3 research outputs found

    Self-organizing maps versus growing neural gas in detecting anomalies in data centres

    No full text
    Reliability is one of the key performance factors in data centres. The out-of-scale energy costs of these facilities lead data centre operators to increase the ambient temperature of the data room to decrease cooling costs. However, increasing ambient temperature reduces the safety margins and can result in a higher number of anomalous events. Anomalies in the data centre need to be detected as soon as possible to optimize cooling efficiency and mitigate the harmful effects over servers. This article proposes the usage of clustering-based outlier detection techniques coupled with a trust and reputation system engine to detect anomalies in data centres. We show how self-organizing maps or growing neural gas can be applied to detect cooling and workload anomalies, respectively, in a real data centre scenario with very good detection and isolation rates, in a way that is robust to the malfunction of the sensors that gather server and environmental information

    MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers

    Get PDF
    Improving the energy efficiency of data centers while guaranteeing Quality of Service (QoS), together with detecting performance variability of servers caused by either hardware or software failures, are two of the major challenges for efficient resource management of large-scale cloud infrastructures. Previous works in the area of dynamic Virtual Machine (VM) consolidation are mostly focused on addressing the energy challenge, but fall short in proposing comprehensive, scalable, and low-overhead approaches that jointly tackle energy efficiency and performance variability. Moreover, they usually assume over-simplistic power models, and fail to accurately consider all the delay and power costs associated with VM migration and host power mode transition. These assumptions are no longer valid in modern servers executing heterogeneous workloads and lead to unrealistic or inefficient results. In this paper, we propose a centralized-distributed low-overhead failure-aware dynamic VM consolidation strategy to minimize energy consumption in large-scale data centers. Our approach selects the most adequate power mode and frequency of each host during runtime using a distributed multi-agent Machine Learning (ML) based strategy, and migrates the VMs accordingly using a centralized heuristic. Our Multi-AGent machine learNing-based approach for Energy efficienT dynamIc Consolidation (MAGNETIC) is implemented in a modified version of the CloudSim simulator, and considers the energy and delay overheads associated with host power mode transition and VM migration, and is evaluated using power traces collected from various workloads running in real servers and resource utilization logs from cloud data center infrastructures. Results show how our strategy reduces data center energy consumption by up to 15% compared to other works in the state-of-the-art (SoA), guaranteeing the same QoS and reducing the number of VM migrations and host power mode transitions by up to 86% and 90%, respectively. Moreover, it shows better scalability than all other approaches, taking less than 0.7% time overhead to execute for a data center with 1500 VMs. Finally, our solution is capable of detecting host performance variability due to failures, automatically migrating VMs from failing hosts and draining them from workload

    Beta hebbian learning: definition and analysis of a new family of learning rules for exploratory projection pursuit

    Get PDF
    [EN] This thesis comprises an investigation into the derivation of learning rules in artificial neural networks from probabilistic criteria. •Beta Hebbian Learning (BHL). First of all, it is derived a new family of learning rules which are based on maximising the likelihood of the residual from a negative feedback network when such residual is deemed to come from the Beta Distribution, obtaining an algorithm called Beta Hebbian Learning, which outperforms current neural algorithms in Exploratory Projection Pursuit. • Beta-Scale Invariant Map (Beta-SIM). Secondly, Beta Hebbian Learning is applied to a well-known Topology Preserving Map algorithm called Scale Invariant Map (SIM) to design a new of its version called Beta-Scale Invariant Map (Beta-SIM). It is developed to facilitate the clustering and visualization of the internal structure of high dimensional complex datasets effectively and efficiently, specially those characterized by having internal radial distribution. The Beta-SIM behaviour is thoroughly analysed comparing its results, in terms performance quality measures with other well-known topology preserving models. • Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM). Finally, the use of ensembles such as the Weighted Voting Superposition (WeVoS) is tested over the previous novel Beta-SIM algorithm, in order to improve its stability and to generate accurate topology maps when using complex datasets. Therefore, the WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM), is presented, analysed and compared with other well-known topology preserving models. All algorithms have been successfully tested using different artificial datasets to corroborate their properties and also with high-complex real datasets.[ES] Esta tesis abarca la investigación sobre la derivación de reglas de aprendizaje en redes neuronales artificiales a partir de criterios probabilísticos. • Beta Hebbian Learning (BHL). En primer lugar, se deriva una nueva familia de reglas de aprendizaje basadas en maximizar la probabilidad del residuo de una red con retroalimentación negativa cuando se considera que dicho residuo proviene de la Distribución Beta, obteniendo un algoritmo llamado Beta Hebbian Learning, que mejora a algoritmos neuronales actuales de búsqueda de proyecciones exploratorias. • Beta-Scale Invariant Map (Beta-SIM). En Segundo lugar, Beta Hebbian Learning se aplica a un conocido algoritmo de Mapa de Preservación de la Topología llamado Scale Invariant Map (SIM) para diseñar una nueva versión llamada Beta-Scale Invariant Map (Beta-SIM). Este nuevo algoritmo ha sido desarrollado para facilitar el agrupamiento y visualización de la estructura interna de conjuntos de datos complejos de alta dimensionalidad de manera eficaz y eficiente, especialmente aquellos caracterizados por tener una distribución radial interna. El comportamiento de Beta-SIM es analizado en profundidad comparando sus resultados, en términos de medidas de calidad de rendimiento con otros modelos bien conocidos de preservación de topología. • Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM). Finalmente, el uso de ensembles como el Weighted Voting Superposition (WeVoS) sobre el algoritmo Beta-SIM es probado, con objeto de mejorar su estabilidad y generar mapas topológicos precisos cuando se utilizan conjuntos de datos complejos. Por lo tanto, se presenta, analiza y compara el WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM) con otros modelos bien conocidos de preservación de topología. Todos los algoritmos han sido probados con éxito sobre conjuntos de datos artificiales para corroborar sus propiedades, así como con conjuntos de datos reales de gran complejidad
    corecore