
A reinforcement learning based solution for cognitive

network cooperation between co-located, heterogeneous

wireless sensor networks

Milos Rovcanin, Eli De Poorter, Ingrid Moerman, Piet Demeester

Ghent University - iMinds, Department of Information Technology (INTEC), Gaston
Crommenlaan 8, Bus 201, 9050 Ghent, Belgium e-mail: milos.rovcanin@intec.ugent.be.

Abstract

Due to a drastic increase of the number of wireless communication devices,
these devices are forced to interfere or interact with each other. This raises
the issue of possible effects this coexistence might have on the performance
of each of the networks. Negative effects are a consequence of contention
for network resources (such as free wireless communication frequencies) be-
tween different devices. On the other hand, a possible cooperation between
co-located networks could also improve certain aspects of networking for
each one of them. This paper presents a self-learning, cognitive coopera-
tion approach for heterogeneous co-located networks. Enabling cooperation
is performed by activating or deactivating services that influence the inter-
action between wireless devices, such as an interference avoidance service, a
packet sharing service, etc. Activation of a cooperative service might have
both positive and negative effects on network’s performance, regarding its
high level goals. Such a cooperation approach has to incorporate a reasoning
mechanism, centralized or distributed, able to determine the influence of each
symbiotic service on the performance of all the participating sub-networks,
taking into consideration their requirements. Coupled with the concept of
enabling symbiotic services, a machine learning technique known as the Least
Squares Policy Iteration (LSPI), is presented in this paper as a novel network
cooperation paradigm.
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1. Introduction

There is a growing need for network solutions that efficiently and dy-
namically support at run-time cooperation between devices from different
sub-nets. Surely, this is a result of a drastic increase of a number of inter-
leaved, heterogeneous wireless networks with different coverage, data rates
and mobility capabilities. An illustrative example of the two co-existing wire-
less networks is given on Figure 1. Once the communication is established
between the two networks, the process of cooperation, in terms of sharing
the available resources and capabilities, can be initiated.

Figure 1: An example of two co-located, heterogeneous, wireless networks, possibly eligible
for cooperation. The way nodes are connected (blue dots and red squares) implies that
these two networks are unaware of each other at the moment

For the time being, the only way to support connectivity between these co-
located devices is to statically group them into different sub-nets, according
to their communication technology. This way, the same network policies
can be used for a sub-net, regardless of the characteristics of the devices.
Although possible, this approach is usually quite complex [26] and inefficient
because of the following reasons:
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• Manual configuration is time consuming and expensive, especially in a
network of a large scale

• Manual approach does not take into account dynamically changing net-
work requirements (e.g. changes in network topology )

• Although not aware of each other, devices from different sub-nets can
harmfully interfere with each other

Improvements made by using a dynamic, at run-time management are
expected to have an impact on many networking aspects: decreased energy
consumption, decreased interference, better coverage, minimized electromag-
netic exposure, better bandwidth allocation, increased availability etc. Com-
plexity of the problem is increased by the fact that the management is done
over multiple heterogeneous networks, characterized with distinct and dif-
ferent network requirements and capabilities. An utmost attention must be
paid to this; otherwise the entire system will suffer from an unacceptable
waste of resources. Instead of doing it manually, an intelligent entity - a
cognitive engine can be used to initiate and supervise the entire process [25].

Distributed or centralized, it must be capable of a (1) dynamic optimiza-
tion and decision making and (2) continuous exchange of collected measure-
ments and environmental states. In a cooperation paradigm that is based
on activation of symbiotic services, the role of a cognitive engine is to cal-
culate the optimal set of services, activated in each of the participating sub-
networks. The ultimate goal is to improve each network’s performance, con-
sidering its requirements.

In the initial phase of research, described in [2], a linear programming
based approach has been utilized for the purpose of coordinating the process
of symbiotic service negotiation. In order to calculate the optimal set of ser-
vices for each sub-net, the CPLEX ILPSolver [1] requires the information
about influences each service has on each network incentive (e.g. high relia-
bility, low delay, long network lifetime etc.). This information is extremely
difficult to obtain, especially in highly dynamic environments. It can be
acquired from a literature, previously published papers dealing with similar
issues or as a result of a simulation. In any case, the accuracy of the gathered
date is questionable.

Approach described in the following chapters of this paper is an improve-
ment of the above mentioned method. The new methodology does not re-
quire any a priori knowledge about the symbiotic service influences on the
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network. Being a form of machine learning [3] [4], the Least Square Pol-
icy Iteration (LSPI) [5] algorithm gathers knowledge through a number of
trial-and-error episodes. It uses basis functions, features from the network,
to make an assessment about the influence that different service sets pose
on each network incentive. Therefore, it does not demand the kind of a
priori knowledge needed in the case of an ILPSolver engine. LSPI does not
require fine tuning of the initial parameters such as learning rate. It uses
linear functions to represent Q-values of each state/action pair, based on
the most recently updated information regarding the selected features (hop
count measurements, duty cycle, average energy spent per node etc. ). In
other approaches, agents make decisions directly based on Q-values, which
may be outdated, depending on the network and algorithm dynamics.

The remaining of the paper is organized as follows: Section 2 presents
the related work. In Section 3, the LSPI fundamentals - mathematical back-
ground, convergence and stopping conditions are described in details. Sec-
tion 4 introduces the use case LSPI is applied to and the evaluation of its
performance. All the aspects of the implementation are thoroughly described
in Section 5. Results are analyzed and major issues are identified in Section
6. The future course of our research is presented in Section 7. Finally, Con-
clusion section summarizes the paper.

2. Related work

The following subsections present recent and the most relevant work re-
garding:

• An application of the reinforcement learning techniques to optimization
problems on lower wireless network layers

• Some of the existing and relevant methods for a higher layer network
optimization

2.1. Using reinforcement learning as an optimization solution in cognitive
radio networks

Cognitive radio [15], [16] enables devices to autonomously reconfigure
transmission parameters based on the state of the environment in which
they operate.

Reinforcement learning (RL) has been extensively used for solving various
optimization problems in cognitive radio networks. Authors of [7] tackled a
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problem of an efficient spectrum sharing, using the REINFORCE [? ]] algo-
rithm. Work presented in [8] and [9] demonstrates how a Q-learning algo-
rithm and a distributed reinforcement learning scheme, respectively, can be
used to solve a channel assessment problem. In [10] a real-time, multi-agent
RL algorithm - decentralized Q-learning solves the aggregated interference
problem [11] in 802.22 based cognitive radio networks.

RL methods have also been used for solving network management prob-
lems. An autonomic reconfiguration scheme that enables intelligent services
to meet QoS requirements is presented in [12]. Algorithm’s efficiency is
proved by improving the performance of the original AODV routing protocol
in a heterogeneous network environment.

2.2. Higher level network optimization

When parameters of the higher network layers are optimized based on
changes in the network environment, the term cognitive networking [28], [29]
is used.

Network planning tools [13], [14] optimize network criteria such as cov-
erage or throughput by calculating the optimal placement and transmis-
sion power of devices. Unfortunately, they are efficient only in static and
predictable network deployments and cannot be used in networks that (i)
dynamically change network topology (such as ad-hoc networks), (ii) have
network requirements that change over time, or (iii) in mobile environments.
In specific cases, planning tools can be used in combination with incentive
driven network methodologies. For example, existing planning tools can be
used to estimate the influence of network services on the high level goals,
which can be used as input for the negotiation phase.

An already mentioned paradigm [2] describes inter-network cooperation
through an activation of network services in co-located networks. The process
is initiated and controlled by a linear programming based reasoning entity
- CPLEX ILPSolver, but requires design-time knowledge of the impact of a
network service on the network performance.

2.3. LSPI usage

Least squares policy iteration algorithm have initially been tested initially
tested on problems such as ”inverted pendulum, bicycle ride” and ”chain
walk” [5]. In the domain of wireless sensor networks, it has mainly been used
to solve routing [21] and link scheduling problems [22].
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Our approach utilizes a modified LSPI mechanism to solve a cross-network
optimization problem, by detecting and forcing the best performing set of ser-
vices in each of the participating networks. As to our present knowledge, no
similar solutions have been proposed so far.

3. Least Squares Policy Iteration

LSPI was first introduced by M.G.Lagoudakis and R.Parr in [5] and fur-
ther elaborated in [6]. It is presented as a model-free, reinforcement learning
technique [24], which combines least Squares Temporal Difference function
(LSTDQ) approximation with policy iteration. The fact that it uses linear
function approximations poses some significant advantages in the context of
reinforcement learning [21]

• Algorithm is easier to implement than other widely used machine learn-
ing approaches (e.g. Q learning)

• Behavior of an algorithm is fairly transparent from both analysis and
testing point of view

• Suitable for detection of non-linear interactions between protocols. For
example, activating protocol A can be beneficial for the network, ac-
tivating protocol B can also be beneficial, but due to unforeseen in-
teractions, activating both at the same time might hamper the good
operation of the network. A self-learning approach such as LSPI can
automatically learn about this type of behavior.

3.1. Mathematical background

In LSPI, the state-action value function (Q function), which assigns val-
ues (rewards) to every state-action pair from a problem’s state-action space,
is approximated as a linear weighted combination of k basis functions (fea-
tures):

Q(s, a;w) =
∑
j

φj(s, a)ωj

(1)
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Here, ω is a set of weights, that needs to be recalculated in order to reach
a fixed point in value function space. Value function can also be presented
in a matrix form as:

Qπ = Φω
(2)

where |S||A| dimensional Φ matrix contains values of basis functions,
defined for each state/action (s, a) pair and π designates the decision making
policy that is being used. Generally, the number of basis functions is much
smaller than the number of state/action values, k << |S||A|. Good examples
of basis functions are: network’s duty cycle, average time spent in a radio
receiving/sending mode, residual energy of nodes etc.

If we take into consideration the general outlook of the Q value function,
given in a form of a Bellman equation:

Q(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)maxQ(s′, a′)

(3)

where the r(s, a) represents the immediate reward for executing action
a at state s, while γ

∑
s′ P (s′|s, a)maxQ(s′, a′) represents the maximum ex-

pected future reward. Factor γ is known as the discount factor and its
purpose is to make sure that a reward given for the same state/action pair
is decreasing over time.

Finally, if we combine equations (1),(2) and (3), we get the matrix outlook
of the Bellman equation, that considers all the approximations introduced
by the LSTDQ algorithm:
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Φω = R + γP πΦω
(4)

where R is the reward given after transferring from one state to another
and γ is a discount factor. Assuming that all basis functions are independent
(columns of a Φ matrix), we can construct the following equation:

ΦT (Φ− γP πΦ)ωπ = ΦTR
(5)

Now, it is relatively easy to calculate the weight factors by solving a
system:

ω = A−1b
where: A = ΦT (Φ− γP πΦ)

b = ΦTR
(6)

8



Here, P π represents a transition probability matrix describing the tran-
sitions from pairs (s, a) to pairs (s′, π(s′)). In other words, it contains prob-
abilities of a certain state/action sequence.

Since P π and R cannot be known a priori, the values they contain must
be learned from sampled data in order to determine matrices A and b. Given
a set of samples from the environment, D = (sdi , adi , s

′
di
, rdi|i = 1, 2, ..., L),

where (s′di) is sampled using P (s′di |sdi , adi), which corresponds to a decision
making policy that is used at the moment. The approximate versions of
Φ, P πΦ and R are generated in the following way:

Φ̂ =

 φ(s1, a1)
T

...
φ(sn, an)T

 P̂ πΦ =

 φ(s′1, π(s′))T

...
φ(s′n, π(s′))T


R̂ =

 r1
...
r2


(7)

Matrices A and b can now be approximated in the following way:

Â = Φ̂T (Φ̂− γ ˆP πΦ)

b̂ = Φ̂T R̂
(8)
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3.2. Convergence and algorithm’s stopping condition

As the number of samples, uniformly taken from the state/action space,
grows, the consistency between approximated and true values of matrices A
and b (Â and b̂) grows. This can be mathematically described in the following
manner:

E(Â) = L
|S||A|A

E(b̂) = L
|S||A|b

(9)

where L is the cardinal number of the training (sample) set. It is im-
portant to note that approximations, gathered from any additional set of
samples from the same state/action space, (Â1, b̂1, Â2, b̂2) can be combined
to yield an even better approximation:

Â = Â1 + Â2

b̂ = b̂1 + b̂2
(10)

In its original form, LSPI uses a metric describing a difference between
consecutive ω parameters as the stopping criterion. The algorithm stops if
the difference between two consecutive values of ω factors (in two consecutive
episodes, evaluating decision policies π and π′) is smaller than a user defined
ε:
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‖ω′ − ω‖ < ε
(11)

Value of ε can be thought of as a ”positive scalar that bounds the errors
between the approximate and the true value functions over all iterations”.
According to [6], LSPI is a stable algorithm that will either converge or
oscillate in an area around value function, bounded by approximation error
ε. Two factors with the largest influence on ε are the choice of basis functions
and the choice of samples, which depends on the decision policy that is being
used.

A good choice of basis functions will always depend on the specific nature
of the problem that is being solved and this process cannot be generalized.
On the other hand, one strong point of the LSPI is that the same set of
samples can be utilized in to evaluate different policies and estimate the
corresponding state value functions (Q values). This is the major advantage
of the algorithm, since LSPI starts off with an initial policy and changes it
(improves it) through a number of iterations without the need of collecting
additional samples. This means that, in its essence, LSPI is an off-line, off-
policy learning algorithm - sample collection and learning are separated from
the execution. As explained in [20], the whole approach can be modified into
an on-line algorithm, which is more suitable in our use case. More details
will be given in the following sections.

4. General LSPI implementation advice

The theory behind LSPI learning engines have been described in several
papers. However, there is far less information about how to utilize the LSPI
formulas in a practical network optimization problem. As such, based on our
experiences, we first propose a number of general guidelines and optimiza-
tions for implementing LSPI based decision engines. Afterwards, Section 5
describes in detail how these suggestions were applied to implement our own
LSPI engine.

These guidelines aim to answer the following questions:
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• How to define system states?

• How to define actions?

• How to define the basis functions?

• How to collect measurements?

• How to calculate the Q-values?

• How to calculate the rewards?

4.1. Defining system states

The first step is to identify what a system state represents. For exam-
ple, a state can be a combination of currently active symbiotic services in
the different networks (see Section 5) or, when using LSPI for the purpose
of learning the optimal routing paths [21], the ID of the node where the
data packet is currently located. The final number of states depends on the
diversity of the properties that define them and should be finite.

Duration of the learning process directly depends on the number of states.
Reducing their number will speed up the process. To do this, some states
can be discarded a priori by the system architect. In the first example, this
relates to a situation where a combination of network services is not allowed.
In the case of routing, a forbidden state would be a node that is not used for
routing (for example a resource-constrained device or a sniffing device).

The number of states can be reduced during the learning process as well,
for example when the performance of a system is way bellow acceptable for
a given state. This will strongly depend on the network requirements and
metrics that are used to evaluate system’s performance. For example, when
routing, a forbidden state can be a node that has been identified as malicious
or defected.

4.2. Defining actions

Any change of a network property is considered as an action. Conse-
quently, the number of available actions at each state will depend on the
number of properties that can be modified, the number of distinct values
that can be assigned to them and possible constraints defined by the system
architect. An illustrative example of a constraint would be the case when
a certain property has a margin above which it cannot be change in two
consequent steps(e.g. node’s duty cycle cannot be change for more than 20
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As imposed by the reinforcement learning paradigm, actions with the
highest Q values at a particular state should be taken at each step. Of
course, the methodology cannot be used at all times, since the state/action
space needs to be explored first, in order to be exploited. For this purpose, we
utilize the above mentioned ε greedy algorithm [23], which will be explained
in detail in the following sections.

A good example of a possible alternative approach would be the Softmax
algorithm [19], which uses Boltzmann distribution to define action-selection
probabilities:

p(s, a) = eQ[s,a]/t/(
∑
a

eQ[s,a]/τ ) (12)

where factor τ > 0 specifies how randomly values should be chosen. High
values for τ , mean that the actions will be chosen almost uniformly. As it is
reduced, the highest-valued actions are more likely to be chosen and, in the
limit as τ → 0, the best action is always chosen.

From a computational complexity point of view, it is desirable to con-
struct a non-ambiguous system, where P (s′|s, a) = 1 for every (s, a, s′) tuple.
In other words, an action taken at each state can lead to one and only one
state.

4.3. Defining basis functions

Basis functions reflect changes in all the relevant network properties dur-
ing a single learning episode. They are crucial in the process of calculating
Q values for each state/action combination. Between two sets, the one that
produces stronger response to the same change in network parameters is con-
sidered to be the more effective one. It produces a larger difference between
Q values, thus making it easier to enforce certain decision making paths.

However, basis functions must be linearly independent to prevent any
overlap when calculating the rewards. Increasing the number of basis func-
tions improves the accuracy with which the network performance is modeled,
and might be necessary when multiple requirements should be taken into con-
sideration. However, the collection of this additional information typically
also introduces additional overhead. As such, as the number of monitored
properties of the network increases, a cost-effectiveness analysis in regards to
the additional collection overhead is advised.
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It is worth noticing that sudden changes in basis functions can give an
indication of a sudden change of network conditions. These can trigger alerts
to the network administrator and, can require the re-initiation of a learning
process.

4.4. Initializing the data

Initially, often no information is available about the performance of each
state. As such, the process must be initialized by collecting learning sam-
ples, either using a random approach or by going through each (s, a) pair
sequentially. It makes sense, if collection is not being done off-line, to make
sure that each (s, a) pair is not examined more than once during the process.

During the initialization phase, it is also possible to ‘predict’ suitable
values for a number of (s, a) pairs. The main idea is to try to predict the
performance of a system in a certain state by observing results achieved in
the neighboring (‘similar’) states. Of course, this requires the definition of
metrics that define which states are “neighbors”. Doing this, the duration
of the initialization phase can be made significantly shorter, at the cost of
initial accuracy.

4.5. Collecting samples

Data samples are collected to calculate the basis functions. However, the
process of collecting data might interfere with the network performance, thus
giving a skewed vision on the actual performance. As such, it is beneficial
to use basis functions that utilize non-intrusive data collection methods that
do not interfere with the actual network operation.

4.6. Calculating rewards

Rewards are assigned to reinforce specific state-action pairs. Rewards can
be positive or negative. Choosing and defining the rewards can be challenging
in some cases, but strongly influences the outcome of the LSPI engine. The
most cost-effective way to calculate a reward is to use information gathered
for the purpose of calculating values for the basis functions. The simplest
way is to simply use combined (weighted) values of basis functions.

Specifically for network optimization problems, a straightforward way
of defining the reward function is the difference between the required and
the current network performance, which requires an exact definition of the
network requirements (incentives), such as delay constraints, audio quality
scores (MOS scores), etc. Typically, low-level network metrics (e.g. average

14



packet loss, number of re-transmissions, etc) are combined into high-level
metrics (e.g. end-to-end reliability).

When multiple requirements should be fulfilled, the reward function will
typically be a function consisting of multiple (high-level) network metrics,
such as end-to-end delay and end-to-end reliability metrics. In this case, it
can be useful to enforce an upper limit to the contributions of each network
metric. Otherwise, a system that significantly ‘overshoots’ one requirement
but fails to fulfill other requirements can receive a higher reward than one
that correctly fulfills all requirements. To prevent this, the associated reward
of each network property can be capped, or can be set to increase very slowly
once the requirement is met. If the requirements do not describe an upper
performance limit, rewards can be unlimited.

4.7. Convergence criteria

Convergence criteria represent a policy iteration stopping rule. The gen-
eral LSPI’s stopping condition is the difference between values of weight
factors in two consecutive iterations [5]. Ultimately, the stopping rule yields
an optimal policy regarding the problem that is being solved, given the re-
quirements.

How to define a stopping rule in the case when both settings of the prob-
lem and requirements are changing? Perhaps a better question would be:
should it be defined? In a case of a dynamic network, where the contin-
uous monitoring of the relevant network parameters is needed, the answer
is negative. This way we provide versatility to fast changing parameters in
unstable environments, while still enforcing the optimal (near-to-optimal)
decision making paths.

4.8. Epsilon greedy effect

The epsilon greedy approach is commonly used during the process of
state/action space exploration. It enforces sporadic ”jumps” to sub-optimal
states for the exploration purposes, but also to detect eventual changes of
environmental conditions. Whenever a decision is to be made, the one will be
picked at random with the ε probability [23]. Probability of 1- ε is given to
the action with the highest Q-value. To avoid time and resource wasting by
investigating sub-optimal states, the ε greedy algorithm can be made more
intelligent. Some examples are the following:

• Rather than selecting a new state at random, constraints can be im-
posed on which states should be explored first. For example, the engine
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can be forced to explore only states that are close to the optimal state.
This approach can be generalized by adapting the epsilon greedy algo-
rithm to select with a higher probability those states with high Q-values
which are thus likely also quite good.

• Alternatively, the engine can choose not to use epsilon greedy when not
necessary. For example, failure to meet the network requirements can
trigger the activation of the algorithm.

5. Realizing an LSPI based decision algorithm

The above concepts have been applied to realize a cognitive engine for
deciding upon the optimal combination of services in a network, as described
in Section 1. Our cognitive engine does not iterate different decision making
policies. Instead, it continuously gathers samples from the environment and
updates the sample matrices, thus re-initiating LSTDQ on the same policy
each time a new sample is collected. This approach does not pose a signifi-
cant difference to the original LSPI approach, since a decision policy is fully
abstracted by its sample set and its basis function values. One policy is used
throughout the whole process, but the collected sample set and basis func-
tion values that are sent to the LSTDQ are constantly changing. This can
be considered as a policy switch and our system is improved in its versatility
to notice sudden condition changes in the network environment and modify
its current policy accordingly. This will be elaborated in details further on
in the paper.

For the proof-of-concept, we reused measurements gathered during the
run of a demonstration set-up, previously described in [2]. The set-up con-
sisted of two interleaved, wireless sensor networks, used for temperature
monitoring and security purposes, respectively (see Figure 2). Both net-
works are consist of ultra low power TMoteSky sensor nodes, equipped with
8MHz MSP430 microcontroller, with 10k RAM, 48k flash memory and a
250kbps 2.4GHz Chipcon wireless transceiver. Both networks could acti-
vate/deactivate “packet sharing” and/or “packet aggregation” services. The
main objective was to find the optimal combination of these services, de-
pending on the set of requirement s (possibly differently prioritized) in each
of the sub-nets.

In the original setup, a linear programming based engine, ILPSolver, was
used to initiate and control the process of network service negotiation. Since
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Figure 2: Experimental setup - iLab.t wireless sensor testbed, located at iMinds - Ghent
University office building, Belgium. Two networks are interleaved - network A collect
temperature readings from the environment while network B is used for the intrusion
detection

this engine required a priori knowledge about the influence of different net-
work services, different combinations of services in both networks were tested.
Information regarding relevant aspects of networking has been gathered dur-
ing each testing episode. In the set-up that we used for the proof-of-concept,
the most relevant data is the average delay and the number of packet re-
transmissions during these episodes. Table 1 shows the service combinations
that were examined during the testing, while relevant measurements are given
on figures 3 and 4.

The rest of this section focuses on testing and verifying the operation
capabilities of the new negotiation engine with an emphasis on three main
objectives:

• Conduct a cognitive process without an a priori knowledge required by
the engine described in [2] and compare the results

• Use decisive values to set up goals regarding each network requirement,
other than using major guidelines, described by network requirements

• Enable responsiveness to a change of the network conditions

5.1. Defining possible system states

The state of each particular sub-net is defined as a combination of its
both currently activated (see Table 2).
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Episode Network A Network B

1 Aggregation = OFF
Packet Sharing = OFF

Aggregation = OFF
Packet Sharing = OFF

2 Aggregation = ON
Packet Sharing = OFF

Aggregation = ON
Packet Sharing = OFF

3 Aggregation = OFF
Packet Sharing = ON

Aggregation = OFF
Packet Sharing = ON

4 Aggregation = ON
Packet Sharing = ON

Aggregation = ON
Packet Sharing = ON

Table 1: A reduced set of four system states, examined during the experimental run. Each
state is represented as a combination of active and inactive services in both sub-nets during
a particular learning episode

Figure 3: Average end to end delay measured in networks A and B during learning episodes
in which the system resided in all 4 defined states: (1) packet sharing and aggregation
deactivated in both networks, (2) only packet sharing active in both sub-nets, (3) only
aggregation active in both sub-nets, (4) packet sharing active in in both sub-nets and
aggregation active only in the sub-net B

The final outcome of the algorithm, in the form of a list of activated
and non-activated services, generally differs from one participating sub-net
to another. The performance of a certain service set in one network strongly
depends on service combination activated in the neighboring communities.
Therefore, the states that LSPI engine can go through are defined by all the
possible combinations of all the available services in the participating sub-
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Figure 4: Average number of transmissions per node measured in networks A and B during
learning episodes in which the system resided in all 4 defined states: (1) packet sharing and
aggregation deactivated in both networks, (2) only packet sharing active in both sub-nets,
(3) only aggregation active in both sub-nets, (4) packet sharing active in in both sub-nets
and aggregation active only in the sub-net B

State Service - AGGREGATION Service - PACKET SHARING
0 OFF OFF
1 OFF ON
2 ON OFF
3 ON ON

Table 2: An example how a system state of a single sub-net can be defined as the combi-
nation of both active and inactive networks services during a particular learning episode

nets. For example, measurements regarding an average end-to-end delay in
network A can vary, for the same combination of active services, depending
on whether packet sharing service is enabled in the network B or not.

In our research, we focus on discovering the optimal service set for the
temperature monitoring sub-net (Fig.2, network A), while taking into con-
sideration the influence of a co-located security network (Fig.2, network B).
Considering there are two services each network can provide, packet aggre-
gation (AGGR) and packet sharing (PS), the LSPI engine can go through 16
different states in total. Each service combination activated in a tempera-
ture monitoring network constitutes a distinct state with every combination
of services of the security network.

In order to unambiguously meet the conditions set up in [2] and to be able
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to make a cross-comparison of the two approaches, we examine a reduced set
of four states, given in Table 1. Experimental values, regarding each defined
state, are originally gathered during the initial testing and reused for the
purposes of this paper. Service combinations (states) that were not examined
during the initial experiment are considered to be irrelevant and therefore
are not examined in this paper. From now on, whenever the term state is
used, it will refer to a combination of services set up in network A (Table 2),
accompanied with a set of services in network B, as defined in Table 1.

5.2. Defining actions

In each of the four defined states (0, 1, 2, 3), there are four available
actions. A system can either decide to stay in a current state or move to any
of the remaining three, depending on the current policy (see Figure 5)

Figure 5: Graphical representation of the reduced set of four distinct system states (see
Table 1). System can switch between any two states, depending on the action that is taken.
As an illustration, when the system is in state 0, taking any of the actions (a0,a1,a2,a3)
will lead it to states 0,1,2,3 respectively

In our use case, after reaching the optimal policy, the maximal Q value
will be awarded to a certain state and action that keeps the system in the
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same state in each following episode. Whether a policy should be changed
or not after this point, will be discussed in one of the following sections.

5.3. Defining basis functions

Two network requirements regarding the high reliability and high network
lifetime, are given the same priority. Two basis functions are defined φ1 -
average network delay (AND) and φ2 - predicted network lifetime (PNF).
The values of these two basis functions are used at the end of each episode
to evaluate how well the network performance fulfills the current network
requirements

For calculating φ1, the correct data is already available (see Figure 3):
the average end-to-end reliability data can be used in a form it is retrieved
from the network. However, the experimental setup has no available infor-
mation about the average energy consumption, needed for φ2. Instead, only
the average number of packet transmissions is monitored (see Figure4). To
transform the available data into (an approximation of) the second basis
function, a number of calculations are performed.

Etrans = PtransPacketSize
TransmissionRate

Erecept = PreceptPacketSize

TransmissionRate

EperEpisode = NtransEtrans +NdegreeNtransErecept
(13)

Variables Etrans and Erecept are average amounts of energy spent per sin-
gle byte transmission and reception, respectively. Similarly, PtransandPrecept
represent power used for transmitting and receiving a packet. These values
are stated in the data-sheet of the user CC2420 radio. Packet size is set
to PacketSize = 51 Bytes and a standard CC2420 radio transmission rate
of TransmissionRate = 256Kbps is used. Ntrans is the average number of
transmissions per node, as collected from the network. Since the wireless
medium is a broadcast medium, it is assumed that every transmission trig-
gers NodeDegree receptions, where NodeDegree is the average number of
neighbors per node. In our case NodeDegree = 2.
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As mentioned in the previous section, Q-values of each state/action pair
are calculated as linear combinations of the basis functions and their respec-
tive weights. A pair with a higher Q-value is considered to be ”better” than
the one with the lower value. In the case of φ1, higher delay must lower the
Q-value. Similarly, the increase of the energy spent implies a lower network
life time. Required basis functions are calculated in a following way:

φ1 =
InitialEnergy

EperEpisode∗Tepisode
Tgoal

φ2 =
Dgoal

AV Gdelay

(14)

Here, InitialEnergy per node in the network is taken to be 0.5J . Variable
Tepisode is the duration of a learning episode. The optimal value of the learning
episodes will be discussed in detail in the following section. Finally, Tgoal and
Dgoal represent desired values for both network lifetime and average packet
delay. Calculating basis functions this way will ensure that higher Q-values
are given to states/action pairs that provide lower network delay and lower
energy spent per node in a learning episode.

5.4. Collecting samples

The consistency between true and approximated values of matrices A and
b increases with the increase of number of samples (s, a, s′, r) (see Section 3.2).
Here, s represents a current state, a is the action taken at state s, s′ is the next
state and r is the immediate reward given for this particular transition. After
visiting each state at least once, samples for every state-to-state transition
are obtained. This claim is implied from the fact that system’s performance
at a certain state does not depend on the state it has previously been to.

Since we assume that no a priori information is available, our learning
process starts at a random state. During sample collection, state transitions
are done in a purely random fashion. In order to minimize the duration of
the process, it is forbidden to investigate previously observed states until all
the states are examined. This way, the sample collecting time is limited to:
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tsampling = NstatesTepisode
(15)

where Nstates is the number of defined system states.
Samples collected using the initial, purely random policy, can be used to

test future policies. As stated in [5], the same sample set can be used to test
any decision policy. However, dealing with highly dynamic environments de-
mands gathering fresh data as frequently as possible. Therefore, new samples
are collected during each learning episode and appended to an existing set.

5.5. Calculating Q values

Using a policy that implements ε greedy algorithm poses the first step
in policy iteration. The random policy, used during the sample collection
phase, is considered to be a starting point. New policy operates in a way
that an action at each state is picked at random with the ε probability. With
1− ε probability, an action with the highest Q-value is taken.

After each new episode, a new sample (s, a, s′, r) is collected from the

environment, meaning that both Φ and P̂ πΦ matrices are updated. LSTDQ
is initiated and ω factors for each basis function are recalculated. According
to a statement in the previous section, Q-values for transitions from all the
states to a current one are updated.

Q(s,a) = ω1φ1 + ω2φ2

(16)
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Behavior of a symbiotic network, in this case, does not suffer from a
‘memory effect’ (i.e. the performance of a state does not depend on which
previous state was selected), after spending one episode in a state Si, collected
measurements can be used to calculate Q-values for transitions from any state
(including Si) to Si, thus significantly speeding up the convergence time.

Randomness in a new policy will lead the system to a sub-optimal state.
With a proper choice of the ε parameter, with a high probability system will
return in the most optimal state at the next hop.

By constantly collecting new samples, the LSPI stays aware of the net-
work’s dynamics. Depending on certain factors, which will be discussed in
later sections, a sudden change in network conditions will be noticed sooner
or later.

5.6. Calculating rewards

Rewards given after each episode are calculated according to the difference
in network’s performance and user defined goals. These values are set for
both the high network lifetime and average network delay requirements of
the temperature measuring network.

The following reward formula is used:

r =
∑

iCpimaxRi

(17)

where Cpi is the (normalized) priority of a high level network goal andRi is
the individual reward given for the performance associated with a particular
goal. In our case, individual rewards are equal to the values of the respective
basis functions, φ1 and φ2. This is the simplest form of calculating rewards.
Priorities are set to be equal, Cpi = 0.5.

In the case when priorities are different, exceptionally good performance
regarding a high priority requirement will have a significantly higher impact
on the total reward, thus overshadowing a possible poor performance regard-
ing other network requirements. Therefore, it makes sense to set up an upper
limit to each individual reward.
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6. Implementation and evaluation

This section evaluates the LSPI engine described in Section 5. The fol-
lowing aspects are discussed:

• Implementation of the LSPI decision engine

• Choosing the optimal epsilon value

• Dealing with dynamic networks

• Choosing the optimal weight factors

• Convergence and stopping rules

6.1. Implementation

The program runs on a dedicated server that is connected with sink nodes
of each participating sub-net (see Fig. 2). During the learning process, these
links are used to distribute new combinations of services (to be activated)
towards the devices of the participating networks. To calculate the rewards,
network measurements are periodically collected by the server. It is assumed
that the communication between co-located sub-nets is already established
and lists of available services are collected by the engine. Detailed descrip-
tions of the configuration and data-gathering processes are given in [2] and
are out of the scope of this paper. To evaluate the convergence speed and
the ability to adopt to network condition changes, a set of pre-collected mea-
surements (from [2]) is used as described in Section 5.

The cognitive engine is implemented in Java, but could equally well be
implemented in any other programming language. It compiles to 92 KBytes,
with no more than 3.7MBytes of heap memory usage during run-time. It
can easily be optimized to run also on embedded devices. Processing the
measurements and selecting the next optimal state currently requires less
than a millisecond on a 2.4GHz processor.

6.2. Choosing the optimal ε value

As described in Section 4.8, the epsilon greedy mechanism enforces state
transitions to enforce (i) the exploration of unknown states and (ii) detect
network changes. The following charts present results collected during the
experiments, in respect to different values of the discovery factor - ε (ε greedy
algorithm). Q values, describing a transition to a designated state are given
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on the y-axis (marked with green, blue, red or purple). The number of
learning episodes that have passed are depicted on the x-axis.

Figure 6: Behavior of the state value functions over 10 learning episodes, with the discovery
factor ε set to 0.1. System performance in a particular state is not affected by the state
the system was previously in. Therefore, state value function describes a transition from
any given state to the one it is assigned for

First four episodes, utilizing a random walk to gather samples for all the
possible state transitions, are not depicted on graphs. The ones that are
shown start with the initiation of the ε greedy algorithm. In the case when
ε = 0.4 the highest Q-value is given to transitions to state 3, implying that
the optimal conditions for the temperature measuring network is to keep both
aggregation and packet sharing services active. At the same time, security
network needs to keep aggregation switched on. These results correspond
with the results presented in [2], where state 3 was determined to be optimal.

It is noticeable that calculated Q values,for the same state/action combi-
nations, differ slightly from case to case, which is a consequence of the state
investigation methodology. This issue will be addressed in more details in
the following section. However, the general conclusion, after observing all
the graphs, is that states 1 and 3 produce similar performances, significantly
higher in comparison to states 0 and 2. State 2, in particular, is marked
as the worst performing one, witch once again matches the outcome of the
experiments presented in [2].

In cases when high epsilon values are used, the decision making policy
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Figure 7: Behavior of the state value functions over 10 learning episodes, with the discovery
factor ε set to 0.4

Figure 8: Behavior of the state value functions over 10 learning episodes, with the discovery
factor ε set to 0.7

can be considered as a near-random one. This is notable in Table 3 for the
cases where the ε values are set to 0.9 and 0.7. On the other hand, setting the
epsilon to a low value, such as ε = 0.1, makes the process highly dependent
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Figure 9: Behavior of the state value functions over 10 learning episodes, with the discovery
factor ε set to 0.9

on the initial (random) decisions, made during the first couple of episodes.
This is demonstrated for ε = 0.1, where state 1 was kept on throughout
the rest of the experiment. Such a behavior could lead to an enforcement
of sub-optimal states, since the optimal ones will get a small chance to be
examined, which can ultimately result in a very long convergence time.

States 0 1 2 3
ε = 0.1 10% 80% 10% 0%
ε = 0.4 20% 10% 10% 60%
ε = 0.7 20% 30% 20% 30%
ε = 0.9 20% 40% 30% 10%

Table 3: Percentage of the number of episodes that system have spent in each state during a
particular experimental run. Each run is characterized by a different value of the discovery
factor - ε = (0.9, 0.7, 0.4, 0.1)

Since performances in states 1 and 3 are quite similar (see Figures 6, 7,
8, 9), as long as the system resides in any of the two states, its performance
can be considered optimal. Therefore, percentages that correspond to these
states (see Table 3) can be joined into a single value. We conclude the
following:
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• In cases when ε was set to 0.1 and 0.4, the ratio between the number
of episodes spent in optimal and sub-optimal states was 4:1, meaning
that in 4 out of 5 episodes, our system will reside in one of the two
optimal states.

• In cases when ε was set to 0.7 and 0.9, the ration decreases to 3:2 and
1:1, respectively. This behavior is expected since the decision policy is
almost random.

For practical reasons, the aforementioned conclusions are made after ex-
amining a relatively small number of episodes. It is safe to claim that, with
the increase in the number of learning episodes, statistics will change in favor
of the optimal states.

6.3. Weight factor recalculation, convergence and stopping rules

The main purpose of recalculating weight coefficients is to precisely de-
termine the influence of each basis function on the respective Q values. It is
done repeatedly after each learning episode.

Figure 10: Behavior of the weight factor values during an experimental run. Figure 10.a
depicts cases where ε is set to 0.1 and 0.4. Figure 10.b depicts cases where is set to 0.7
and 0.9
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As the decision making policy is being shaped, weight factors are expected
to monotonically converge to specific values. This is illustrated in Figure 10.a
and Figure 10.b. The difference between consecutive values of weight factors
is given on Figures 11.a and ??.b.

Figure 11: Differences between weight factor values in consecutive episodes (generally used
as the algorithm’s stopping criteria). Experiments are run with ε set to 0.1 and 0.4 (Figure
11.a), while Figure 11.b depicts cases where ε is set to 0.7 and 0.9

With higher ε values (Figure 10.b), less optimal system states are visited
more frequently, which produces fluctuation in basis function values, ulti-
mately causing noticeable oscillations of the weight factors (see Figure 11.b.

Results of using different values for the general stopping criteria, are
presented in Table 4 and Table 5. As presented, the difference ||ω′ − ω||
for both basis functions, is set to 0.0002 and 0.0004, in two consecutive
experiment runs. The final outcome of each of the experiments remains the
same. However, the time (number of episodes) needed to obtain results is
shorter for the second experiment. Further increase of the stopping factor
does not produce meaningful results. On a contrary, it prevents the initiation
of the algorithm since the stopping condition is immediately met.

Choosing the an appropriate exploring factor is a case specific problem.
Generally, it demands balancing between the effects it has on processes of
establishing/keeping the system in the optimal state and adjusting to possible
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Exploration factor 0.1 0.4 0.7 0.9

stopping condition |ω′
1 − ω1| < 0.0002

|ω′
2 − ω2| < 0.0002

|ω′
1 − ω1| < 0.0002

|ω′
2 − ω2| < 0.0002

|ω′
1 − ω1| < 0.0002

|ω′
2 − ω2| < 0.0002

|ω′
1 − ω1| < 0.0002

|ω′
2 − ω2| < 0.0002

Terminal episode 7 10 7 12
Optimal state 1 3 1 1

Table 4: Number of episodes needed for the algorithm to meet a predefined stopping
condition set to 0.0002. The same condition is set for both weight factors

Exploration factor 0.1 0.4 0.7 0.9

Stopping rule |ω′
1 − ω1| < 0.0004

|ω′
2 − ω2| < 0.0004

|ω′
1 − ω1| < 0.0004

|ω′
2 − ω2| < 0.0004

|ω′
1 − ω1| < 0.0004

|ω′
2 − ω2| < 0.0004

|ω′
1 − ω1| < 0.0004

|ω′
2 − ω2| < 0.0004

Terminal episode 7 8 5 10
Optimal state 1 3 1 1

Table 5: Number of episodes needed for the algorithm to meet a predefined stopping
condition set to 0.0004 for the both weight factors

environmental changes. One solution might even be to dynamically change
its values over time. This possibility is considered as a part of the future
improvements and will be elaborated in details in the future research.

6.4. Dealing with dynamic networks

In theory, once the optimal state-action pairs have been found, the LSPI
learning engine can be turned off, since the basis functions will not change
anymore. However, in dynamic networks with changing network conditions
change, the values of the features (basis functions) change as well. With the
ε greedy switched off, LSPI engine will not be able to detect any of these
changes, thus it will preserve the whole system in a possibly sub-optimal
state.

One solution would be to lower down the ε value during the learning
process.

To illustrate this, an experiment was performed showing the LSPI behav-
ior for different epsilon values when the worst state suddenly switches place
with the optimal one after the 10th episode (Figures 12, 13, 14, 15) . Al-
though not impossible, this extreme scenario is used strictly for the purpose
of demonstration and not considered to be highly probable.

The time (number of episodes) necessary to detect network conditions
increases for lower ε values. The quickest response is noticed in the case
when ε = 0.9 (5 episodes). The trade-off for using such high values is that
sub-optimal states will be selected periodically even when no changes are
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Figure 12: Illustration of the system’s capability to notice sudden and drastic network
changes. The system is tested in the ”worst case” scenario, with the ε factor set to 0.1

Figure 13: Illustration of the system’s capability to notice sudden and drastic network
changes. The system is tested in the ”worst case” scenario, with the ε factor set to 0.4
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Figure 14: Illustration of the system’s capability to notice sudden and drastic network
changes. The system is tested in the ”worst case” scenario, with the ε factor set to 0.7

Figure 15: Illustration of the system’s capability to notice sudden and drastic network
changes. The system is tested in the ”worst case” scenario, with the ε factor set to 0.9
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detected. Particularly interesting result is depicted on Figure 12, where
no changes are detected. There has to be a compromise regarding the ε
values used during the learning process and after the optimal state has been
determined. Being case specific, no general guidelines can be given regarding
this matter. The following Table 6 summarizes the results presented in this
section:

States 2 3 Total

ε = 0.1 Not detected Not detected Not detected

ε = 0.4 7 1 1

ε = 0.7 6 2 6

ε = 0.9 2 5 5

Table 6: Number of episodes needed for network condition changes to be notified. Perfor-
mances in states 2 and 3 have been switched. Numbers of episodes needed by the engine
to notice each change are given in the respective columns.

7. Future work

The results above demonstrate that the use of an LSPI based cognitive
engine (that requires no a priori knowledge about the network) can both
learn the best network configuration and adapt to changing network condi-
tions. Future work will extend the current use case with additional states
and further investigate the influence of the ε parameter to both duration
of a learning process and responsiveness of the engine to a change of net-
work conditions. Choosing an optimal ε value will pose a crucial challenge,
since the duration of the learning process directly depends on it. Different
stopping criterion might be necessary. Instead of comparing consecutive ω
values, other metrics for evaluating the optimality of a system state can be
designed. Once their values are in the proper vicinity of a user defined per-
formance goals, the learning process will be considered complete. Finally,
new mechanisms of calculating rewards might be needed, to more precisely
evaluate system accomplishments during each episode.

There are also plans to expand the application of the LSPI engine. The
engine will be applied both for:

• Optimizing a performance of a single network protocol
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• Optimizing a negotiation process between multiple networks and coor-
dinating the cooperation

It is reasonable to believe that, as the time goes on, due to the wide variety
of wireless network conditions, network protocols will become increasingly
adaptive and configurable. The main goal of optimizing a single protocol
would be to determine the optimal set of protocol settings. Combinations
of settings represent system states. Large number of settings will lead to
a large number of states, of course. However, the learning process can be
extended by implementing deduction techniques that enable the LSPI engine
to recognize certain behavioral patterns. The predictions, for example, can
be used to detect sub-optimal settings combinations, before inspecting them,
which would speed up the learning process significantly.

To optimize multiple co-existing networks, some compromises will be in-
evitable. Metrics that will precisely describe whether certain compromise is
justified or not, from each sub-net’s and the entire network’s point of view,
will have to be designed.

Figure 16: Scalability of the LSPI algorithm - a) optimization of a single network protocol
by tuning up its settings b) optimization of a homogeneous network through defining an
optimal set of services that needs to be activated c) optimization of a symbiotic (hetero-
geneous) network through the process of service set negotiation

As an alternative, in fully-configurable networks (with multiple config-
urable network services and multiple configurable protocols), we propose to
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reduce the optimization complexity by using a tiered system of network op-
timization (see Fig. 16).

1. In tier 1, LSPI is used to first optimize the parameters of each network
protocol of the network.

2. Next in tier 2, LSPI is used to identify a number of service sets that
offer acceptable network performance.

3. Finally, in tier 3, LSPI selects amongst the acceptable service sets those
that are also beneficial for co-located networks.

Each tier is essentially based on the same - LSPI learning concept.

8. Conclusion

Optimizing multiple co-located networks, each with a variable number
of network functionalities that all influence each other, is a complex prob-
lem that will become increasingly relevant in the future. In this paper, we
propose to use a reinforcement learning technique, LSPI, for the purpose of
selection and composition of the high-level networking optimization in het-
erogeneous networks. It main advantages, compared to previous work, is that
the methodology (i) does not require a priori knowledge or configuration and
(ii) is able to cope with changing network dynamics. The critical parameters
of the mechanisms have been detected, their effects examined and elaborated
in details. Future plans, that include several improvements of the existing
implementation, as well as its extensions to other areas of interest, are also
presented. Most of the proposed improvements aim at increasing the speed of
exploration of the parameter space, thus decreasing learning cycle duration.

An implementation of the cognitive engine is described, and the outcome
results are compared to previous results obtained using a linear programming
based reasoning engine. It is shown that more detailed results can be obtained
with less pre-deployment requirements. The new engine also demonstrates
high versatility in dynamic environments, which was not the case with the
previous solution.

We strongly believe that the problem of interfering co-located networks
will only increase. As such, innovative cross-layer and cross-network solutions
that take these interactions into account will be of a great importance to the
successful development of efficient next-generation networks in heterogeneous
environments.
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