5 research outputs found

    Mode Switching and Collective Behavior in Chemical Oil Droplets

    Get PDF
    We have characterized several dynamic aspects of a simple chemical system capable of self-movement: An oil droplet in water system. We focused on spontaneous mode switching and collective behavior of droplets as emergent properties of the system. Droplets demonstrated spontaneous mode switching by changing speed, direction and acceleration over time, and collective behaviors of droplets resulted from such autonomous characteristics. In this paper, we quantitatively measured those characteristics to show that droplets did not act completely independently in the same system, but tend to be attracted to one another and interact with each other by adjusting their motion

    Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet

    Get PDF
    © 2018 The Author(s). 1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated if such droplets can be used as transporters for living cells. We developed a partially hydrophobic alginate capsule as a protective unit that can be precisely placed in a droplet and transported along chemical gradients. Once the droplets with cargo reached a defined final destination, the association of the alginate capsule and decanol droplet was disrupted and cargo deposited. Both Escherichia coli and Bacillus subtilis cells survived and proliferated after transport even though transport occurred under harsh and sterile conditions

    Metabolism and motility in prebiotic structures

    Get PDF
    Easily accessible, primitive chemical structures produced by self-assembly of hydrophobic substances into oil droplets may result in self-moving agents able to sense their environment and move to avoid equilibrium. These structures would constitute very primitive examples of life on the Earth, even more primitive than simple bilayer vesicle structures. A few examples of simple chemical systems are presented that self-organize to produce oil droplets capable of movement, environment remodelling and primitive chemotaxis. These chemical agents are powered by an internal chemical reaction based on the hydrolysis of an oleic anhydride precursor or on the hydrolysis of hydrogen cyanide (HCN) polymer, a plausible prebiotic chemistry. Results are presented on both the behaviour of such droplets and the surface-active properties of HCN polymer products. Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life

    Methodological Investigations in Agent-Based Modelling: With Applications for the Social Sciences

    Get PDF
    This open access book examines the methodological complications of using complexity science concepts within the social science domain. The opening chapters take the reader on a tour through the development of simulation methodologies in the fields of artificial life and population biology, then demonstrates the growing popularity and relevance of these methods in the social sciences. Following an in-depth analysis of the potential impact of these methods on social science and social theory, the text provides substantive examples of the application of agent-based models in the field of demography. This work offers a unique combination of applied simulation work and substantive, in-depth philosophical analysis, and as such has potential appeal for specialist social scientists, complex systems scientists, and philosophers of science interested in the methodology of simulation and the practice of interdisciplinary computing research.

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore