70,391 research outputs found

    Self-describing and data propagation model for data distribution service

    Get PDF
    Abstract. To realize real-time information sharing in generic platforms, it is especially important to support dynamic message structure changes. For the case of IDL, it is necessary to rewrite applications to change data sample structures. In this paper, we propose a dynamic reconfiguration scheme of data sample structures for DDS. Instead of using IDL, which is the static data sample structure model of DDS, we use a self describing model using data sample schema, as a dynamic data sample structure model to support dynamic reconfiguration of data sample structures. We also propose a data propagation model to provide data persistency in distributed environments. We guarantee persistency by transferring data samples through relay nodes to the receiving nodes, which have not participated in the data distribution network at the data sample distribution time. The proposed schemes can be utilized to support data sample structure changes during operation time and to provide data persistency in various environments, such as real-time enterprise environments and connection-less internet environments

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Simulation technique for available bandwidth estimation

    Full text link
    The paper proposes a method for measuring available bandwidth, based on testing network packets of various sizes (Variable Packet Size method, VPS). The boundaries of applicability of the model have been found, which are based on the accuracy of measurements of packet delays, also we have derived a formula of measuring the upper limit of bandwidth. The computer simulation has been performed and relationship between the measurement error of available bandwidth and the number of measurements has been found. Experimental verification with the use of RIPE Test Box measuring system has shown that the suggested method has advantages over existing measurement techniques. Pathload utility has been chosen as an alternative technique of measurement, and to ensure reliable results statistics by SNMP agent has been withdrawn directly from the router

    Mitigating Epidemics through Mobile Micro-measures

    Full text link
    Epidemics of infectious diseases are among the largest threats to the quality of life and the economic and social well-being of developing countries. The arsenal of measures against such epidemics is well-established, but costly and insufficient to mitigate their impact. In this paper, we argue that mobile technology adds a powerful weapon to this arsenal, because (a) mobile devices endow us with the unprecedented ability to measure and model the detailed behavioral patterns of the affected population, and (b) they enable the delivery of personalized behavioral recommendations to individuals in real time. We combine these two ideas and propose several strategies to generate such recommendations from mobility patterns. The goal of each strategy is a large reduction in infections, with a small impact on the normal course of daily life. We evaluate these strategies over the Orange D4D dataset and show the benefit of mobile micro-measures, even if only a fraction of the population participates. These preliminary results demonstrate the potential of mobile technology to complement other measures like vaccination and quarantines against disease epidemics.Comment: Presented at NetMob 2013, Bosto

    Performance analysis of downlink shared channels in a UMTS network

    Get PDF
    In light of the expected growth in wireless data communications and the commonly anticipated up/downlink asymmetry, we present a performance analysis of downlink data transfer over \textsc{d}ownlink \textsc{s}hared \textsc{ch}annels (\textsc{dsch}s), arguably the most efficient \textsc{umts} transport channel for medium-to-large data transfers. It is our objective to provide qualitative insight in the different aspects that influence the data \textsc{q}uality \textsc{o}f \textsc{s}ervice (\textsc{qos}). As a most principal factor, the data traffic load affects the data \textsc{qos} in two distinct manners: {\em (i)} a heavier data traffic load implies a greater competition for \textsc{dsch} resources and thus longer transfer delays; and {\em (ii)} since each data call served on a \textsc{dsch} must maintain an \textsc{a}ssociated \textsc{d}edicated \textsc{ch}annel (\textsc{a}-\textsc{dch}) for signalling purposes, a heavier data traffic load implies a higher interference level, a higher frame error rate and thus a lower effective aggregate \textsc{dsch} throughput: {\em the greater the demand for service, the smaller the aggregate service capacity.} The latter effect is further amplified in a multicellular scenario, where a \textsc{dsch} experiences additional interference from the \textsc{dsch}s and \textsc{a}-\textsc{dch}s in surrounding cells, causing a further degradation of its effective throughput. Following an insightful two-stage performance evaluation approach, which segregates the interference aspects from the traffic dynamics, a set of numerical experiments is executed in order to demonstrate these effects and obtain qualitative insight in the impact of various system aspects on the data \textsc{qos}

    Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

    Full text link
    In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system is closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.Comment: Accepted by IEEE Transactions on Power System
    • …
    corecore