3 research outputs found

    An adaptive neuro-fuzzy inference system for the physiological presentation of seizure disorder

    Get PDF
    Seizure is the clinical manifestation of an excessive, hypersynchronous discharge of a population of cortical neurons accompanied by indescribable "pins- and needles-like” bodily sensations, smells or sounds, fear or depression, hallucinations, momentary jerks or head nods, staring with loss of awareness, and convulsive movements (i.e., involuntary muscle contractions) lasting for some seconds to a few minutes. In this work, an attempt is made to promote a better understanding of seizure disorder by proposing an adaptive neuro-fuzzy simulation model as a tool for capturing the physiological presentation of the disorder. Decision making was performed in two stages, namely the feature extractions using Microsoft Excel for corresponding digital value of the waveform of the EEG recordings of a seizure and those of a non-seizure patient directly from the EEG machine, and the transient features are accurately captured and localized in both time and amplitude. This extracted data were used for our Adaptive Neuro-Fuzzy Inference System (ANFIS) training and the ANFIS was trained with the backpropagation gradient descent method in combination with the least squares method to establish the validity of our ANFIS. The result shows an accuracy of 90.7% of predictions as the number of epochs increase.Keywords: Adaptive Neuro-Fuzzy Inference System, Electroencephalogram, Seizure Disorde

    Time reduction for SLM OFDM PAPR based on adaptive genetic algorithm in 5G IoT networks

    Get PDF
    In this paper, a new peak average power and time reduction (PAPTR) based on the adaptive genetic algorithm (AGA) strategy is used in order to improve both the time reduction and PAPR value reduction for the SLM OFDM and the conventional genetic algorithm (GA) SLM-OFDM. The simulation results demonstrate that the recommended AGA technique reduces PAPR by about 3.87 dB in comparison to SLM-OFDM. Comparing the suggested AGA SLM-OFDM to the traditional GA SLM-OFDM using the same settings, a significant learning time reduction of roughly 95.56% is achieved. The PAPR of the proposed AGA SLM-OFDM is enhanced by around 3.87 dB in comparison to traditional OFDM. Also, the PAPR of the proposed AGA SLM-OFDM is roughly 0.12 dB worse than that of the conventional GA SLM-OFDM

    Multi-robot task planning problem with uncertainty in game theoretic framework

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31665-4_6An efficiency of an multi-robot systems depends on proper coordinating tasks of all robots. This paper presents a game theoretic approach to modelling and solving the pick-up and collection problem. The classical form of this problem is modified in order to introduce the aspect of an uncertainty related to an information about the workspace inside of which robots are intended to perform the task. The process of modelling the problem in game theoretic framework, as well as cooperative solution to the problem is discussed in these paper. Results of exemplary simulations are presented to prove the suitability of the approach presented.Skrzypczyk, K.; Mellado Arteche, M. (2013). Multi-robot task planning problem with uncertainty in game theoretic framework. En Advanced Technologies for Intelligent Systems of National Border Security. Springer. 69-80. doi:10.1007/978-3-642-31665-4_6S6980Alami, R., et al.: Toward human-aware robot task planning. In: Proc. of AAAI Spring Symposium, Stanford (USA), pp. 39–46 (2006)Baioletti, M., Marcugini, S., Milani, A.: Task Planning and Partial Order Planning: A Domain Transformation Approach. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348. Springer, Heidelberg (1997)Desouky, S.F., Schwartz, H.M.: Self-learning Fuzzy logic controllers for pursuit-evasion differential games. Robotics and Autonomous Systems (2010), doi:10.1016/j.robot.2010.09.006Harmati, I., Skrzypczyk, K.: Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework. Robotics and Autonomous Systems 57(1) (2009)Kaminka, G.A., Erusalimchik, D., Kraus, S.: Adaptive Multi-Robot Coordination: A Game-Theoretic Perspective. In: Proc. of IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA (2002)Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordination in dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)Klusch, M., Gerber, A.: Dynamic coalition formation among rational agents. IEEE Intelligent Systems 17(3), 42–47 (2002)Kraus, S., Winkfeld, J., Zlotkin, G.: Multiagent negotiation under time constraints. Artificial Intelligence 75, 297–345 (1995)Kraus, S.: Negotiation and cooperation in multiagent environments. Artificial Intelligence 94(1-2), 79–98 (1997)Mataric, M., Sukhatme, G., Ostergaard, E.: Multi-Robot Task Allocation in Uncertain Environments. Autonomous Robots (14), 255–263 (2003)Meng, Y.: Multi-Robot Searching using Game-Theory Based Approach. International Journal of Advanced Robotic Systems 5(4) (2008)Jones, C., Mataric, M.: Adaptive Division of Labor in Large-Scale Minimalist Multi-Robot Systems. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, pp. 1969–1974 (2003)Sariel, S., Balch, T., Erdogan, N.: Incremental Multi-Robot Task Selection for Resource Constrained and Interrelated Tasks. In: Proc. of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007)Schneider-Fontan, M., Mataric, M.J.: Territorial Multi-Robot Task Division. IEEE Transactions on Robotics and Automation 14(5), 815–822 (1998)Song, M., Gu, G., Zhang, R., Wang, X.: A method of multi-robot formation with the least total cost. International Journal of Information and System Science 1(3-4), 364–371 (2005)Cheng, X., Shen, J., Liu, H., Gu, G.-c.: Multi-robot Cooperation Based on Hierarchical Reinforcement Learning. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4489, pp. 90–97. Springer, Heidelberg (2007
    corecore