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Abstract Background Free-viewpoint video (FVV) is processed video content in which viewers can

freely select the viewing position and angle. FVV delivers an improved visual experience and can also help

synthesize special effects and virtual reality content. In this paper, a complete FVV system is proposed to

interactively control the viewpoints of video relay programs through multimedia terminals such as

computers and tablets. Methods The hardware of the FVV generation system is a set of synchronously

controlled cameras, and the software generates videos in novel viewpoints from the captured video using

view interpolation. The interactive interface is designed to visualize the generated video in novel

viewpoints and enable the viewpoint to be changed interactively. Results Experiments show that our

system can synthesize plausible videos in intermediate viewpoints with a view range of up to 180°.

Keywords Free-viewpoint video; View interpolation; Interactive interface

1 Introduction

In recent years, with the rapid development and enhancement of visual computing technologies and the

television and internet video markets, free-viewpoint videos (FVVs) have gained in popularity. These allow

viewers to freely select the viewing position and angle[1]. Compared to traditional video, FVV delivers more

3D information and a sense of stereoscopic viewing, which significantly improves the visual experience.

FVV can help synthesize special effects (such as "bullet time"), and it can be readily transformed into virtual

reality (VR) assets. Therefore, an interactive system to generate FVV has a large utility value.

Generating FVVs requires a multi-viewpoint system (consisting of a camera array) to capture video

simultaneously from multiple viewpoints. One major problem in generating FVV from captured multi-

viewpoint video is synthesizing the video in the intermediate viewpoints, a process referred to as "view

interpolation." Initial studies reconstructed a 3D model of the whole scene from multi-viewpoint images[2,3]

and then rendered the model to yield FVV[4-6]. In later works, image-based rendering (IBR) techniques

were proposed to render novel viewpoints directly from input images[7-15]. With the rapid development of

deep learning methods, numerous works[16-18] have demonstrated that neural networks can greatly improve

the speed and accuracy of FVV generation, compared to traditional approaches.
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In this paper, we propose a complete system whereby a user can interactively control the viewpoints of

video relay programs through multimedia terminals such as computers and tablets. The system comprises a

hardware setup, an FVV-generation algorithm, and an interactive interface design. The core module of the

software is the novel-viewpoint generation algorithm, through which the number of the available

viewpoints is dramatically increased using a neural network. With the proposed FVV-generation system,

users can control the viewing angle of the video program and switch smoothly between perspectives. In

our experiment, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) result of our

system outperform the traditional 3D-rendering method. The processing frame-rate achieved is 30fps with

a resolution of up to 720P, which is sufficiently visually pleasant for applications. Our system is tested in

various environments, such as basketball stadiums and indoor scenes.

2 Related works

The key process in generating FVV is that of synthesizing images in a novel viewpoint from one or more

reference images. Existing methods for synthesizing images/videos from novel viewpoints can be divided

into two categories: traditional 3D-rendering methods and image-synthesis methods.

Traditional 3D-rendering methods can be further divided into model-based, depth-based, and image-

based methods[19]. In initial studies, researchers explicitly modeled the scene or object into 3D

structures[4-6,15,20-26], with the aim of recovering the geometric information to render the novel perspective.

Although these methods were successful with sufficient input images, they were unable to recover the

desired target viewpoint with a limited quantity of images, due to the ambiguity of 3D models.

Subsequently, researchers focused on image-based rendering. IBR techniques render novel viewpoints

directly from input images[7]. IBR typically uses proxy geometry to synthesize viewpoints. Initial works

using IBR methods considered plenoptic modeling[8], light field rendering[9], super-pixel segmentation[12],

alpha matting[17] and depth-based rendering[27]. A recent work[28] employed more than two reference

perspectives, to obtain more color/depth information and interpolate the novel views for wide-baseline

camera arrays. Several recent works[9,10,13,29] have used the IBR method to obtain reasonably high-quality

synthesis results, employing powerful deep learning techniques to predict the depth map[10,14,29], blending

weights[11] or multi-plane images[15].

Image-synthesis methods usually employ an end-to-end framework. For example, GAN networks[30,31]

directly synthesize images in the novel viewpoint from narrow-baseline videos[32-35]. Zhou et al. proposed

to sample from input images by predicting the appearance flow between the input and output for both

multi-view syntheses and view interpolation[36]. Park et al. further introduced an image-generation network

based on the appearance flow-prediction network, to construct the unseen region[37]. Many studies have

attempted to solve the decomposition problems of viewpoint synthesis by using multiple networks. For

example, Kalantari et al. segmented the viewpoint synthesis process into disparity and color-estimation

components, which were solved by two sequential convolutional neural networks[38]. Ji et al. proposed to

rectify the two viewpoint images through estimated homography in the first a convolutional network, and

then synthesize the images in the middle viewpoint using the second convolutional network[39]. Another

strategy[14,40] synthesized the images onto a range of different planes (at different depth levels) and then

selected one plane or blended all planes for each pixel at factually different depths.

3 Capturing system

We build a complete system to generate interactive FVVs. It consists of a hardware system to capture

multi-viewpoint videos and a software to synthesize videos from novel viewpoints. We detail the capturing

system in this section, then explain the algorithm and user interface in the next.
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3.1 Camera array

We used a workstation to receive video streams from the camera array (the main component of the

hardware system) (Figure 1). Considering the limitations of bandwidth and data-transfer rates, two kinds of

setups were adopted to strike a balance between frame-rate and image resolution. To ensure the pixel

utilization of captured frames, the cameras are placed in similar horizontal planes.

The first setup focuses on a high frame-rate capture; it consists of six FILR industrial cameras with a

1280×720 resolution and a 60fps frame rate. This setup supports synchronous data acquisition in both

software and hardware trigger modes. The hardware trigger mode is set to send trigger signals to the

camera from the synchronous triggering box. We set the trigger frequency to 60ps and the duty ratio to

50%. While the system is also compatible with a software trigger, we preferred to use the hardware trigger

because it had a higher synchronous accuracy.

The second setup focused on high-resolution capture; it consisted of 16 cameras using Sony IMX274

CMOS sensors, eight Nvidia Jetson TX1 modules, and a switch (Figure 2). The resolution was set to

3864×2174 and the frame-rate was set to 30fps. This system was synchronized through a software trigger

(using the Mantis software developed by Aqueti). The synchronization accuracy meets the requirements

with a synchronous error of 10-20ms.

Figure 1 A high-frame-rate, six-camera synchronous acquisition system (frame-rate up to 120fps), the camera unit

is an FILR industrial camera, and the system is synchronized through either a software or hardware trigger mode.

Figure 2 High-resolution, 16-camera synchronous acquisition system with a resolution of 4K (3864×2174) and

synchronized by software trigger.
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3.2 Synchronization

Frame synchronization of the numerous captured videos is critical for the subsequent process of view

interpolation. In the six-FILR industrial camera array, all cameras were synchronized using the signal

generator via a video-data trigger line, and the trigger signal frequency was set to 60Hz. Regarding the

second setup (which used 16 industrial cameras), 2 cameras were connected to each TX1 and the

synchronized signal was controlled by the local server, as shown in Figure 3.

4 Free-viewpoint video generation

With the captured multi-viewpoint video as an input, three modules were used to generate videos in novel

viewpoints: data preprocessing, view interpolation, and interactive interface design. We detail each module

in the following subsections.

4.1 Data preprocessing

The preprocessing stage aimed to render the input multi-viewpoint videos suitable for the learning-based

view-interpolation framework. The first step was post-rectification, which ensured that (a) most of the

feature points were aligned horizontally and (b) the viewpoint rotation axis was aligned vertically. A

superior alignment can reduce ghost effects in the final view interpolation results. All 16 synchronized

frames were extracted from the 16 videos captured by our multi-camera system. A suitable frame was

selected as the reference image from the first group of 16 synchronized frames; then, we chose a viewpoint

rotation axis for this frame, which was typically taken as the middle vertical line to reduce unnecessary

image cutting. The affine transformation matrix is defined as:

M =
æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

α β ( )1 - α ∙tx - β∙ty
-β α β∙tx + (1 - α )∙ty
0 0 1

, (1)

where (tx, ty ) is the translation term, α = k∙cos (θ ), β = k∙sin (θ ), and k and θ are the scale and rotation

parameters, respectively.

Images in other views are warped to align with the reference frame; this is achieved by interactively

Figure 3 Industrial camera array for acquiring synchronized video stream.
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adjusting the parameters tx, ty, k, and θ of the affine transformation, as defined in Equation (1). During the

adjustment process, the crucial task is to align the vertical viewpoint rotation axis via translation and then

ensure that most feature points are aligned horizontally on the same horizontal line. As shown in Figure 4,

most feature points are aligned horizontally, and the viewpoint rotation axis is kept stable by adjusting

image rotation, zoom, and pan parameters. Blue lines represent the horizontal calibration lines and the

green line represents the viewpoint rotation axis, which is typically the vertical line in the middle of the

image. This is possible because all cameras are arranged on a plane. In summary, we estimate the affine

matrix by optimizing an objective function consisting of two terms, where the first term denotes a

horizontal alignment and the second term denotes a vertical alignment. The objective function is

formulated as.

Etotal =∑
pi ∈ H

i

| | pi ( y ) - pi_reference ( y ) | |22 + α∙∑pj ∈ V
j

| | pj (x) - pjreference (x) | |
2

2
,

where H and V are feature point sets on the horizontal calibration lines and vertical calibration line,

respectively; and p ( x ) and p (y) are the x and y coordinates of the feature points of the images. After we

obtained the affine matrix for each view, all remaining frames were processed using the aforementioned

affine warping relation.

The second step is color calibration. Although we implemented camera white-balance calibration and

color compensation for all cameras, it was still necessary to postprocess the white balance, to ensure that

the final FVV maintains strict color consistency when users switch between viewpoints. The gray-world

algorithm[41] was used to calibrate color in our system.

4.2 View interpolation

4.2.1 Learning-based method

To design our network, we referred to the work of Niklaus et al., who considered frame interpolation in the

time domain. The core idea of their CNN network was to estimate using 2D convolution kernels, which

simultaneously consider motion estimation and re-sampling.

As shown in Figure 5, we fed two images of adjacent views into an encoder-decoder network, to

interpolate the middle-viewpoint image. To detect large motions between two input images, we increased

the convolutional kernel size to 50, which resulted in an over-sized model. To reduce the model size, we

introduced a pooling layer to the encoder network and replaced the 2D kernels in the decoder network with

two pairs of 1D kernels. All blocks in the network contained three convolution/deconvolution layers and

one pooling/up-sampling layer. The tail of the decoder was designed to contain four subnets to predict the

Figure 4 Example of post-rectification.
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four 1D kernels separately, instead of predicting the entire group of 1D kernels directly. This is because

training with the former structure can result in faster convergence. To synthesize the images in novel

viewpoints besides the middle one, we ran the network interactively and interpolated for the target

viewpoint. The pairs of 1D kernel can be used for depth-wise convolutions and point-wise convolutions,

respectively, for the same size of input image; this kind of separable convolution can significantly reduce

the model size. To obtain the virtual, interpolated-viewpoint image, the two original input frames are

convolved with the 1D kernel pairs and summed, as

Vvirtual (x,y) = K1 (x,y)* P1 (x,y) + K2 (x,y)* P2 (x,y) , (2)

where P (x,y) indicates a patch centering on (x,y) in the original input image, K1 (x,y) is the output of a

subnet, and * is the convolution operation.

There are two terms in the loss function. The first term is the pixel-level loss, defined as the L2-norm of

pixel values between the predicted image and ground truth; the second term is the perceptual loss, which is

a feature-level loss measuring the feature similarity[42]. Thus,

Lpixel = | | R - RGT | |22 , Lperceptual = | | S (R ) - S (RGT ) | |22 , (3)

where S is a form of feature-extraction function, which is the output of relu4_4 in the VGG-19 network.

The total loss is defined as

Ltotal = Lpixel + α∙Lperceptual (4)

4.2.2 3D reconstruction-based method

We used the 3D reconstruction and rendering method to generate view interpolation results and evaluated

the performance. First, the captured multi-viewpoint frames were calibrated to obtain the intrinsic and

extrinsic matrices. An arc was constructed based on the calibrated camera locations (Figure 6); then, we

synthesized new viewpoints based on the relative camera parameters. Next, the 3D scene was

reconstructed using a traditional multi-viewpoint reconstruction pipeline, which generated the textured

triangle mesh from calibrated multi-viewpoint images[43]. Poisson blending[44] was then used to fill the holes

and cracks. Finally, new virtual-viewpoint images were rendered with the virtual camera parameters.

4.3 Interactive interface

To generate visual and interactive results, we stitched the synchronous video frames from all perspectives

(in order of physical placement) into a matrix-shaped "moment frame", then we recomposed the stitched

frames of all moments into an FVV.

Figure 5 The main structure of our network.
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As shown in Figure 7, the interactive software was designed around QT, and the interactive video had a

maximum resolution of up to 720P (1280×720). On the user interface, a dynamic video is presented, in

which the user can select any viewpoint within the view range. By dragging the slider at the bottom (or by

switching the dial on the right-hand side), different viewpoints can be switched between with a visually

Figure 6 An example of the intermediate 3D-reconstruction result.

Figure 7 The interactive software designed around QT.
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pleasant smoothness. Users can stop the video at any time and change the viewpoint to realize the "bullet

time" effect.

5 Experiments

5.1 Experimental setup

We tested our systems on two setups, as explained in Section 3.1; the input videos were captured in

laboratory scenes and a basketball stadium. The visual results are displayed in Figures 8 and 9, and a

quantitative evaluation is given in Table 1. In Figure 8, the baselines of two cameras (which captured the

input viewpoints of Test 1, Test 2, Test 4, and Test 5) were relatively narrow, with viewpoint direction

intersection angles in the range of 1° to 4° ; in this range, our network can stably generate high-

Figure 8 Results of interpolated viewpoint system using different scenes and baselines.
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performance results from our system. For Test 3 and Test 6, the camera baselines were much wider, with

viewpoint direction intersection angles exceeding 15°. The results of Test 3 still perform well owing to the

simple background; however, the results of Test 6 suffer from ghost effects, due to the complicated

background. Our method can be used to synthesize VR material, as shown in Figure 10.

To compare the generated results with ground truths, we chose the first- and the third-camera viewpoints

(from three successive cameras in our array) as input viewpoints. The images captured by the middle one

are defined as the ground truth. We used the images captured with our system for evaluation (Figure 9A

and Figure 9B), and used a third-party dataset[14] for comparison (Figure 9C). The viewpoint direction

Figure 9 Comparison of the generated virtual viewpoint images and error maps with different methods. A and B

contain images captured using our system, C contains images from Zitnick et al.[14].
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intersection angles slightly exceeded the optimal angle range of our system. As shown in Figure 9, ghosts

or cracks appear in some zones where the pixel intensity changes sharply; for instance, at the borders of

objects in scenes. The values in the image error maps are defined by pixel-wise L1 distance.

5.2 Comparison with reconstruction and rendering

We compare a learning-based method (ours) and a reconstruction and rendering method visually in Figure

9 and quantitatively in Table 1. The quantitative evaluation shows that the learning-based method

outperforms the 3D-reconstruction and rendering method, as indicated by the measured parameters SSIM and

PSNR; the superiority was greater when the background was simple. The high performances measured by the

SSIM and PSNR metrics demonstrate that the viewing experience is more pleasant when switching between

viewpoints. By visual comparison, it can be seen that though the results of reconstruction and rendering

methods are visually inferior in term of similarity to the ground truth, they perform better in partial regions

with complex structures or textures, as shown by the red boxes in Figure 9. This indicates that the multi-

viewpoint inputs generate a more accurate reconstructed structure under the reconstruction and rendering

methods; however, the learning-based method cannot predict accurate structures from only two viewpoints.

5.3 Comparison with previous methods

We compared our method with previous methods using the metrics of PSNR, SSIM, and run-time.

MVA[45] and OF[46] are non-learning based methods that synthesize the target image via multi-plane images

and optical flow, respectively. DAIN[47] is a learning-based method that takes advantage of depth-aware

optical flow. As shown in Tables 1 and 2, our method outperforms MVA and OF in terms of PSNR/SSIM/

run-time for all three samples. Although our method scores slightly lower in PSNR and SSIM in comparison

to DAIN, our method has a distinct advantage in its speed, because its runtime is one-seventh of DAIN's. As

shown in Figure 11, the synthesized images of MVA and OF contain obvious defects at the edge of the

human body, whereas DAIN produces the visually plausible results comparable to those of our method.

Table 1 Evaluation of SSIM and PSNR for the three samples

A

B

C

PSNR / SSIM

Ours

27.9264 / 0.9167

29.9093 / 0.9382

25.7507 / 0.9049

3DRR

26.5868 / 0.9156

22.4726 / 0.8222

25.2853 / 0.9011

MVA

23.7966 / 0.7794

22.1897 / 0.7492

21.7692 / 0.8031

OF

24.3421 / 0.8419

22.0877 / 0.7035

24.0143 / 0.8754

DAIN

28.2023 / 0.9189

29.9818 / 0.9392

27.3504 / 0.9187

Figure 10 Synthesized VR material.
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5.4 Traditional method vs learning method

The learning-based method and the reconstruction and rendering method (traditional method) have their

own strengths and weaknesses. The learning-based method only requires two input images as input and the

processing is quick. The quantitative evaluation shows that the learning-based method performs better,

especially when the background is simple. However, it must also be noted that the learning-based method

may fail in some regions, such as a slender rod. By comparison, the reconstruction and rendering method

requires more images as inputs to ensure the quality of multi-viewpoint reconstruction. The 3D-

reconstruction process is a long pipeline with many steps, including structure from motion, dense stereo

matching, optimization of disparity, and meshing. This long pipeline tends to be fragile because it requires

all steps to function correctly; moreover, it has a long processing time. The reconstruction and rendering

method can generate accurate results in a complex structure when there are sufficient textures between

overlapping views. In the experiment, it was observed that the learning-based method for view

interpolation has an excellent performance in maintaining fidelity, even for wide-baseline input images

when the background is relatively simple; furthermore, it is superior in speed and practicability.

6 Conclusion

In this paper, we proposed a complete FVV-generation system. We used two sets of equipment for the

hardware system, which focused on high resolution and high frame-rate, respectively. The software

Table 2 Run-time testing for different methods

Runtime (s)

Our Method

3.347

3DRR

38.672

MVA

45.106

OF

9.191

DAIN

23.208

Notes: We computed the mean run-times of the A, B, C samples mentioned above.

Figure 11 Synthesized images of other methods for our testing sample.
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consisted of the FVV-generation algorithm and an interactive interface. The core module of the software

was that of novel viewpoint generation, in which the number of the available viewpoints was increased

using a neural network. With the proposed FVV-generation system, the user is able to control the viewing

angle of the video program and can also switch between perspectives smoothly. We tested our system on a

basketball stadium and indoor scenes; the PSNR and SSIM results showed that our method outperformed

the traditional 3D-rendering method. The processing frame-rate and resolution of raw data were as high as

30fps, 4K (3864×2174) and 60fps, 720P (1280×720) for the two setups, respectively; and 30-60fps, 720P

for the final FVV in our interactive software, which is visually pleasant for users.

Some problems remain to be solved in the future. For example, the images generated by the CNN

typically feature blurred boundaries for wide-baseline pairs of input images. Although reconstruction and

rendering methods produce clear boundaries, they are too time-consuming and suffer from model cracks

and holes.
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