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Abstract— In many practical scenarios, wireless devices are 
autonomous and thus, may exhibit non-cooperative behaviors 
due to self-interests. For instance, a wireless user may report 
bogus channel information to gain resource allocation 
advantages.  Such non-cooperative behaviors are practicable 
as the device's software could be modified by the user. In this 
paper, we first analyze the impact of these rationally selfish 
behaviors on the performance of packet scheduling algorithms 
in time-slotted wireless networks. Using a mixed strategy game 
theoretic model, we show that the traditional Maximum Rate 
packet scheduling algorithm can lead non-cooperative users to 
undesirable Nash equilibriums, in which the wireless channels 
are used inefficiently. By using repeated game to enforce 
cooperation, we further propose a novel game theoretic 
approach that can lead to an efficient equilibrium. 

Keywords – packet scheduling; selfish behavior; 
game theory; non-cooperative wireless networks 

I. INTRODUCTION

In a centralized infrastructure based wireless network, 
packet scheduling is a very important component for 
managing the precious radio resource while satisfying users’ 
QoS requirements. Specifically, in a traditional downlink 
packet scheduling process, the wireless users will report 
their channel conditions, such as SINR or maximal 
achievable data rate, to the scheduler located at the base 
station (BS). Then the scheduler can select some users’ 
packets and allocate radio resource, such as power and 
frequency bandwidth, to them for transmission according to 
some scheduling policies, such as Maximum Rate [1] and 
proportional fairness [2].  

Usually, these scheduling algorithms are based on the 
assumption that the wireless users in the system will 
cooperate with each others, comply with the predefined 
scheduling algorithm, and honestly report their real channel 
conditions to the scheduler. Then the wireless user will 
accept the scheduling results passively. However, in many 
practical scenarios, the users are autonomous and thus, may 
exhibit non-cooperative behaviors due to self-interests and 
try to gain their own advantages without regard to the overall 
system performance [3]. For example, a user experiencing 
bad channel condition might find out that if it honestly 
reports his channel condition to the scheduler, it may not be 
scheduled or just be assigned a low data rate. Consequently, 
with a rationally selfish motivation, such user might report a 
bogus channel condition so as to get a higher probability to 
be scheduled for transmission or get a higher data rate. 
Though this non-cooperative behavior could increase the 
throughput for this selfish user, it may lead to inefficient 
resource utilization for the whole system. Such 

non-cooperative behaviors are practicable because the 
wireless device’s software could be modified by the user [4]. 
Consequently, whether the traditional packet scheduling 
algorithms are still effective in allocating resource in 
non-cooperative environment is in doubt and needs to be 
scrutinized carefully. 

Due to the increasing interests and capabilities for 
mobile users to deviate from legitimated protocols and 
algorithms so as to increase their own benefits, the research 
for selfish behavior has received considerable attention for 
various aspects of wireless networks in recent years, such as 
wireless routing [5][6], power control [7][8], MAC 
misbehavior in WLAN [9][10], and even Denial of Service 
attack [11][12], which can be considered as an extreme case 
of misbehavior. To the best of our knowledge, the impact of 
non-cooperative behaviors on wireless packet scheduling is 
a relatively unexplored research problem.  

In this paper, we focus on the issue of downlink packet 
scheduling for selfish and rational users in a TDMA wireless 
network, in which each user wishes to selfishly choose its 
transmission rate in such a way so as to maximize its utility. 
However, the strategy chosen by a user may also affect the 
performances of other users in the network through the 
related packet scheduling algorithm. Therefore in practice, a 
rational user will evaluate its achieved data rate, average 
packet transmission success rate (PTSR), the probability of 
being scheduled to determine the best strategy for reporting 
a “best” channel condition to the scheduler, as so to improve 
its gain. When concerning this interaction, there are several 
questions to be asked. First of all, what kind of strategy 
should a user choose in order to maximize its utility? Then, 
what is the consequent impact of this kind of selfish 
misbehavior on the system performance and its own benefit? 
If every user in the network selfishly picks its 
utility-maximizing strategy, will there be a stable state at 
which no user can unilaterally improve its utility, e.g. Nash 
equilibrium (NE)? And if this NE will lead to inefficient 
radio resource utilization, are there any other methods that 
can be proposed to improve the performance? 

Based on game theory [13], we formulate this problem as 
a non-cooperative packet scheduling (NPS) game, and set up 
a novel mixed strategy game model, in which each player 
has a continuum of actions and seeks to choose its 
transmission rate to maximize its overall utility, which is 
defined as the expected data rate. We then deduce the 
corresponding NE for this game and find that the NE 
strategy leads to an allocation that is Pareto inefficient,
where the system throughput is much lower than that in 
normal cooperative situation. Motivated by this observation, 
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we formulate a repeated game to enforce cooperation among 
wireless users, and propose an efficient strategy to increase 
the throughput performance in a non-cooperative 
environment.   

The remainder of this paper is organized as follows. In 
Section II, we describe the system model and discuss the 
impact of selfish behavior on system performances. Then the 
NPS game is analyzed in Section III. In Section IV, we 
propose a repeated game theoretic strategy to improve the 
performances. Finally, we conclude in Section V. 

II. MODEL

A. System model 
We consider a time-slotted system with a BS serving N

wireless users. All users are assumed to be within the same 
communication range (i.e., each user can overhear any other 
users). And they always have packets to transmit. The BS 
transmits in slots with fixed duration, and only one user can 
be scheduled in one time slot. At the beginning of time slot t,
each user i measures the downlink channel condition, and 
return, via a feedback channel, a measured data rate ( )ir t to 
the BS. Then, based on this information, the BS determines 
which user to transmit its packet at this time slot. 

In our analysis, we assume QAM modulation and ideal 
phase detection are used in a Rayleigh fading channel with 
bandwidth W, and no retransmission is considered. By using 
adaptive modulation, at time instant t, the maximal 
achievable symbol rate 0 ( )ic t  (bit/symbol) for user i can be 
usually decided by the current channel SNR and the required 
bit-error-rate (BER), and it can be expressed as [14]: 

0
2

1.5( ) log (1 ( ))
ln(5 )i i

ber
c t t

P
γ−= + ⋅

⋅
(1)

where ( )i tγ  is the SNR for the user i at time instant t, and 

berP  is the required BER for this transmission. Then the 
corresponding maximal achievable data rate is given by:  

0 0( ) ( )i ir t c t W= ⋅ (2)

   We assume that each user can report its channel 
information to the BS in an error-free manner. Within such a 
simple framework, several existing packet scheduling 
algorithms can be used, such as MR algorithm [1], which is 
designed to maximize the rate at each slot, as well as the 
system total rate, by scheduling the user with the 
largest ( )ir t for transmission. In this paper, we focus on the 
performance of the MR algorithm under a non-cooperative 
wireless environment. 

B. Selfish behavior and its impact 
    In a cooperative situation, the feedback rate ( )ir t from 

user i is just the maximum feasible rate 0 ( )ir t  that the 
downlink can support under its current SNR iγ to maintain a 
certain BER or PTSR requirement.

On the other hand, in a non-cooperative environment, a 
selfish but rational user may report a bogus data 
rate 0( ) ( )i ir t r t> , so as to enhance its opportunity to be 
chosen for transmission as governed by the scheduling 
algorithm. Of course, a higher assigned data rate ( )ir t may 

result in a higher BER or lower PTSR under the same 
SNR iγ , making its actual rate smaller than the intended 
value. Nevertheless, a rationally selfish consideration is that 
the smaller realized rate may be compensated by the rate 
improvement induced by the increased transmission 
probability. Consequently, a non-cooperative node could 
still have the incentive to report a different data rate to the 
BS so as to increase its own potential payoff. 
    Let 0( , )i iBER r r and 0( , )i ir rα  respectively be the BER 
and PTSR for user i when its maximum feasible rate is 

0
ir and feedback data rate is ir ,

where 0 1 2{ , , , }M
ir r r r∈ and 1 2{ , , , }M

ir r r r∈ . When 
there are L bits in one packet, we have  

0

0
2

(2 -1)( , ) 0.2 exp(log (5 ) )
(2 -1)

i

i

r

i i i ber rBER r r P= ⋅ ⋅ ⋅ (3)

and 

(1-0 0( , ) ( , ))L
i i i i ir r BER r rα = (4)

Since the probability that it can transmit at this time slot 
is Pr( ( ) ( ), )i jr t r t j i> ≠ , the expected rate can be expressed 
as: 

0 0 0 0

0

R ( ( ))

( , ) Pr( ( ) ( ), )

( , ) Pr( ( ) ( ), )

i i

i i i i i j

i i i i i j

r t

r r r r t r r t j i cooperative

r r r r t r r t j i noncooperative

α

α

=

⋅ ⋅ = > ≠

⋅ ⋅ = > ≠

(5)

   In this study, we consider a scenario with N users. And 
there are S selfish users deliberately deviating from the 
packet scheduling algorithm. Since we assume all the users 
are within the same communication range, the selfish user i
can overhear the feedbacks of other users and report a bogus 
rate ,i jr r j i> ≠ .

To show the impact of this kind of selfish behavior, we 
conduct simulations based on the above model. The entire 
system bandwidth is 10 MHz, and the time slot duration is 
set to be 100ms. We let {2,4, ,10}ic ∈ . The wireless 
channel is modeled as six-path frequency-selective Rayleigh 
fading channel. Each path is simulated by Clark’s fading 
model and suffers from independent Rayleigh fading. We 
assume the packet length is 8 bits/packet and the maximum 
BER requirement is 510− .
    Fig.1 shows the impact of selfish behavior on the 
performance of traditional MR algorithm. There are 8 users. 
And user 1 deliberately fails to adhere to the algorithm and 
tries to misbehave, following the selfish model presented 
above. In cooperative environment, all users will report their 
maximum feasible data rates to the base station; whereas in 
non-cooperative environment, user 1 (U1) will report a 
bogus data rate to the BS and all other users still report their 
maximum feasible rates honestly. In this simulation, we can 
see in Fig. 1 that U1 can achieve about 100% increase in 
throughput by reporting a higher data rate and behaving 
selfish. However, as a result of U1 using this selfish strategy, 
the total throughput would decrease by 30%. Therefore, the 
existence of selfish behavior in non-cooperative wireless 
networks will make the throughput performance of packet 
scheduling algorithm significantly degraded. Most 
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importantly, this observation still holds in the network with 
different sizes, such as those from 2 users to 20 users as 
shown in Fig.2. 
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Fig. 1: The impact of selfish behavior on the throughput of 
packet scheduling algorithm. 
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 Fig. 2: The impact of selfish behavior on the throughput 
with different users in the system. 

III. STATIC GAME 

A. Game model 
     The above analysis clearly shows that the selfish user has 
an incentive to act in a non-cooperative way so as to improve 
its own throughput, and it can be modeled into a 
non-cooperative game in which each player has a continuum 
of actions [13]. In this game, we denote users {1, , }N=
as the set of players. When player i’s maximal feasible rate 
is 0

ir , its set of actions is the interval from 0
ir to Mr , i.e. 

0[ , ]M
i i iA r r r= ∈ . The action combination is denoted 

as 1 2( , , , )Nr r r r A= ∈ , where i iA A∈Ν= × is the Cartesian 
product of the N players’ action profile. We identify each 
player’s mixed strategy with a cumulative distribution 
function (CDF) iF on this interval, for 
which 0 ( ) 1i iF r≤ ≤ for every action ir ; and the 
number ( )i iF r is the probability that player i’s data rate is at 
most ir . Each player i’s preference is represented by the 
expected value of the data rate: 

0

0

( , )
1( ) ( , )

0

i i i i j

i i i i i j

i j

r r r r r

u r r r r r rN
r r

α

α

⋅ >

= ⋅ ⋅ =

<

(6)

where the parameter 1
N means that when these players have 

the same data rates, they will be chose with the equal 
probability. We assume all user rates 'ir s are independent 
and identically distributed with the same CDF, and then the 
expected payoff can be expressed as: 

i
0

0

0

0 1

( , )

( , ) Pr( )
1 ( , ) Pr( ) 0 Pr( )

( , ) Pr( , )

( , ) ( ( ))

i i i i j

i i i i j i j

i i i i j

N
i i i j i

U r F

r r r r r

r r r r r r rN
r r r r r j i

r r r F r

α

α

α

α −

= ⋅ ⋅ > +

⋅ ⋅ ⋅ = + ⋅ <

= ⋅ ⋅ > ∀ ≠

= ⋅ ⋅

(7)

Within the above model, NE can be defined as follows. 
Definition 1: An action combination *r A∈ and the 
corresponding mixed strategy * [0,1]F ∈  are said to achieve 
the state of Nash equilibrium if for every player i ∈ , we 
have: 
' ' * * * * ' * ' *, [0,1], ( , ; , ) ( , ; , )i i i i i i i i i i i i ir A F U r r F F U r r F F− − − −∀ ∈ ∈ ≥ (8)

where ir− and iF− denotes the actions and the corresponding 
mixed strategies chosen by everyone else other than i.

B. Nash equilibrium 
For a game in which each player has finitely many 

actions, when a mixed strategy profile is a mixed strategy 
NE, the expected payoff to every action assigned with 
possible probability is the same. Correspondingly, as 
described in the Proposition 142.2 in [13], for the game in 
which each user has infinitely many 
actions 1{ | }M

i i iA r r r r= ≤ ≤ , the mixed strategy is 
determined by the probabilities assigned to sets of actions; 
and the expected payoff should be constant from 0

ir to Mr in 
NE. Moreover, since ( ) 1M

j iF r r= = , we have: 

0 1 0

0 1

( , )

( , ) ( ( ))
( , ) ( ( ))

i

N M
i i i j i i i

M M N M
i j i i

U r F

r r r F r C r r r
r r r F r C r r

α
α

−

−

⋅ ⋅ = ≤ <
=

⋅ ⋅ = =
(9)

where C is a constant. Thus, for 0 1 0,M M
i i ir r r r r r≤ ≤ ≤ ≤ ,

we get: 
1

0 1

0

( , )
( )

( , )

M M N
i

j i
i i i

r r r
F r

r r r
α
α

−⋅
=

⋅
(10)

When the maximum achievable rate for player i is 0
ir , it 

will choose its feedback rate ir according to the above NE 
strategy. Since in practice ir is discrete random variable, then 
if 0 a b M

i ir r r r r≤ ≤ ≤ ≤ , the probability that it report ir to BS 
would be expressed as: 

( )1Pr( ) ( ) ( )
2

b a
i i ir F r F r= ⋅ +  (11) 
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C. Performance analysis 
   In a cooperative environment, the average throughput of 
the system is maximized by MR algorithm. Furthermore, it 
is also Pareto efficient since it is impossible to make one 
user get a higher rate without adversely affecting other users. 
While in a non-cooperative environment, the selfish 
behavior breaks this property. With the same simulation 
environment in Section II, we plot the average system 
throughput for a network with 8 users in Fig.3. We can see 
that in this 8-player game, the average system throughput in 
NE state is much smaller than that in cooperative 
environment. This phenomenon follows readily from Fig. 4, 
where the network size varies from 2 users to 20 users. Thus 
the achieved NE throughput is Pareto inefficient, which is a 
common characteristic for a non-cooperative game. 
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 Fig. 3: Average system throughput comparison with 8 users 
under cooperative and NE conditions. 
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IV. REPEATED GAME

   The main reason for the throughput decrease in a 
non-cooperative environment is that the selfish user intents 
to report a higher data rate. Thus, if the user in a bad channel 
condition gives up the competition and lets the others to 
transmit, the throughput may be increased. However, in a 
non-cooperative environment, a rational user has little 
incentive to give up its channel if there is no mechanism to 
enforce cooperation. 

In this section, we propose a repeated game to enforce 
cooperation. We assume that the users do not know the end 

of the game; hence we study the problem in an infinite 
repeated game model with discounting [13]. We show that 
cooperation (i.e., all users will report real 0

ir instead of 
NE

ir with mixed NE strategy ( )i iF r ) can be enforced so as to 
improve the throughput for users. 

A. Repeated game model 
    We extend the NPS game as follows: we assume that the 
game is split up steps denoted by t. In each step, user 
i ∈ adjusts the rate according to its strategy. Furthermore, 
let us define the discounted average utility in h < +∞ time 
steps as 

( ) ( ) ( )
0

1
h

t
i i

t
U h U tω ω

=
= − ⋅ ⋅ (12)

where 10 << ω is the discounting factor, which can be 
interpreted as the probability that the game ends in the next 
step. And we assume thatω  is the same for all users.  
   We have found that the users are in an inefficient 
equilibrium when they all play NE strategy, whereas the 
maximal throughput can be achieved by playing cooperative 
strategy. From Folk Theorem [13], we know that in an 
infinitely repeated game, any feasible outcome that gives 
each player better payoff than the NE can be obtained. We 
now get conditions that enable the users to enforce 
cooperation, and prove that they can do better by applying a 
strategy called Striker.

B. Striker strategy 
Definition 2: if user i plays the Striker strategy, it plays 0

ir in 
the first time step. For any further time steps, it plays: 

0
ir in the next time step if the other player j played 0

jr in 
the previous time step, or 

Mr for the next ih time steps, if the other played 
anything else. 

The punishment interval ih defines the number of time steps 
for which player i punishes the other players [15]. To 
simplify our analysis, we assume that the overall channel 
conditions remain relatively unchanged. Then, 0

ir over each 
step in the repeated game is similar. However, our 
simulation results show that our analysis still holds in 
wireless fading situations. Then the cooperation can be 
enforced using the Striker strategy as formalized in the 
following proposition. 

Proposition 1: An efficient Nash equilibrium can be 
enforced by the Striker strategy. 
Proof: We consider the Striker strategy, and suppose player i
adhere to it and choose 0

ir .If player j i≠ uses the same 

strategy, then the outcome is ( ),COP COP
i jU U in every step, so 

that it obtains the stream of payoffs, which gives a 
discounted average of 

( ) ( )1

0
1 1

i
i

h
hCOP t COP

i i
t

U Uω ω ω +

=
− ⋅ ⋅ = − ⋅ .

   If player j adopts a price X
jr  so as to get a larger 

utility NCOP COP
j jU U> in subsequent steps, player i will 

chooses Mr  since player j’s choice of X
j r triggers the 

punishment. Then player j chooses Mr in every subsequent 
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step with utility M
jU . Consequently, it obtains the stream of 

payoffs with discounted average utility: 
( ) ( )

( ) ( )1

1

1 1

i

i

hNCOP M M M
j j j j

hNCOP NE
j j

U U U U

U U

ω ω ω

ω ω +

− ⋅ + + ⋅ + + ⋅

= − ⋅ + − ⋅
(13)

Thus, player j can not increase its utility by deviating if and 
only if: 

( ) ( ) ( )1 11 1 1i ih hNCOP M COP
j j jU U Uω ω ω+ +− ⋅ + − ⋅ < − ⋅ (14)

Thus, 

( )1 1 1i

NCOP
jh

COP M
j j

U
U U

ω ω+ < − − ⋅
−

(15)

The inequality cannot be fulfilled if the right side is 
negative, and therefore:  

( )1 1
NCOP
j

COP M
j j

U
U U

ω− ⋅ <
−

(16)

When this condition holds, since 1ω < , we have: 

( )log 1 1 1
NCOP
j

i COP M
j j

U
h

U Uω ω≥ − − ⋅ −
−

(17)

Thus when the discounting factor is chosen as in (16) and 
punishment interval is set according to (17), the player j will 
be forced to cooperate with others such as to get higher 
payoff by Striker strategy. Correspondingly, an efficient NE 
is achieved. 

C. Performance analysis 
To demonstrate the effect of Striker strategy, we perform 
simulations with 20 users. And the performance result 
shown is averaged over 20 channel and location realizations. 
The punishment interval is 10 time slots.  User 1 deviated 
from the cooperative action at time slot 100. As shown in 
Fig.5, it can obtain a dramatic gain in its average throughput, 
which increased up to 13Mbps. We can see that this 
defection was retaliated by other users in the system soon, 
which then made the throughput of this selfish user decrease 
dramatically. After that the throughput stabilized and 
returned to the cooperative state via Striker strategy. Thus a 
more efficient equilibrium is achieved as well as the 
scheduling performance is optimized in non-cooperative 
environment. 
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Fig. 5: Average throughput of User 1 under different 
strategies. 

V. CONCLUSIONS 

In this paper we investigate the impact of selfish and 
rational behavior on the throughput performance of MR 
packet scheduling algorithm in non-cooperative wireless 
networks. Our first contribution is that we set up a novel 
mixed strategy game model to analysis this problem and 
deduce the corresponding Nash equilibrium, in which the 
system throughput is found to be significantly reduced. Our 
second contribution is that we further propose a Striker 
strategy based on repeated game to enforce cooperation 
among selfish users and achieve a more desirable Nash 
equilibrium, in which the throughput performance can be 
increased. We are now analyzing the impact of selfishness 
on fairness-oriented packet scheduling algorithms in a 
non-cooperative environment.  
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