11,372 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Application of reinforcement learning for security enhancement in cognitive radio networks

    Get PDF
    Cognitive radio network (CRN) enables unlicensed users (or secondary users, SUs) to sense for and opportunistically operate in underutilized licensed channels, which are owned by the licensed users (or primary users, PUs). Cognitive radio network (CRN) has been regarded as the next-generation wireless network centered on the application of artificial intelligence, which helps the SUs to learn about, as well as to adaptively and dynamically reconfigure its operating parameters, including the sensing and transmission channels, for network performance enhancement. This motivates the use of artificial intelligence to enhance security schemes for CRNs. Provisioning security in CRNs is challenging since existing techniques, such as entity authentication, are not feasible in the dynamic environment that CRN presents since they require pre-registration. In addition these techniques cannot prevent an authenticated node from acting maliciously. In this article, we advocate the use of reinforcement learning (RL) to achieve optimal or near-optimal solutions for security enhancement through the detection of various malicious nodes and their attacks in CRNs. RL, which is an artificial intelligence technique, has the ability to learn new attacks and to detect previously learned ones. RL has been perceived as a promising approach to enhance the overall security aspect of CRNs. RL, which has been applied to address the dynamic aspect of security schemes in other wireless networks, such as wireless sensor networks and wireless mesh networks can be leveraged to design security schemes in CRNs. We believe that these RL solutions will complement and enhance existing security solutions applied to CRN To the best of our knowledge, this is the first survey article that focuses on the use of RL-based techniques for security enhancement in CRNs

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions
    • …
    corecore