30 research outputs found

    On the impact of selfish behaviors in wireless packet scheduling

    Get PDF
    In many practical scenarios, wireless devices are autonomous and thus, may exhibit non-cooperative behaviors due to self-interests. For instance, a wireless user may report bogus channel information to gain resource allocation advantages. Such non-cooperative behaviors are practicable as the device's software could be modified by the user. In this paper, we first analyze the impact of these rationally selfish behaviors on the performance of packet scheduling algorithms in time-slotted wireless networks. Using a mixed strategy game theoretic model, we show that the traditional Maximum Rate packet scheduling algorithm can lead non-cooperative users to undesirable Nash equilibriums, in which the wireless channels are used inefficiently. By using repeated game to enforce cooperation, we further propose a novel game theoretic approach that can lead to an efficient equilibrium. ©2008 IEEE.published_or_final_versio

    Autonomic Vehicular Networks: Safety, Privacy, Cybersecurity and Societal Issues

    Get PDF
    Safety, efficiency, privacy, and cybersecurity can be achieved jointly in self-organizing networks of communicating vehicles of various automated driving levels. The underlying approach, solutions and novel results are briefly exposed. We explain why we are faced with a crucial choice regarding motorized society and cyber surveillance

    BlindSignedID: Mitigating Denial-of-Service Attacks on Digital Contact Tracing

    Full text link
    Due to the recent outbreak of COVID-19, many governments suspended outdoor activities and imposed social distancing policies to prevent the transmission of SARS-CoV-2. These measures have had severe impact on the economy and peoples' daily lives. An alternative to widespread lockdowns is effective contact tracing during an outbreak's early stage. However, mathematical models suggest that epidemic control for SARS-CoV-2 transmission with manual contact tracing is implausible. To reduce the effort of contact tracing, many digital contact tracing projects (e.g., PEPP-PT, DP-3T, TCN, BlueTrace, Google/Apple Exposure Notification, and East/West Coast PACT) are being developed to supplement manual contact tracing. However, digital contact tracing has drawn scrutiny from privacy advocates, since governments or other parties may attempt to use contact tracing protocols for mass surveillance. As a result, many digital contact tracing projects build privacy-preserving mechanisms to limit the amount of privacy-sensitive information leaked by the protocol. In this paper, we examine how these architectures resist certain classes of attacks, specifically DoS attacks, and present BlindSignedIDs, a privacy-preserving digital contact tracing mechanism, which are verifiable ephemeral identifiers to limit the effectiveness of MAC-compliant DoS attacks. In our evaluations, we showed BlindSignedID can effectively deny bogus EphIDs, mitigating DoS attacks on the local storage beyond 90% of stored EphIDs. Our example DoS attacks showed that using 4 attackers can cause the gigabyte level DoS attacks within normal working hours and days.Comment: 10 pages, 6 figure

    Detecting MAC Misbehavior of IEEE 802.11 Devices within Ultra Dense Wi-Fi Networks

    Get PDF
    The widespread deployment of IEEE 802.11 has made it an attractive target for potential attackers. The latest IEEE 802.11 standard has introduced encryption and authentication protocols that primarily address the issues of confidentiality and access control. However, improving network availability in the presence of misbehaving stations has not been addressed in the standard. Existing research addresses the problem of detecting misbehavior in scenarios without overlapping cells. However, in real scenarios cells overlap, resulting in a challenging environment for detecting misbehavior. The contribution of this paper is the presentation and evaluation of a new method for detecting misbehavior in this environment. This method is based on an objective function that uses a broad range of symptoms. Simulationresultsindicatethatthisnewapproachisverysensitive to misbehaving stations in ultra dense networks

    Detecting MAC Misbehavior of IEEE 802.11 Devices within Ultra Dense Wi-Fi Networks

    Get PDF
    The widespread deployment of IEEE 802.11 has made it an attractive target for potential attackers. The latest IEEE 802.11 standard has introduced encryption and authentication protocols that primarily address the issues of confidentiality and access control. However, improving network availability in the presence of misbehaving stations has not been addressed in the standard. Existing research addresses the problem of detecting misbehavior in scenarios without overlapping cells. However, in real scenarios cells overlap, resulting in a challenging environment for detecting misbehavior. The contribution of this paper is the presentation and evaluation of a new method for detecting misbehavior in this environment. This method is based on an objective function that uses a broad range of symptoms. Simulationresultsindicatethatthisnewapproachisverysensitive to misbehaving stations in ultra dense networks

    Some Open Safety Issues in Vehicular Networks

    Get PDF
    International audienceIn this position paper, we briefly review some accepted beliefs which may hide open issues regarding dependability or timeliness in SC scenarios, and we give examples of shortcomings and challenges. Due to space constraints, we focus solely on protocol/algorithmic design issues, failures, limitations of on-board technologies, and radio channel access latencies in the presence of contention. Despite their importance, software issues (correct instantiations of protocols, algorithms, and applications) are not addressed here. We use the terminology defined by S. Shladover: Automation is autonomy augmented with wireless communication capabilities. For fulfilling goal Ω, should we shoot for autonomous driving or for automated driving? Should we trust human supervision (ultimately, if ever needed, some human is in charge) or full automation rather (absolutely no human intervention)

    Games to induce specified equilibria

    Get PDF
    AbstractMedia access protocols in wireless networks require each contending node to wait for a backoff time, chosen randomly from a fixed range, before attempting to transmit on a shared channel. However, nodes acting in their own selfish interest may not follow the protocol. In this paper, a static version of the problem is modeled as a strategic game played by non-cooperating, rational players (the nodes). The objective is to design a game which exhibits a unique, a priori mixed-strategy Nash equilibrium. In the context of the media access problem, the equilibrium of the game would correspond to nodes choosing backoff times randomly from a given range of values, according to the given distribution. We consider natural variations of the problems concerning the number of actions available to the players and show that it is possible to design such a game when there are at least two players that each have the largest number of possible actions among all players. In contrast, we show that if there are exactly two players with different number of actions available to them, then it becomes impossible to design a strategic game with a unique such Nash equilibrium
    corecore