652 research outputs found

    Self-interested service-oriented agents based on trust and QoS for dynamic reconfiguration

    Get PDF
    Progressively increasing complexity of dynamic environments, in which services and applications are demanded by potential clients, requires a high level of reconfiguration of the offer to better match that ever changing demand. In particular, the dynamic change of the client’s needs, leading to higher exigency, may require a smart and flexible automatic composition of more elementary services. By leveraging the service-oriented architectures and multi-agent system benefits, the paper proposes a method to explore the flexibility of the decision support for the services’ reconfiguration based on several pillars, such as trust, reputation and QoS models, which allows the selection based on measuring the expected performance of the agents. Preliminary experimental results, extracted from a real case scenario, allow highlighting the benefits of the proposed distributed and flexible solution to balance the workload of service providers in a simple and fast manner. The proposed solution includes the agents’ intelligent decision-making capability to dynamically and autonomously change services selection on the fly, towards more trustworthy services with better quality when unexpected events happen, e.g. broken machines. We then propose the use of competitive self-interested agents to provide services that best suits to the client through dynamic service composition.info:eu-repo/semantics/publishedVersio

    Academic Panel: Can Self-Managed Systems be trusted?

    Get PDF
    Trust can be defined as to have confidence or faith in; a form of reliance or certainty based on past experience; to allow without fear; believe; hope: expect and wish; and extend credit to. The issue of trust in computing has always been a hot topic, especially notable with the proliferation of services over the Internet, which has brought the issue of trust and security right into the ordinary home. Autonomic computing brings its own complexity to this. With systems that self-manage, the internal decision making process is less transparent and the ‘intelligence’ possibly evolving and becoming less tractable. Such systems may be used from anything from environment monitoring to looking after Granny in the home and thus the issue of trust is imperative. To this end, we have organised this panel to examine some of the key aspects of trust. The first section discusses the issues of self-management when applied across organizational boundaries. The second section explores predictability in self-managed systems. The third part examines how trust is manifest in electronic service communities. The final discussion demonstrates how trust can be integrated into an autonomic system as the core intelligence with which to base adaptivity choices upon

    Middleware for Internet of Things: A Survey

    Get PDF

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine
    corecore