207 research outputs found

    Robust fractional-order fast terminal sliding mode control with fixed-time reaching law for high-performance nanopositioning

    Get PDF
    Open Access via the Wiley Agreement ACKNOWLEDGEMENTS This work is supported by the China Scholarship Council under Grant No. 201908410107 and by the National Natural Science Foundation of China under Grant No. 51505133. The authors also thank the anonymous reviewers for their insightful and constructive comments.Peer reviewedPublisher PD

    Adaptive non-singular fast terminal sliding mode control and synchronization of a chaotic system via interval type-2 fuzzy inference system with proportionate controller

    Get PDF
    This paper introduces a novel adaptive nonsingular fast terminal sliding mode approach that benefits from an interval type-2 fuzzy logic estimator and a gain for control and synchronization of chaotic systems in the presence of uncertainty. The nonsingular fast terminal sliding mode controller is developed to increase the convergence rate and remove the singularity problem of the system. Using the proposed method, the finite-time convergence has been ensured. To eliminate the chattering phenomenon in the conventional sliding mode controller, the discontinuous sign function is estimated using an interval type-2 fuzzy inference system (FIS) based on the center of sets type reduction followed by defuzzification. By adding the proportionate gain to the interval type-2 FIS, the robustness and speed of the controller system is enhanced. An appropriate Lyapunov function is utilized to ensure the closed-loop stability of the control system. The performance of the controller is evaluated for a nonlinear time-varying second-order magnetic space-craft chaotic system with different initial conditions in the presence of uncertainty. The simulation results show the efficacy of the proposed approach for the tracking control problems. The time and frequency domain analysis of the control signal demonstrates that the chattering phenomenon is successfully diminished

    A Sliding Mode Control Based Stabilization Method for Directional Rotary Steering Tool-Face

    Get PDF
    When the directional rotary steering system works in the state of maintaining the tool face angle, the use of PID control mode will lead to a large swing angle of the tool face angle of the directional rotary steering system. In order to reduce the swing amplitude of the tool face angle, based on the PID position control and the angle position error sliding mode control strategy, the exponential synovial control function is established. The simulation results show that the fast and accurate tool face angle tracking is achieved through the closed-loop control of the angle position. The paper provides an implementation method for the research of directional rotary steering system

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    Router-based network traffic observation by terminal sliding mode control theory

    Get PDF
    Since the early days of the Internet, network traffic monitoring (NTM) has always played a strategic role in understanding and characterizing users’ activities. Nowadays, with the increased complexity of the Internet infrastructure, applications, and services, this role has become more crucial than ever. The aims of NTM are mainly focused on the three improvements, which include the quality of service (QoS) of the network, optimization of resource usage, and enhancement of security in computer networks. Specifically speaking, firstly, network conditions can be recognized by the network manager with NTM scheme. It provides the complete details about the QoS of networks, such as bandwidth, throughput, propagation delay, link availability, jitter, server memory, database space and etc. Secondly, with NTM being implemented at network nodes, i.e., network gateways, such as routers, or network links, the network traffic that is traversing the network is under online observation. Thereby, the network utilization can be improved by optimizing the resource usage to avoid the network congestions. Thirdly, unauthenticated service or approaches to the server will be identified by regularly monitoring the traffic. The network convention and statistics about the traffic will be known easily which helps to troubleshoot the network. Security events will also be investigated and the entry of the user will be maintained for responsibility. The work in this thesis focuses on the development of an intelligent real-time dynamic router-based network traffic observation (RNTO) by using the terminal sliding-mode theory. The RNTO technique is applied at network gateways, i.e., routers, to estimate the status of the traffic flows at the router level. The aims of the proposed RNTO technique is to estimate the traffic states, such as queue length (QL)in router buffer, average congestion window size (ACwnd), and the queuing dynamics of the additional traffic flows (ATF). The main contributions of the work can be broadly categorized into four parts. First, the problem of router-based network traffic monitoring is formulated as an observer design by using TSM theory for RNTO applications. The proposed TSM observer in the research is a network-based monitoring, which is implemented into the network gateways, i.e., network routers. Different from the static network traffic monitoring methods, the TSM observer is designed by using control methods based on the fluid-flow mathematical model, which represents the traffic dynamics of the interactions in a set of TCP traffic flows through network routers. By considering the time delay and stochastic properties in the data transmission network, the sliding-mode observation strategy is proposed with its high robustness with system parameter uncertainties as well as the external disturbance rejection. Given the natural weakness of chattering in sliding mode control signal, which can affect the system state, the chattering avoiding technique of the proposed TSM observation was utilized by using a smooth control signal for estimating the abnormal dynamics. It does not need any low-pass filler, which will lead to a phase leg. In addition, for the stochastic dynamics of the network traffics, fast transient convergence at a distance from and within a close range of the equilibrium of the traffic dynamics is essential to quickly capture traffic dynamics in network systems. Thus, a fractional term has been considered in the TSM for faster convergence in system states to efficiently estimate the traffic behaviors. Second, the issue of internal dynamics in network observation system is studied by proposing a novel full-order TSM strategy to speed up the convergence rate of the estimation error. In the RNTO scheme, the precise estimation for ACwnd is needed to estimate the queuing dynamics of ATF. However, the estimation error for ACwnd is not available and it converges to origin asymptotically, which results in a long response time in estimation. The proposed novel TSM observer has been designed to drive the estimation error for ACwnd to a defined known area in the finite-time, which can be calculated. Thereby, the estimation error of ACwnd can converge to origin asymptotically within the defined area. This strategy has shortened the response time and improves the estimation accuracy. This further improves the estimation accuracy for ATF. The comparative studies are conducted to evaluate the performance. Third, the issue of algorithm-efficient RNTO is investigated by considering an event triggered sliding-mode observer to reduce the computational load and the communication burden. Instead of the time-driven observation scheme, the control of the sliding mode observer is formulated under the event triggered scheme. The control of the observer is designed to be smooth and is directly applied to estimate the dynamics of the additional traffic flows. The event triggered observation algorithms is developed to reduce the computational load of the network router and the communication resource of output link in the network. Fourth, the problem of global RNTO is addressed by developing a fuzzy TSM observer by using fuzzy theory to achieve global operation under network uncertainties. The existing RNTO schemes are based on the linearization of a certain network conditions, i.e., a fixed number of TCP connections, which is a constant value N. Given the network suffers from time-varying fading, shadowing and interference and the data rate changes over time, the current methods proposed so far might not effectively and accurately monitor and estimate the traffic dynamics under network uncertainties. The T-S fuzzy models are used to model the traffic dynamics of the time-varying data changes in network link resources, i.e. the time-varying number of TCP sections, N(t) in a mathematical model. Based on the T-S fuzzy models, the fuzzy terminal sliding mode observer is established by using the fuzzy logic theory to estimate the states of the network traffic to achieve the global observation performance under the network uncertainties. In the fuzzy terminal sliding mode observer, the control signal is designed to be continuous for application of estimating the additional traffic flows without the low-pass filter. To evaluate the proposed RNTO technique, the networking simulator tool Network Simulator II (NS-II) has been used. The proposed RNTO algorithms are coded and implemented into network routers in NS-II. Numerous simulation scenarios are considered and performed. The comparative studies are also conducted by analyzing the NS-2 results. The results have demonstrated the effectiveness and efficiency of the proposed RNTO algorithms

    Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state observer based chattering-free sliding mode control

    Get PDF
    MakaleWOS:000912458400001Most of the control strategies require a mathematical model or reasonable knowledge that is difficult to obtain for complex systems. Model-free control is a good alternative to avoid the difficulties and complex modeling procedures, especially if the knowledge about the system is insufficient. This paper presents a new control scheme completely independent of the system model. The proposed scheme combines sliding mode control (SMC) with intelligent proportional integral derivative (iPID) control based on a local model and extended state observer (ESO). Although the iPID control makes the proposed method model-free, it cannot guarantee that the tracking errors converge to zero asymptotically except the system is in a steady-state regime. Therefore, the SMC is added to the control scheme to ensure the convergence by minimizing the estimation errors of the observer. The proposed iPIDSMC controller is tested in the presence of different parameter variations and external disturbances on an inverted pendulum - cart (IPC), which is a highly unstable underactuated system with nonlinear coupled dynamics. The proposed controller is compared with the PID, iPID and Hierarchical Sliding Mode Control (HSMC) for a clearer evaluation. Simulation results showed that the proposed controller is extremely insensitive to parameter variations, matched and mismatched disturbances and the control signal of the proposed method is chattering-free, even though it is based on a discontinuous control action

    Unified Field Oriented Controlled Drive System for All Types of PMSMs Considering System Nonlinearities

    Get PDF
    Permanent Magnet Synchronous Machines (PMSM) have increasing popularity in recent years due to their extensive use in domestic appliances, electric/hybrid vehicles, wind power generation and more electric aircraft technologies. This paper proposes a unified drive system simulation for all types of PMSMs. Its unified structure achieves self controller tuning and decoupling compensation once a machine is replaced by another. Field oriented control based realistic drive is implemented with a much-simplified simulation. The proposed structure incorporates with parameter variations, inverter nonlinearities, and DC-link voltage variations as well as it simulates ideal system behavior. Each system nonlinearity can be simply studied for any machine by deliberately altering the corresponding parameter owing to its unified structure. Hence, the effect of that particular variation on harmonic distortions, torque ripples, torque production capability, battery utilization ratio, system efficiency, system response and so on can be analyzed in detail. Thus, the novel implementation strategy will be quite useful to analyze the system behavior under different evaluation metrics, and it will accelerate the research and developments on the promising topic. The effectiveness of the strategy has been verified by extensive simulations

    Direct thrust force control of primary permanent magnet linear motor based on improved extended state observer and model-free adaptive predictive control

    Get PDF
    A model-free adaptive predictive control algorithm based on an improved extended state observer (IESO) is proposed to solve the problem that the primary permanent magnet linear motor is susceptible to time-varying parameters and unknown disturbances. Firstly, a model-free adaptive control algorithm based on compact format is designed to achieve high control precision of the system and reduce thrust fluctuation, only through the input/output data of the system. Because the traditional model-free adaptive control is too sensitive to the internal parameters of the controller, a combination of model-free adaptive control and predictive control is further developed. By predicting the data for a future time in advance, the sensitivity to the internal parameters of the controller is reduced and the control performance is further improved. Since the load change and other nonlinear disturbances in practical applications have a great impact on the control effect of the system, an improved extended state observer is further used to compensate for the impact of nonlinear disturbances on the control system. In addition, the stability of the closed-loop system is analyzed. Comparable simulation results clearly demonstrate the good tracking performance and strong robustness of the proposed control
    corecore