69 research outputs found

    Infill Optimization for Additive Manufacturing - Approaching Bone-like Porous Structures

    Get PDF

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Numerical Modeling and Experimental Investigation of Effective Elastic Properties of the 3D Printed Gyroid Infill

    Get PDF
    A numerical homogenization approach is presented for the effective elastic moduli of 3D printed cellular infills. A representative volume element of the infill geometry is discretized using either shell or solid elements and analyzed using the finite element method. The elastic moduli of the bulk cellular material are obtained through longitudinal and shear deformations of a representative volume element under periodic boundary conditions. The method is used to analyze the elastic behavior of gyroid infills for varying infill densities. The approach is validated by comparing the Young’s modulus and Poisson’s ratio with those obtained from compression experiments. Results indicate that although the gyroid infill exhibits cubic symmetry, it is nearly isotropic with a low anisotropy index. The numerical predictions are used to develop semi-empirical equations of the effective elastic moduli of gyroid infills as a function of infill density in order to inform design and topology optimization workflows

    Polyhedral Voronoi diagrams for additive manufacturing

    Get PDF
    International audienceA critical advantage of additive manufacturing is its ability to fabricate complex small-scale structures. These microstructures can be understood as a metamaterial: they exist at a much smaller scale than the volume they fill, and are collectively responsible for an average elastic behavior different from that of the base printing material making the fabricated object lighter and/or flexible along specific directions. In addition, the average behavior can be graded spatially by progressively modifying the microstructure geometry.The definition of a microstructure is a careful trade-off between the geometric requirements of manufacturing and the properties one seeks to obtain within a shape: in our case a wide range of elastic behaviors. Most existing microstructures are designed for stereolithography (SLA) and laser sintering (SLS) processes. The requirements are however different than those of continuous deposition systems such as fused filament fabrication (FFF), for which there is currently a lack of microstructures enabling graded elastic behaviors.In this work we introduce a novel type of microstructures that strictly enforce all the requirements of FFF-like processes: continuity, self-support and overhang angles. They offer a range of orthotropic elastic responses that can be graded spatially. This allows to fabricate parts usually reserved to the most advanced technologies on widely available inexpensive printers that also benefit from a continuously expanding range of materials

    Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures

    Get PDF
    In current 3D printing technologies, it remains a great challenge to print continuous carbon fibre reinforced composites with complex shapes and high mechanical performances. The main reason lies in the limitation of printing path design, which cannot guarantee to print carbon fibres along load transmission paths of composite parts. Here we address this issue by proposing an ingenious path-designed 3D (PD-3D) printing approach that considers the load transmission path and anisotropic property of the continuous carbon fibre reinforced filament. Complex structures of carbon fibre reinforced composites, with enhanced lightweight, were demonstrated. Such structures of carbon fibres paving along load transmission paths, greatly reduce stress concentration and achieve a quasi-isotropic performance. By comparing printed specimens with drilled holes and semicircles, the PD-3D printed specimens with holes and semicircles are 67.5% and 62.4% higher in tensile and flexural strength, respectively. And the strength to weight ratio of the tensile and flexural specimens also increase by 55.1% and 35.2%, compared with the drilled ones
    • …
    corecore