2,096 research outputs found

    Interactive Free-Viewpoint Video Generation

    Get PDF
    Background Free-viewpoint video (FVV) is processed video content in which viewers can freely select the viewing position and angle. FVV delivers an improved visual experience and can also help synthesize special effects and virtual reality content. In this paper, a complete FVV system is proposed to interactively control the viewpoints of video relay programs through multimedia terminals such as computers and tablets. Methods The hardware of the FVV generation system is a set of synchronously controlled cameras, and the software generates videos in novel viewpoints from the captured video using view interpolation. The interactive interface is designed to visualize the generated video in novel viewpoints and enable the viewpoint to be changed interactively. Results Experiments show that our system can synthesize plausible videos in intermediate viewpoints with a view range of up to 180°

    Coherent multi-dimensional segmentation of multiview images using a variational framework and applications to image based rendering

    No full text
    Image Based Rendering (IBR) and in particular light field rendering has attracted a lot of attention for interpolating new viewpoints from a set of multiview images. New images of a scene are interpolated directly from nearby available ones, thus enabling a photorealistic rendering. Sampling theory for light fields has shown that exact geometric information in the scene is often unnecessary for rendering new views. Indeed, the band of the function is approximately limited and new views can be rendered using classical interpolation methods. However, IBR using undersampled light fields suffers from aliasing effects and is difficult particularly when the scene has large depth variations and occlusions. In order to deal with these cases, we study two approaches: New sampling schemes have recently emerged that are able to perfectly reconstruct certain classes of parametric signals that are not bandlimited but characterized by a finite number of parameters. In this context, we derive novel sampling schemes for piecewise sinusoidal and polynomial signals. In particular, we show that a piecewise sinusoidal signal with arbitrarily high frequencies can be exactly recovered given certain conditions. These results are applied to parametric multiview data that are not bandlimited. We also focus on the problem of extracting regions (or layers) in multiview images that can be individually rendered free of aliasing. The problem is posed in a multidimensional variational framework using region competition. In extension to previous methods, layers are considered as multi-dimensional hypervolumes. Therefore the segmentation is done jointly over all the images and coherence is imposed throughout the data. However, instead of propagating active hypersurfaces, we derive a semi-parametric methodology that takes into account the constraints imposed by the camera setup and the occlusion ordering. The resulting framework is a global multi-dimensional region competition that is consistent in all the images and efficiently handles occlusions. We show the validity of the approach with captured light fields. Other special effects such as augmented reality and disocclusion of hidden objects are also demonstrated

    Learning Implicit Templates for Point-Based Clothed Human Modeling

    Full text link
    We present FITE, a First-Implicit-Then-Explicit framework for modeling human avatars in clothing. Our framework first learns implicit surface templates representing the coarse clothing topology, and then employs the templates to guide the generation of point sets which further capture pose-dependent clothing deformations such as wrinkles. Our pipeline incorporates the merits of both implicit and explicit representations, namely, the ability to handle varying topology and the ability to efficiently capture fine details. We also propose diffused skinning to facilitate template training especially for loose clothing, and projection-based pose-encoding to extract pose information from mesh templates without predefined UV map or connectivity. Our code is publicly available at https://github.com/jsnln/fite.Comment: Accepted to ECCV 202

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF
    corecore