Eneko and David Martinez. 2004. Unsupervised wsd based on automati-

cally retrieved examples: The importance of bias. In Proceedings of the 2004

Conference on Empirical Methods in Natural Language Processing, pages 25–32.

Anderson, John Robert. 1976. Language, Memory, and Thought. Lawrence Erlbaum

and Associates, Hillsdale, NJ.

Atkins, S. 1993. Tools for corpus-aided lexicography: the hector project. Acta

Linguistica Hungarica, 41:5–72.

Auer, Sören, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ive. 2007. DBpedia: A nucleus for a web of open data. In Proceed-

ings of 6th International Semantic Web Conference joint with 2nd Asian Semantic

Web Conference (ISWC+ASWC 2007), pages 722–735, Busan, Korea.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In 3rd International Confer-

ence on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings.

Bennett, Andrew, Timothy Baldwin, Jey Han Lau, Diana McCarthy, and Francis

Bond. 2016. Lexsemtm: A semantic dataset based on all-words unsupervised



92 Bibliography

sense distribution learning. In Proceedings of the 54nd Annual Meeting of the

Association for Computational Linguistics, pages 1513 – 1524, Berlin, Germany.

Bhingardive, Sudha, Dhirendra Singh, V Rudramurthy, Hanumant Redkar, and

Pushpak Bhattacharyya. 2015. Unsupervised most frequent sense detection using

word embeddings. In Proc. of NAACL, pages 1238–1243.

Bollacker, Kurt, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008.

Freebase: A Collaboratively Created Graph Database for Structuring Human

Knowledge. In Proceedings of the International Conference on Management of

Data (SIGMOD ’08), pages 1247–1250, New York, NY, USA.

Bond, Francis and Ryan Foster. 2013. Linking and extending an open multilingual

wordnet. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (ACL ’13), pages 1352–1362.

Bovi, Claudio Delli, Jose Camacho-Collados, Alessandro Raganato, and Roberto

Navigli. 2017. Eurosense: Automatic harvesting of multilingual sense annotations

from parallel text. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 594–

600.

Brin, Sergey and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

web search engine. Computer Networks and ISDN Systems, 30(1–7):107–117.

Camacho-Collados, José, Claudio Delli Bovi, Alessandro Raganato, and Roberto

Navigli. 2016. A Large-Scale Multilingual Disambiguation of Glosses. In

Proceedings of LREC, pages 1701–1708, Portoroz, Slovenia.

Camacho-Collados, José, Claudio Delli Bovi, Alessandro Raganato, and Roberto

Navigli. 2016. A large-scale multilingual disambiguation of glosses. In Pro-

ceedings of the Tenth International Conference on Language Resources and

Evaluation LREC 2016, Portorož, Slovenia, May 23-28, 2016., pages 1701–1708.

Camacho-Collados, Jose, Claudio Delli Bovi, Luis Espinosa Anke, Sergio Oramas,

Tommaso Pasini, Enrico Santus, Vered Shwartz, Roberto Navigli, and Horacio

Saggion. 2018. SemEval-2018 task 9: Hypernym discovery. In Proceedings



Bibliography 93

of The 12th International Workshop on Semantic Evaluation, pages 712–724,

Association for Computational Linguistics, New Orleans, Louisiana.

Camacho-Collados, Jose and Roberto Navigli. 2017. Babeldomains: Large-scale

domain labeling of lexical resources. In Proceedings of the 15th Conference of

the European Chapter of the Association for Computational Linguistics: Volume

2, Short Papers, volume 2, pages 223–228.

Camacho-Collados, José, Mohammad Taher Pilehvar, and Roberto Navigli. 2015.

Nasari: a novel approach to a semantically-aware representation of items. In

Proceedings of the 2015 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, pages

567–577, Association for Computational Linguistics, Denver, Colorado.

Chan, Yee Seng and Hwee Tou Ng. 2005a. Word sense disambiguation with

distribution estimation. In IJCAI-05, Proceedings of the Nineteenth International

Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 -

August 5, pages 1010–1015.

Chan, Yee Seng and Hwee Tou Ng. 2005b. Word sense disambiguation with

distribution estimation. In IJCAI, volume 5, pages 1010–5.

Chan, Yee Seng and Hwee Tou Ng. 2006. Estimating class priors in domain adapta-

tion for word sense disambiguation. In ACL 2006, 21st International Conference

on Computational Linguistics and 44th Annual Meeting of the Association for

Computational Linguistics, Proceedings of the Conference, Sydney, Australia,

17-21 July 2006, pages 89–96.

Chaplot, Devendra Singh and Ruslan Salakhutdinov. 2018. Knowledge-based

word sense disambiguation using topic models. In Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative

Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium

on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,

Louisiana, USA, February 2-7, 2018, pages 5062–5069.

Collins, Allan M and Elizabeth F Loftus. 1975. A spreading-activation theory of

semantic processing. Psychological review, 82(6):407.



94 Bibliography

Conneau, Alexis, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer,

and Hervé Jégou. 2017. Word translation without parallel data. arXiv preprint

arXiv:1710.04087.

Cuadros, Montse and German Rigau. 2008. KnowNet: Building a Large Net of

Knowledge from the Web. In Proceedings of the 22nd International Conference

on Computational Linguistics-Volume 1, pages 161–168, Manchester, United

Kingdom.

Delli Bovi, Claudio, Luis Espinosa Anke, and Roberto Navigli. 2015a. Knowledge

Base Unification via Sense Embeddings and Disambiguation. In Proc. of EMNLP,

pages 726–736.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255, Ieee.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

pre-training of deep bidirectional transformers for language understanding. CoRR,

abs/1810.04805.

Edmonds, Philip and Scott Cotton. 2001. Senseval-2: overview. In The Proceedings

of the Second International Workshop on Evaluating Word Sense Disambiguation

Systems, pages 1–5, Association for Computational Linguistics.

Emanuele, Pianta, Bentivogli Luisa, and Girardi Christian. 2002. Multiwordnet:

developing an aligned multilingual database. In First international conference on

global WordNet, pages 293–302.

Escudero, G., L. Màrquez, and G. Rigau. 2000. On the portability and tuning

of supervised word sense disambiguation. In Proceedings of the joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very

Large Corpora, EMNLP/VLC 2000, pages 172–180, Hong Kong, China.

Escudero, Gerard, Lluís Màrquez, and German Rigau. 2000. An empirical study

of the domain dependence of supervised word sense disambiguation systems.

In Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in

natural language processing and very large corpora: held in conjunction with the



Bibliography 95

38th Annual Meeting of the Association for Computational Linguistics-Volume

13, pages 172–180, Association for Computational Linguistics.

Espinosa-Anke, Luis, Jose Camacho-Collados, Sara Rodríguez Fernández, Hora-

cio Saggion, and Leo Wanner. 2016. Extending WordNet with Fine-Grained

Collocational Information via Supervised Distributional Learning. In Proceed-

ings of COLING 2016: Technical Papers. The 26th International Conference on

Computational Linguistics, pages 900–910, Osaka, Japan.

Fellbaum, Christiane, editor. 1998a. WordNet: An Electronic Database. MIT Press,

Cambridge, MA.

Fellbaum, Christiane, editor. 1998b. WordNet: An Electronic Lexical Database.

MIT Press, Cambridge, Mass.

Fernández-López, Mariano, Asunción Gómez-Pérez, and Mari Carmen Suárez-

Figueroa. 2013. Methodological guidelines for reusing general ontologies. Data

& Knowledge Engineering, 86:242–275.

Ferrucci, David, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,

et al. 2010. Building watson: An overview of the deepqa project. AI magazine,

31(3):59–79.

Flati, Tiziano, Daniele Vannella, Tommaso Pasini, and Roberto Navigli. 2014. Two Is

Bigger (and Better) Than One: the Wikipedia Bitaxonomy Project. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL

2014), pages 945–955, Association for Computational Linguistics, Baltimore,

Maryland.

Flati, Tiziano, Daniele Vannella, Tommaso Pasini, and Roberto Navigli. 2016.

Multiwibi: The multilingual wikipedia bitaxonomy project. Artificial Intelligence,

241:66–102.

Granger, Richard H. 1982. Scruffy text understanding: design and implemen-

tation of’tolerant’understanders. In Proceedings of the 20th annual meeting

on Association for Computational Linguistics, pages 157–160, Association for

Computational Linguistics.



96 Bibliography

Hamp, Birgit and Helmut Feldweg. 1997. Germanet-a lexical-semantic net for

german. Automatic information extraction and building of lexical semantic

resources for NLP applications.

Hauer, Bradley, Yixing Luan, and Grzegorz Kondrak. 2019. You shall know the

most frequent sense by the company it keeps. In 2019 IEEE 13th International

Conference on Semantic Computing (ICSC), pages 208–215, IEEE.

Haveliwala, Taher H. 2002. Topic-sensitive pagerank. In Proceedings of the 11th

international conference on World Wide Web, pages 517–526, ACM.

Hovy, Eduard, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph

Weischedel. 2006. Ontonotes: The 90% solution. In Companion Volume to

the Proceedings of the Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics, New York,

N.Y., 4–9 June 2006, pages 57–60.

Howard, Jeremy and Sebastian Ruder. 2018. Universal language model fine-tuning

for text classification. In Proceedings of the 56th Annual Meeting of the Associa-

tion for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,

2018, Volume 1: Long Papers, pages 328–339.

Huang, Chu-Ren, Shu-Kai Hsieh, Jia-Fei Hong, Yun-Zhu Chen, I-Li Su, Yong-Xiang

Chen, and Sheng-Wei Huang. 2010. Chinese wordnet: Design, implementation,

and application of an infrastructure for cross-lingual knowledge processing. Jour-

nal of Chinese Information Processing, 24(2):14–23.

Huang, Yanping, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,

Quoc V Le, and Zhifeng Chen. 2018. Gpipe: Efficient training of giant neural

networks using pipeline parallelism. arXiv preprint arXiv:1811.06965.

Iacobacci, Ignacio, Mohammad Taher Pilehvar, and Roberto Navigli. 2015. Sensem-

bed: Learning sense embeddings for word and relational similarity. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing (Volume

1: Long Papers), volume 1, pages 95–105.



Bibliography 97

Ide, Nancy and Jean Véronis. 1993. Extracting knowledge bases from machine-

readable dictionaries: Have we wasted our time? In Proceedings of the Workshop

on Knowledge Bases and Knowledge Structures (KB&KS ’93), pages 257–266,

Tokyo, Japan.

Ide, Nancy and Jean Véronis. 1998. Introduction to the special issue on word sense

disambiguation: the state of the art. Computational linguistics, 24(1):2–40.

Jin, Peng, Diana McCarthy, Rob Koeling, and John Carroll. 2009. Estimating and

exploiting the entropy of sense distributions. In Proc. of NAACL, pages 233–236.

Kaplan, Abraham. 1950. An experimental study of ambiguity and context6. In

Mechanical Translation, volume 2, pages 39–46.

Kilgarriff, Adam and Joseph Rosenzweig. 2000. Framework and results for english

senseval. Computers and the Humanities, 34(1-2):15–48.

Koehn, Philipp. 2005a. Europarl: A parallel corpus for statistical machine translation.

In MT summit, volume 5, pages 79–86.

Koehn, Philipp. 2005b. Europarl: A parallel corpus for statistical machine translation.

In MT summit, volume 5, pages 79–86.

Koehn, Philipp. 2005c. Europarl: A parallel corpus for statistical machine translation.

In Proceedings of Machine Translation Summit X.

Koutsoudas, Andreas K. and R. Korfhage. 1956. M.t. and the problem of multiple

meaning. In Mechanical Translation, volume 2, pages 46–51.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

Kucera, H. and W. N. Francis. 1967. Computational Analysis of Present-Day

American English. Brown University Press.

Lau, Jey Han, Paul Cook, Diana McCarthy, Spandana Gella, and Timothy Bald-

win. 2014. Learning word sense distributions, detecting unattested senses and



98 Bibliography

identifying novel senses using topic models. In Proceedings of the 52nd An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), volume 1, pages 259–270.

Lenat, Douglas B. 1995a. Cyc: A large-scale investment in knowledge infrastructure.

Communications of the ACM, 38(11).

Lenat, Douglas B. 1995b. Cyc: a large scale investment in knowledge infrastructure.

Communications of the ACM, 38(11):33–38.

Lesk, Michael. 1986. Automatic sense disambiguation using machine readable

dictionaries: How to tell a pine cone from an ice cream cone. In Proceedings of

the 5th Annual Conference on Systems Documentation, Toronto, Ontario, Canada,

pages 24–26.

Lofgren, Peter A, Siddhartha Banerjee, Ashish Goel, and C Seshadhri. 2014. Fast-

ppr: Scaling personalized pagerank estimation for large graphs. In Proceedings

of the 20th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 1436–1445, ACM.

Luo, Fuli, Tianyu Liu, Qiaolin Xia, Baobao Chang, and Zhifang Sui. 2018. Incor-

porating glosses into neural word sense disambiguation. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), volume 1, pages 2473–2482.

Mahdisoltani, Farzaneh, Joanna Biega, and Fabian M. Suchanek. 2013. YAGO3:

A Knowledge Base from Multilingual Wikipedias. In CIDR, Asilomar, United

States.

Mallery, J. C. 1988. Thinking about foreign policy: Finding an appropriate role for

artificial intelligence computers, Ph.D. Thesis. M.I.T. Political Science Depart-

ment, Cambridge, MA.

Manion, Steve L and Raazesh Sainudiin. 2014. An iterative “sudoku style” approach

to subgraph-based word sense disambiguation. In In Proceedings of the Third

Joint Conference on Lexical and Computational Se- mantics (*SEM 2014), pages

40–50, Dublin, Ireland.



Bibliography 99

Masterman, Margaret. 1961. Semantic message detection for machine translation,

using an interlingua. In Proc. 1961 International Conf. on Machine Translation,

pages 438–475.

McCarthy, Diana, Rob Koeling, Julie Weeds, and John Carroll. 2004. Finding

predominant senses in untagged text. In Proceedings of the 42nd Annual Meeting

of the Association for Computational Linguistics, Barcelona, Spain, 21–26 July

2004, pages 280–287.

McCarthy, Diana, Rob Koeling, Julie Weeds, and John Carroll. 2007. Unsupervised

acquisition of predominant word senses. Computational Linguistics, 33(4):553–

590.

de Melo, Gerard and Gerhard Weikum. 2009. Towards a universal wordnet by learn-

ing from combined evidence. In Proceedings of the Eighteenth ACM Conference

on Information and Knowledge Management, Hong Kong, China, 2009, pages

513–522.

Mihalcea, Rada and Dan Moldovan. 2001. eXtended WordNet: Progress Report. In

Proc. of the NAACL Workshop on WordNet and Other Lexical Resources, pages

95–100.

Miller, George A., R.T. Beckwith, Christiane D. Fellbaum, D. Gross, and K. Miller.

1990. WordNet: an online lexical database. International Journal of Lexicography,

3(4):235–244.

Miller, George A., Claudia Leacock, Randee Tengi, and Ross Bunker. 1993a. A

semantic concordance. In Proceedings of the 3rd DARPA Workshop on Human

Language Technology, pages 303–308, Plainsboro, N.J.

Miller, George A., Claudia Leacock, Randee Tengi, and Ross Bunker. 1993b. A

semantic concordance. In Proceedings of the 3rd DARPA Workshop on Human

Language Technology, pages 303–308, Plainsboro, N.J.

Mohammad, Saif and Graeme Hirst. 2006. Determining word sense dominance

using a thesaurus. In 11th Conference of the European Chapter of the Association

for Computational Linguistics.



100 Bibliography

Moro, Andrea and Roberto Navigli. 2015. Semeval-2015 task 13: Multilingual

all-words sense disambiguation and entity linking. In Proceedings of the 9th

International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015,

Denver, Colorado, USA, June 4-5, 2015, pages 288–297.

Moro, Andrea, Alessandro Raganato, and Roberto Navigli. 2014a. Entity Linking

meets Word Sense Disambiguation: a Unified Approach. Transactions of the

Association for Computational Linguistics (TACL), 2:231–244.

Moro, Andrea, Alessandro Raganato, and Roberto Navigli. 2014b. Entity Linking

meets Word Sense Disambiguation: a Unified Approach. Transactions of the

Association for Computational Linguistics (TACL), 2:231–244.

Nastase, Vivi, Michael Strube, Benjamin Boerschinger, Caecilia Zirn, and Anas

Elghafari. 2010. WikiNet: A Very Large Scale Multi-Lingual Concept Network.

In Proceedings of the Seventh International Conference on Language Resources

and Evaluation (LREC’10), pages 1015–1022, Valletta, Malta.

Navigli, Roberto. 2009. Word Sense Disambiguation: A survey. ACM Computing

Surveys, 41(2):1–69.

Navigli, Roberto, David Jurgens, and Daniele Vannella. 2013a. Semeval-2013 task

12: Multilingual word sense disambiguation. In Second Joint Conference on

Lexical and Computational Semantics (* SEM ’13), volume 2, pages 222–231.

Navigli, Roberto, David Jurgens, and Daniele Vannella. 2013b. Semeval-2013

task 12: Multilingual word sense disambiguation. In Proceedings of the 7th

International Workshop on Semantic Evaluation (SemEval 2013), in conjunction

with the Second Joint Conference on Lexical and Computational Semantics (*SEM

2013), pages 222–231, Atlanta, USA.

Navigli, Roberto, Kenneth C. Litkowski, and Orin Hargraves. 2007. Semeval-

2007 task 07: Coarse-grained English all-words task. In Proceedings of the 4th

International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech

Republic, 23–24 June 2007, pages 30–35.

Navigli, Roberto and Simone Paolo Ponzetto. 2010. BabelNet: Building a very large

multilingual semantic network. In Proceedings of the 48th Annual Meeting of the



Bibliography 101

Association for Computational Linguistics, Uppsala, Sweden, 11–16 July 2010,

pages 216–225.

Navigli, Roberto and Simone Paolo Ponzetto. 2012. BabelNet: The automatic

construction, evaluation and application of a wide-coverage multilingual semantic

network. Artificial Intelligence, 193:217–250.

Ng, Hwee Tou and Hian Beng Lee. 1996. Integrating multiple knowledge sources

to disambiguate word sense: An exemplar-based approach. In Proceedings of the

34th annual meeting on Association for Computational Linguistics, pages 40–47,

Association for Computational Linguistics.

Ng, Hwee Tou, Bin Wang, and Yee Seng Chan. 2003. Exploiting parallel texts

for Word Sense Disambiguation: an empirical study. In Proc. of ACL-03, pages

455–462.

Niles, Ian and Adam Pease. 2001. Towards a standard upper ontology. In Pro-

ceedings of the 2nd International Conference on Formal Ontology in Information

Systems, Ogunquit, Maine, 17-19 October 2001, pages 2–9.

Nivre, Joakim, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan

Hajic, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,

Natalia Silveira, et al. 2016. Universal dependencies v1: A multilingual treebank

collection. In Proceedings of the Tenth International Conference on Language

Resources and Evaluation (LREC 2016), pages 1659–1666.

Pasini, Tommaso, Francesco Elia, and Roberto Navigli. 2018. Huge automatically

extracted training-sets for multilingual word sensedisambiguation. In Proceedings

of the Eleventh International Conference on Language Resources and Evaluation,

LREC 2018, Miyazaki, Japan, May 7-12, 2018., pages 1694 – 1698.

Pasini, Tommaso and Roberto Navigli. 2017. Train-o-matic: Large-scale supervised

word sense disambiguation in multiple languages without manual training data. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, pages 78–88.

Pasini, Tommaso and Roberto Navigli. 2018. Two knowledge-based methods for

high-performance sense distribution learning. In Proceedings of the Thirty-Second



102 Bibliography

AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana,

USA, February 2-7, 2018, pages 5374–5381.

Pasini, Tommaso and Roberto Navigli. 2019. Train-o-matic: Supervised word

sense disambiguation with no (manual) effort. Accepted with Major Revision at

Artificial Intelligence Journal.

Passonneau, Rebecca J, Collin Baker, Christiane Fellbaum, and Nancy Ide. 2012.

The masc word sense sentence corpus. In Proceedings of LREC.

Pease, Adam, Ian Niles, and John Li. 2002. The Suggested Upper Merged Ontology:

A Large Ontology for the Semantic Web and its Applications. In In Working

Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, page

2002.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 701–710, ACM.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representa-

tions. In Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1

(Long Papers), pages 2227–2237.

Philpot, Andrew, Eduard Hovy, and Patrick Pantel. 2005. The omega ontology. In

Proceedings of IJCNLP workshop on Ontologies and Lexical Resources (OntoLex-

05), pages 59–66, Jeju Island, South Korea.

Pianta, Emanuele, Luisa Bentivogli, and Christian Girardi. 2002. MultiWordNet:

Developing an aligned multilingual database. In Proceedings of the 1st Interna-

tional Global WordNet Conference (GWC ’02), Mysore, India, 21–25 January

2002, pages 21–25.

Pilehvar, Mohammad Taher, Jose Camacho-Collados, Roberto Navigli, and Nigel

Collier. 2017. Towards a seamless integration of word senses into downstream nlp



Bibliography 103

applications. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1857–1869.

Pilehvar, Mohammad Taher and Nigel Collier. 2016. De-conflated semantic repre-

sentations. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 1680–1690, Austin, TX.

Pilehvar, Mohammad Taher, David Jurgens, and Roberto Navigli. 2013. Align,

disambiguate and walk: A unified approach for measuring semantic similarity. In

Proceedings of ACL, pages 1341–1351.

Pilehvar, Mohammad Taher and Roberto Navigli. 2015. From senses to texts: An

all-in-one graph-based approach for measuring semantic similarity. Artificial

Intelligence, 228:95–128.

Postma, Marten, Ruben Izquierdo Bevia, and Piek Vossen. 2016a. More is not

always better: balancing sense distributions for all-words word sense disambigua-

tion. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pages 3496–3506.

Postma, Marten, Ruben Izquierdo, Eneko Agirre, German Rigau, and Piek Vossen.

2016b. Addressing the mfs bias in wsd systems. Recall, 20(40):60.

Pradhan, Sameer S, Edward Loper, Dmitriy Dligach, and Martha Palmer. 2007.

Semeval-2007 task 17: English lexical sample, srl and all words. In Proceedings

of the 4th International Workshop on Semantic Evaluations, pages 87–92.

Pu, Xiao, Nikolaos Pappas, James Henderson, and Andrei Popescu-Belis. 2018.

Integrating weakly supervised word sense disambiguation into neural machine

translation. CoRR, abs/1810.02614.

Pustejovsky, James. 1995. The Generative Lexicon. MIT Press, Cambridge, Mas-

sachusetts.

Quillian, M Ross. 1961. A design for an understanding machine. In Communication

presented at the colloquium Semantic problems in natural language.

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.

2018. Improving language understanding by generative pre-training.



104 Bibliography

URL https://s3-us-west-2. amazonaws. com/openai-assets/research-

covers/languageunsupervised/language understanding paper. pdf.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI

Blog, 1:8.

Raganato, Alessandro, Jose Camacho-Collados, and Roberto Navigli. 2017. Word

Sense Disambiguation: A Unified Evaluation Framework and Empirical Compar-

ison. In Proceedings of EACL, pages 99–110, Valencia, Spain.

Raganato, Alessandro, Claudio Delli Bovi, and Roberto Navigli. 2016. Automatic

Construction and Evaluation of a Large Semantically Enriched Wikipedia. In

Proceedings of IJCAI, pages 2894–2900, New York City, NY, USA.

Reifler, Erwin. 1955. The mechanical determination of meaning. In Machine

Translation of Languages, pages 136–164.

Resnik, Philip and David Yarowsky. 1997. A perspective on word sense disambigua-

tion methods and their evaluation. In ACL SIGLEX Workshop on Tagging Text

with Lexical Semantics: Why, What, and How?, pages 79–86.

Roget, Peter Mark. 2000. Roget’s Thesaurus of English words and phrases. Har-

mondsworth, U.K.: Penguin. New ed. / completely revised, updated and abridged

by E.M. Kirkpatrick.

Sagot, Benoît and Darja Fišer. 2008. Building a free french wordnet from multilin-

gual resources. In OntoLex.

Scarlini, Bianca, Tommaso Pasini, and Roberto Navigli. 2019. Just “onesec” for

producing multilingual sense-annotated data. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), volume 1.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. 2016. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484.



Bibliography 105

Snyder, Benjamin and Martha Palmer. 2004. The english all-words task. In Senseval-

3: Third International Workshop on the Evaluation of Systems for the Semantic

Analysis of Text, pages 41–43, Barcelona, Spain.

Sowa, John F. 1983. Conceptual structures: information processing in mind and

machine. Addison-Wesley Pub., Reading, MA.

Suchanek, Fabian M., Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A core

of semantic knowledge. In Proc. of WWW-07, pages 697–706.

Taghipour, Kaveh and Hwee Tou Ng. 2015. One million sense-tagged instances for

word sense disambiguation and induction. In Proceedings of the 19th Conference

on Computational Natural Language Learning, CoNLL 2015, Beijing, China,

July 30-31, 2015, pages 338–344.

Toral, Antonio, Stefania Bracale, Monica Monachini, Claudia Soria, et al. 2010.

Rejuvenating the italian wordnet: upgrading, standardising, extending. Citeseer.

Tripodi, Rocco and Marcello Pelillo. 2017. A Game-Theoretic Approach to Word

Sense Disambiguation. Computational Linguistics, 43(1):31–70.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, 4-9 December 2017,

Long Beach, CA, USA, pages 6000–6010.

Vial, Loïc, Benjamin Lecouteux, and Didier Schwab. 2018. Ufsac: Unification

of sense annotated corpora and tools. In Language Resources and Evaluation

Conference (LREC).

Walker, Donald E and Robert A Amsler. 1986. The use of machine-readable

dictionaries in sublanguage analysis. Analyzing language in restricted domains:

Sublanguage description and processing, pages 69–83.

Weaver, Warren. 1949. Translation. In Machine Translation of Languages: Fourteen

Essays (written in 1949, published in 1955), pages 15–23, W. N. Locke and A. D.

Booth, Eds. Technology Press of MIT, Cambridge, MA, and John Wiley & Sons,

New York, NY.



106 Bibliography

Zhong, Zhi and Hwee Tou Ng. 2009. Word sense disambiguation for all words

without hard labor. In Twenty-First International Joint Conference on Artificial

Intelligence.

Zhong, Zhi and Hwee Tou Ng. 2010. It makes sense: A wide-coverage word

sense disambiguation system for free text. In Proceedings of the ACL 2010

System Demonstrations, pages 78–83, Association for Computational Linguistics,

Uppsala, Sweden.

Ziemski, Michał, Marcin Junczys-Dowmunt, and Bruno Pouliquen. 2016. The

United Nations parallel corpus v1.0. In Proceedings of the Tenth International

Conference on Language Resources and Evaluation (LREC 2016), pages 3530 –

3534, European Language Resources Association (ELRA), Portoroz, Slovenia.


	Publications
	Introduction
	Objectives
	Contributions
	Individual Contributions


	Related Work
	History in Brief
	Resources for Word Sense Disambiguation
	Knowledge Bases
	Sense-Annotated Corpora

	Word Sense Distribution

	Preliminaries
	WordNet
	Wikipedia
	BabelNet
	Personalised PageRank

	Gathering Large-Scale and Multilingual Sense Annotations
	Train-O-Matic
	Lexical profiling
	Knowledge-based Sentence Scoring
	Sentence Scoring with Word Embeddings
	Sense-based Sentence Ranking and Selection

	Creating a Denser and Multilingual Semantic Network
	Experimental Setup
	Results
	Impact of syntagmatic relations
	Comparison against sense-annotated corpora
	Performance without backoff strategy
	Domain-specific Evaluation

	Scaling up to Multiple Languages
	Multilingual Experimental Setup
	Multilingual Results

	Conclusion

	Inducing Senses' Distribution from Raw Text
	Preprocessing
	Semantic Vector Computation
	Shallow Sense Distribution Learning

	Entropy-Based Distribution Learning (EnDi)
	Domain-Aware Distribution Learning (DaD)
	Domain distribution.
	Sense Distribution Computation.

	Experimental Setup
	Intrinsic Evaluation
	Evaluation measures
	Results

	Extrinsic Evaluation
	Domain-Specific Evaluation

	Conclusions

	Train-O-Matic++: Leveraging Sense Distributions
	Coupling Train-O-Matic with EnDi and DaD
	Comparing Senses' Distributions
	Experimental Setup
	Results

	Word Sense Distribution vs. Data Quality
	Experimental Setup
	Results

	Domain-oriented WSD
	Experimental Setup
	Results

	Multilingual WSD
	Experimental Setup
	Results

	Conclusion

	Data Produced
	Conclusion
	Future Work and Perspectives


