Multi-robot task planning problem with uncertainty in game theoretic framework

Abstract

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31665-4_6An efficiency of an multi-robot systems depends on proper coordinating tasks of all robots. This paper presents a game theoretic approach to modelling and solving the pick-up and collection problem. The classical form of this problem is modified in order to introduce the aspect of an uncertainty related to an information about the workspace inside of which robots are intended to perform the task. The process of modelling the problem in game theoretic framework, as well as cooperative solution to the problem is discussed in these paper. Results of exemplary simulations are presented to prove the suitability of the approach presented.Skrzypczyk, K.; Mellado Arteche, M. (2013). Multi-robot task planning problem with uncertainty in game theoretic framework. En Advanced Technologies for Intelligent Systems of National Border Security. Springer. 69-80. doi:10.1007/978-3-642-31665-4_6S6980Alami, R., et al.: Toward human-aware robot task planning. In: Proc. of AAAI Spring Symposium, Stanford (USA), pp. 39–46 (2006)Baioletti, M., Marcugini, S., Milani, A.: Task Planning and Partial Order Planning: A Domain Transformation Approach. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348. Springer, Heidelberg (1997)Desouky, S.F., Schwartz, H.M.: Self-learning Fuzzy logic controllers for pursuit-evasion differential games. Robotics and Autonomous Systems (2010), doi:10.1016/j.robot.2010.09.006Harmati, I., Skrzypczyk, K.: Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework. Robotics and Autonomous Systems 57(1) (2009)Kaminka, G.A., Erusalimchik, D., Kraus, S.: Adaptive Multi-Robot Coordination: A Game-Theoretic Perspective. In: Proc. of IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA (2002)Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordination in dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)Klusch, M., Gerber, A.: Dynamic coalition formation among rational agents. IEEE Intelligent Systems 17(3), 42–47 (2002)Kraus, S., Winkfeld, J., Zlotkin, G.: Multiagent negotiation under time constraints. Artificial Intelligence 75, 297–345 (1995)Kraus, S.: Negotiation and cooperation in multiagent environments. Artificial Intelligence 94(1-2), 79–98 (1997)Mataric, M., Sukhatme, G., Ostergaard, E.: Multi-Robot Task Allocation in Uncertain Environments. Autonomous Robots (14), 255–263 (2003)Meng, Y.: Multi-Robot Searching using Game-Theory Based Approach. International Journal of Advanced Robotic Systems 5(4) (2008)Jones, C., Mataric, M.: Adaptive Division of Labor in Large-Scale Minimalist Multi-Robot Systems. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, pp. 1969–1974 (2003)Sariel, S., Balch, T., Erdogan, N.: Incremental Multi-Robot Task Selection for Resource Constrained and Interrelated Tasks. In: Proc. of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007)Schneider-Fontan, M., Mataric, M.J.: Territorial Multi-Robot Task Division. IEEE Transactions on Robotics and Automation 14(5), 815–822 (1998)Song, M., Gu, G., Zhang, R., Wang, X.: A method of multi-robot formation with the least total cost. International Journal of Information and System Science 1(3-4), 364–371 (2005)Cheng, X., Shen, J., Liu, H., Gu, G.-c.: Multi-robot Cooperation Based on Hierarchical Reinforcement Learning. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4489, pp. 90–97. Springer, Heidelberg (2007

    Similar works

    Full text

    thumbnail-image

    Available Versions