1,754 research outputs found

    A COMPARISON OF METHODS FOR SELECTING PREFERRED SOLUTIONS IN MULTIOBJECTIVE DECISION MAKING

    No full text
    ISBN : 978-94-91216-77-0In multiobjective optimization problems, the identified Pareto Frontiers and Sets often contain too many solutions, which make it difficult for the decision maker to select a preferred alternative. To facilitate the selection task, decision making support tools can be used in different instances of the multiobjective optimization search to introduce preferences on the objectives or to give a condensed representation of the solutions on the Pareto Frontier, so as to offer to the decision maker a manageable picture of the solution alternatives. This paper presents a comparison of some a priori and a posteriori decision making support methods, aimed at aiding the decision maker in the selection of the preferred solutions. The considered methods are compared with respect to their application to a case study concerning the optimization of the test intervals of the components of a safety system of a nuclear power plant. The engine for the multiobjective optimization search is based on genetic algorithms

    04461 Abstracts Collection -- Practical Approaches to Multi-Objective Optimization

    Get PDF
    From 07.11.04 to 12.11.04, the Dagstuhl Seminar 04461 ``Practical Approaches to Multi-Objective Optimization\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Modeling and Optimization Workshop

    Get PDF

    Spatial redistribution of irregularly-spaced Pareto fronts for more intuitive navigation and solution selection

    Get PDF
    A multi-objective optimization approach is o.en followed by an a posteriori decision-making process, during which the most appropriate solution of the Pareto set is selected by a professional in the .eld. Conventional visualization methods do not correct for Pareto fronts with irregularly-spaced solutions. However, achieving a uniform spread of solutions can make the decision-making process more intuitive when decision tools such as sliders, which represent the preference for each objective, are used. We propose a method that maps anm-dimensional Pareto front to an (m-1)-simplex and spreads out points to achieve a more uniform distribution of these points in the simplex while maintaining the local neighborhood structure of the solutions as much as possible. .is set of points can then more intuitively be navigated due to the more uniform distribution. We test our approach on a set of non-uniformly spaced 3D Pareto fronts of a real-world problem: deformable image registration of medical images. The results of these experiments are visualized as points in a triangle, showing that we indeed achieve a representation of the Pareto front with a near-uniform distribution of points where these are still positioned as expected, i.e., according to their quality in each of the objectives of interest

    Designing and Evaluating Sustainable Logistics Networks

    Get PDF
    The objective in this paper is to shed light into the design of logistic networks balancing profit and the environment. More specifically we intend to i) determine the main factors influencing environmental performance and costs in logistic networks ii) present a comprehensive framework and mathematical formulation, based on multiobjective programming, integrating all relevant variables in order to explore efficient logistic network configurations iii) present the expected computational results of such formulation and iv) introduce a technique to evaluate the efficiency of existing logistic networks.The European Pulp and Paper Industry will be used to illustrate our findings.Eco-efficiency;Data Envelopment Analysis (DEA);Multi-Objective Programming (MOP);Supply Chain Design;Sustainable Supply Chain

    Efficient Frontier for Robust Higher-order Moment Portfolio Selection

    Get PDF
    This article proposes a non-parametric portfolio selection criterion for the static asset allocation problem in a robust higher-moment framework. Adopting the Shortage Function approach, we generalize the multi-objective optimization technique in a four-dimensional space using L-moments, and focus on various illustrations of a four-dimensional set of the first four L-moment primal efficient portfolios. our empirical findings, using a large European stock database, mainly rediscover the earlier works by Jean (1973) and Ingersoll (1975), regarding the shape of the extended higher-order moment efficient frontier, and confirm the seminal prediction by Levy and Markowitz (1979) about the accuracy of the mean-variance criterion.Efficient frontier, portfolio selection, robust higher L-moments, shortage function, goal attainment application.

    Multicriteria Optimization Techniques for Understanding the Case Mix Landscape of a Hospital

    Full text link
    Various medical and surgical units operate in a typical hospital and to treat their patients these units compete for infrastructure like operating rooms (OR) and ward beds. How that competition is regulated affects the capacity and output of a hospital. This article considers the impact of treating different patient case mix (PCM) in a hospital. As each case mix has an economic consequence and a unique profile of hospital resource usage, this consideration is important. To better understand the case mix landscape and to identify those which are optimal from a capacity utilisation perspective, an improved multicriteria optimization (MCO) approach is proposed. As there are many patient types in a typical hospital, the task of generating an archive of non-dominated (i.e., Pareto optimal) case mix is computationally challenging. To generate a better archive, an improved parallelised epsilon constraint method (ECM) is introduced. Our parallel random corrective approach is significantly faster than prior methods and is not restricted to evaluating points on a structured uniform mesh. As such we can generate more solutions. The application of KD-Trees is another new contribution. We use them to perform proximity testing and to store the high dimensional Pareto frontier (PF). For generating, viewing, navigating, and querying an archive, the development of a suitable decision support tool (DST) is proposed and demonstrated.Comment: 38 pages, 17 figures, 11 table
    • ā€¦
    corecore