59 research outputs found

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Modular Hopping and Running via Parallel Composition

    Get PDF
    Though multi-functional robot hardware has been created, the complexity in its functionality has been constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of interconnections to physical and behavioral components. Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of ``parts\u27\u27: controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions in terms of ``anchored templates,\u27\u27 respecting which Raibert\u27s empirical synthesis (and the animals\u27 empirical performance) can be posed as a parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts. In order to bring Raibert\u27s 1980\u27s work into the 21st century and out of the laboratory, we design a new family of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these platforms, we demonstrate a growing collection of {\{body, behavior}\} pairs that successfully embody dynamical running / hopping ``gaits\u27\u27 specified using compositions of a few templates, with few parameters and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of parallel composition---embodied behaviors that are correct by design even in the presence of nefarious coupling and perturbation---using a new analytical tool (hybrid dynamical averaging). With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to implement them, we are closer to identifying the components required to flexibly program the exchange of work between machines and their environment. Knowing how to combine and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few decades

    Biped locomotion control through a biologically-inspired closed-loop controller

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCurrently motor disability in industrialized countries due to neural and physical impairments is an increasingly worrying phenomenon and the percentage of patients is expected to be increasing continuously over the coming decades due to a process of ageing the world is undergoing. Additionally, rising retirement ages, higher demand of elderly people for an independent, dignified life and mobility, huge cost in the provision of health care are some other determinants that motivate the restoration of motor function as one of the main goals of rehabilitation. Modern concepts of motor learning favor a task-specific training in which all movements in daily life should be trained/assisted repetitively in a physically correct fashion. Considering the functional activity of the neuronal circuits within the spinal cord, namely the central pattern generator (CPG), as the foundation to human locomotion, motor relearning should be based on intensive training strategies directed to the stimulation and reorganization of such neural pathways through mechanisms addressed by neural plasticity. To this end, neuromodelings are required to simulate the human locomotion control to overcome the current technological challenges such as developing smaller, intelligent and cost-effective devices for home and work rehabilitation scenarios which can enable a continuous therapy/ assistance to guide the impaired limbs in a gentle manner, avoiding abrupt perturbations and providing as little assistance as necessary. Biomimetic models, taking neurological and biomechanical inspiration from biological animals, have been embracing these challenges and developing effective solutions on refining the locomotion models in terms of energy efficiency, simplicity in the structure and robust adaptability to environment changes and unexpected perturbations. Thus, the aim target of this work is to study the applicability of the CPG model for gait rehabilitation, either for assistance and/or therapy purposes. Focus is developed on the locomotion control to increase the knowledge of the underlying principles useful for gait restoration, exploring the brainstem-spinal-biomechanics interaction more fully. This study has great application in the project of autonomous robots and in the rehabilitation technology, not only in the project of prostheses and orthoses, but also in the searching of procedures that help to recuperate motor functions of human beings. Encouraging results were obtained which pave the way towards the simulation of more complex behaviors and principles of human locomotion, consequently contributing for improved automated motor rehabilitation adapted to the rehabilitation emerging needs.Actualmente a debilidade motora em países industrializados devido a deficiências neurais e físicas é um fenómeno crescente de apreensão sendo expectável um contínuo aumento do rácio de pacientes nas próximas décadas devido ao processo de envelhecimento. Inclusivé, o aumento da idade de reforma, a maior procura por parte dos idosos para uma mobilidade e vida autónoma e condigna, o elevado custo nos cuidados de saúde são incentivos para a restauração da função motora como um dos objectivos principais da reabilitação. Conceitos recentes de aprendizagem motora apoiam um treino de tarefas específicas no qual movimentos no quotidiano devem ser treinados/assistidos de forma repetitiva e fisicamente correcta. Considerando a actividade funcional dos circuitos neurais na medula, nomeadamente o gerador de padrão central (CPG), como a base da locomoção, a reaprendizagem motora deve-se basear em estratégias intensivas de treino visando a estimulação e reorganização desses vias neurais através de mecanismos abordados pela plasticidade neural. Assim, são necessários modelos neurais para simular o controlo da locomoção humana de modo a superar desafios tecnológicos actuais tais como o desenvolvimento de dispositivos mais compactos, inteligentes e económicos para os cenários de reabilitação domiciliar e laboral que podem permitir uma terapia/assistência contínua na guia dos membros debilitados de uma forma suave, evitando perturbações abruptas e fornecendo assistência na medida do necessário. Modelos biomiméticos, inspirando-se nos princípios neurológicos e biomecânicos dos animais, têm vindo a abraçar esses desafios e a desenvolver soluções eficazes na refinação de modelos de locomoção em termos da eficiência de energia, da simplicidade na estrutura e da adaptibilidade robusta face a alterações ambientais e perturbações inesperadas. Então, o objectivo principal do trabalho é estudar a aplicabilidade do modelo de CPG para a reabilitação da marcha, para efeitos de assistência e/ou terapia. É desenvolvido um foco no controlo da locomoção para maior entendimento dos princípios subjacentes úteis para a recuperação da marcha, explorando a interacção tronco cerebral-espinal medula-biomecânica de forma mais detalhada. Este estudo tem potencial aplicação no projecto de robôs autónomos e na tecnologia de reabilitação, não só no desenvolvimento de ortóteses e próteses, mas também na procura de procedimentos úteis para a recuperação da função motora. Foram obtidos resultados promissores susceptíveis de abrir caminho à simulação de comportamentos e princípios mais complexos da marcha, contribuindo consequentemente para uma aprimorada reabilitação motora automatizada adaptada às necessidades emergentes

    A Bio-inspired architecture for adaptive quadruped locomotion over irregular terrain

    Get PDF
    Tese de doutoramento Programa Doutoral em Engenharia Electrónica e de ComputadoresThis thesis presents a tentative advancement on walking control of small quadruped and humanoid position controlled robots, addressing the problem of walk generation by combining dynamical systems approach to motor control, insights from neuroethology research on vertebrate motor control and computational neuroscience. Legged locomotion is a complex dynamical process, despite the seemingly easy and natural behavior of the constantly present proficiency of legged animals. Research on locomotion and motor control in vertebrate animals from the last decades has brought to the attention of roboticists, the potential of the nature’s solutions to robot applications. Recent knowledge on the organization of complex motor generation and on mechanics and dynamics of locomotion has been successfully exploited to pursue agile robot locomotion. The work presented on this manuscript is part of an effort on the pursuit in devising a general, model free solution, for the generation of robust and adaptable walking behaviors. It strives to devise a practical solution applicable to real robots, such as the Sony’s quadruped AIBO and Robotis’ DARwIn- OP humanoid. The discussed solutions are inspired on the functional description of the vertebrate neural systems, especially on the concept of Central Pattern Generators (CPGs), their structure and organization, components and sensorimotor interactions. They use a dynamical systems approach for the implementation of the controller, especially on the use of nonlinear oscillators and exploitation of their properties. The main topics of this thesis are divided into three parts. The first part concerns quadruped locomotion, extending a previous CPG solution using nonlinear oscillators, and discussing an organization on three hierarchical levels of abstraction, sharing the purpose and knowledge of other works. It proposes a CPG solution which generates the walking motion for the whole-leg, which is then organized in a network for the production of quadrupedal gaits. The devised solution is able to produce goal-oriented locomotion and navigation as directed through highlevel commands from local planning methods. In this part, active balance on a standing quadruped is also addressed, proposing a method based on dynamical systems approach, exploring the integration of parallel postural mechanisms from several sensory modalities. The solutions are all successfully tested on the quadruped AIBO robot. In the second part, is addressed bipedal walking for humanoid robots. A CPG solution for biped walking based on the concept of motion primitives is proposed, loosely based on the idea of synergistic organization of vertebrate motor control. A set of motion primitives is shown to produce the basis of simple biped walking, and generalizable to goal-oriented walking. Using the proposed CPG, the inclusion of feedback mechanisms is investigated, for modulation and adaptation of walking, through phase transition control according to foot load information. The proposed solution is validated on the humanoid DARwIn-OP, and its application is evaluated within a whole-body control framework. The third part sidesteps a little from the other two topics. It discusses the CPG as having an alternative role to direct motor generation in locomotion, serving instead as a processor of sensory information for a feedback based motor generation. In this work a reflex based walking controller is devised for the compliant quadruped Oncilla robot, to serve as purely feedback based walking generation. The capabilities of the reflex network are shown in simulations, followed by a brief discussion on its limitations, and how they could be improved by the inclusion of a CPG.Esta tese apresenta uma tentativa de avanço no controlo de locomoção para pequenos robôs quadrúpedes e bipedes controlados por posição, endereçando o problema de geração motora através da combinação da abordagem de sistemas dinâmicos para o controlo motor, e perspectivas de investigação neuroetologia no controlo motor vertebrado e neurociência computacional. Andar é um processo dinâmico e complexo, apesar de parecer um comportamento fácil e natural devido à presença constante de animais proficientes em locomoção terrestre. Investigação na área da locomoção e controlo motor em animais vertebrados nas últimas decadas, trouxe à atenção dos roboticistas o potencial das soluções encontradas pela natureza aplicadas a aplicações robóticas. Conhecimento recente relativo à geração de comportamentos motores complexos e da mecânica da locomoção tem sido explorada com sucesso na procura de locomoção ágil na robótica. O trabalho apresentado neste documento é parte de um esforço no desenho de uma solução geral, e independente de modelos, para a geração robusta e adaptável de comportamentos locomotores. O foco é desenhar uma solução prática, aplicável a robôs reais, tal como o quadrúpede Sony AIBO e o humanóide DARwIn-OP. As soluções discutidas são inspiradas na descrição funcional do sistema nervoso vertebrado, especialmente no conceito de Central Pattern Generators (CPGs), a sua estrutura e organização, componentes e interacção sensorimotora. Estas soluções são implementadas usando uma abordagem em sistemas dinâmicos, focandos o uso de osciladores não lineares e a explorando as suas propriedades. Os tópicos principais desta tese estão divididos em três partes. A primeira parte explora o tema de locomoção quadrúpede, expandindo soluções prévias de CPGs usando osciladores não lineares, e discutindo uma organização em três níveis de abstracção, partilhando as ideias de outros trabalhos. Propõe uma solução de CPG que gera os movimentos locomotores para uma perna, que é depois organizado numa rede, para a produção de marcha quadrúpede. A solução concebida é capaz de produzir locomoção e navegação, comandada através de comandos de alto nível, produzidos por métodos de planeamento local. Nesta parte também endereçado o problema da manutenção do equilíbrio num robô quadrúpede parado, propondo um método baseado na abordagem em sistemas dinâmicos, explorando a integração de mecanismos posturais em paralelo, provenientes de várias modalidades sensoriais. As soluções são todas testadas com sucesso no robô quadrupede AIBO. Na segunda parte é endereçado o problema de locomoção bípede. É proposto um CPG baseado no conceito de motion primitives, baseadas na ideia de uma organização sinergética do controlo motor vertebrado. Um conjunto de motion primitives é usado para produzir a base de uma locomoção bípede simples e generalizável para navegação. Esta proposta de CPG é usada para de seguida se investigar a inclusão de mecanismos de feedback para modulação e adaptação da marcha, através do controlo de transições entre fases, de acordo com a informação de carga dos pés. A solução proposta é validada no robô humanóide DARwIn-OP, e a sua aplicação no contexto do framework de whole-body control é também avaliada. A terceira parte desvia um pouco dos outros dois tópicos. Discute o CPG como tendo um papel alternativo ao controlo motor directo, servindo em vez como um processador de informação sensorial para um mecanismo de locomoção puramente em feedback. Neste trabalho é desenhado um controlador baseado em reflexos para a geração da marcha de um quadrúpede compliant. As suas capacidades são demonstradas em simulação, seguidas por uma breve discussão nas suas limitações, e como estas podem ser ultrapassadas pela inclusão de um CPG.The presented work was possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant SFRH/BD/62047/2009

    Biped Locomotion: Stability analysis, gait generation and control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Foot Placement Strategy for Robust Bipedal Gait Control

    Get PDF
    This thesis introduces a new measure of balance for bipedal robotics called the foot placement estimator (FPE). To develop this measure, stability first is defined for a simple biped. A proof of the stability of a simple biped in a controls sense is shown to exist using classical methods for nonlinear systems. With the addition of a contact model, an analytical solution is provided to define the bounds of the region of stability. This provides the basis for the FPE which estimates where the biped must step in order to be stable. By using the FPE in combination with a state machine, complete gait cycles are created without any precalculated trajectories. This includes gait initiation and termination. The bipedal model is then advanced to include more realistic mechanical and environmental models and the FPE approach is verified in a dynamic simulation. From these results, a 5-link, point-foot robot is designed and constructed to provide the final validation that the FPE can be used to provide closed-loop gait control. In addition, this approach is shown to demonstrate significant robustness to external disturbances. Finally, the FPE is shown in experimental results to be an unprecedented estimate of where humans place their feet for walking and jumping, and for stepping in response to an external disturbance
    corecore