513 research outputs found

    Optical MEMS

    Get PDF

    Cantilever beam microactuators with electrothermal and electrostatic drive

    Get PDF
    Microfabrication provides a powerful tool for batch processing and miniaturization of mechanical systems into dimensional domain not accessible easily by conventional machining. CMOS IC process compatible design is definitely a big plus because of tremendous know-how in IC technologies, commercially available standard IC processes for a reasonable price, and future integration of microma-chined mechanical systems and integrated circuits. Magnetically, electrostatically and thermally driven microactuators have been reported previously. These actuators have applications in many fields from optics to robotics and biomedical engineering. At NJIT cleanroom, mono or multimorph microactuators have been fabricated using CMOS compatible process. In design and fabrication of these microactuators, internal stress due to thermal expansion coefficient mismatch and residual stress have been considered, and the microactuators are driven with electro-thermal power combined with electrostatical excitation. They can provide large force, and in- or out-of-plane actuation. In this work, an analytical model is proposed to describe the thermal actuation of in-plane (inchworm) actuators. Stress gradient throughout the thickness of monomorph layers is modeled as linearly temperature dependent Δσ. The nonlinear behaviour of out-of-plane actuators under electrothermal and electrostatic excitations is investigated. The analytical results are compared with the numerical results based on Finite Element Analysis. ANSYS, a general purpose FEM package, and IntelliCAD, a FEA CAD tool specifically designed for MEMS have been used extensively. The experimental results accompany each analytical and numerical work. Micromechanical world is three dimensional and 2D world of IC processes sets a limit to it. A new micromachining technology, reshaping, has been introduced to realize 3D structures and actuators. This new 3D fabrication technology makes use of the advantages of IC fabrication technologies and combines them with the third dimension of the mechanical world. Polycrystalline silicon microactuators have been reshaped by Joule heating. The first systematic investigation of reshaping has been presented. A micromirror utilizing two reshaped actuators have been designed, fabricated and characterized

    Utilisation of microsystems technology in radio frequency and microwave applications

    Get PDF
    The market trends of the rapidly growing communication systems require new product architectures and services that are only realisable by utilising technologies beyond that of planar integrated circuits. Microsystems technology (MST) is one such technology which can revolutionise radio frequency (RF) and microwave applications. This article discusses the enabling potential of the MST to meet the stringent requirements of modern communication systems. RF MST fabrication technologies and actuation mechanisms empower conventional processes by alleviating the substrate effects on passive devices and provide product designers with high quality versatile microscale components which can facilitate system integration and lead to novel architectures with enhanced robustness and reduced power consumption. An insight on the variety of components that can be fabricated using the MST is given, emphasizing their excellent electrical performance and versatility. Research issues that need to be addressed are also discussed. Finally, this article discusses the main approaches for integrating MST devices in RF and microwave applications together with the difficulties that need to be overcome in order to make such devices readily available for volume-production.peer-reviewe

    Stretching the limits of dynamic range, shielding effectiveness, and multiband frequency response

    Get PDF
    In this dissertation, an RF MEMS variable capacitor suitable for applications requiring ultrawide capacitive tuning ranges is reported. The device uses an electrostatically tunable liquid dielectric interface to continuously vary the capacitance without the use of any moving parts. As compared to existing MEMS varactors in literature, this device has an extremely simple design that can be implemented using simple fabrication methods that do not necessitate the use of clean room equipment. In addition, this varactor is particularly suited for incorporating a wide range of liquid dielectric materials for specific tuning ratio requirements. Additionally, the shielding effectiveness performance of graphene-doped ABS thin films is investigated. The use of graphene as a replacement for metal fillers in composite EMI shielding materials is quickly becoming a widely-investigated field in the electromagnetic compatibility community. By replacing conventional metal-based shielding methods with graphene-doped polymers, low-weight, field-use temporary shielding enclosures can be implemented that do not suffer from mechanical unreliability and corrosion/oxidation like a traditional metal enclosure. While the performance of composite EMI shielding materials has not yet surpassed metals, the advantages of polymer-based shielding methods could find usage in a variety of applications. Finally, mutliband pre-fractal antennas fabricated via 3D printing are reported. These devices are the first to incorporate the advantages of 3D printing (rapid prototyping, fabrication of complex geometries otherwise unobtainable) with the advantages of self-similar antennas (increased gain and multiband performance) in a single device. The Sierpinski tetrahedron-based antenna design was both computationally modeled and physically realized to illustrate its potential as a solution to enable true multiband communication platforms

    MEMS Actuation and Self-Assembly Applied to RF and Optical Devices

    Get PDF
    The focus of this work involves optical and RF (radio frequency) applications of novel microactuation and self-assembly techniques in MEMS (Microelectromechanical systems). The scaling of physical forces into the micro domain is favorably used to design several types of actuators that can provide large forces and large static displacements at low operation voltages. A self-assembly method based on thermally induced localized plastic deformation of microstructures has been developed to obtain truly three-dimensional structures from a planar fabrication process. RF applications include variable discrete components such as capacitors and inductors as well as tunable coupling circuits. Optical applications include scanning micromirrors with large scan angles (>90 degrees), low operation voltages (<10 Volts), and multiple degrees of freedom. One and two-dimensional periodic structures with variable periods and orientations (with respect to an incident wave) are investigated as well, and analyzed using optical phased array concepts. Throughout the research, permanent tuning via plastic deformation and power-off latching techniques are used in order to demonstrate that the optical and RF devices can exhibit zero quiescent power consumption once their geometry is set

    A micromachined zipping variable capacitor

    No full text
    Micro-electro-mechanical systems (MEMS) have become ubiquitous in recent years and are found in a wide range of consumer products. At present, MEMS technology for radio-frequency (RF) applications is maturing steadily, and significant improvements have been demonstrated over solid-state components. A wide range of RF MEMS varactors have been fabricated in the last fifteen years. Despite demonstrating tuning ranges and quality factors that far surpass solid-state varactors, certain challenges remain. Firstly, it is difficult to scale up capacitance values while preserving a small device footprint. Secondly, many highly-tunable MEMS varactors include complex designs or process flows. In this dissertation, a new micromachined zipping variable capacitor suitable for application at 0.1 to 5 GHz is reported. The varactor features a tapered cantilever that zips incrementally onto a dielectric surface when actuated electrostatically by a pulldown electrode. Shaping the cantilever using a width function allows stable actuation and continuous capacitance tuning. Compared to existing MEMS varactors, this device has a simple design that can be implemented using a straightforward process flow. In addition, the zipping varactor is particularly suited for incorporating a highpermittivity dielectric, allowing the capacitance values and tuning range to be scaled up. This is important for portable consumer electronics where a small device footprint is attractive. Three different modelling approaches have been developed for zipping varactor design. A repeatable fabrication process has also been developed for varactors with a silicon dioxide dielectric. In proof-of-concept devices, the highest continuous tuning range is 400% (24 to 121 fF) and the measured quality factors are 123 and 69 (0.1 and 0.7 pF capacitance, respectively) at 2 GHz. The varactors have a compact design and fit within an area of 500 by 100 μm

    Electrostatic MEMS Actuators using Gray-scale Technology

    Get PDF
    The majority of fabrication techniques used in micro-electro-mechanical systems (MEMS) are planar technologies, which severely limits the structures available during device design. In contrast, the emerging gray-scale technology is an attractive option for batch fabricating 3-D structures in silicon using a single lithography and etching step. While gray-scale technology is extremely versatile, limited research has been done regarding the integration of this technology with other MEMS processes and devices. This work begins with the development of a fundamental empirical model for predicting and designing complex 3-D photoresist structures using a pixilated gray-scale technique. A characterization of the subsequent transfer of such 3-D structures into silicon using deep reactive ion etching (DRIE) is also provided. Two advanced gray-scale techniques are then introduced: First, a double exposure technique was developed to exponentially increase the number of available gray-levels; improving the vertical resolution in photoresist. Second, a design method dubbed compensated aspect ratio dependent etching (CARDE) was created to anticipate feature dependent etch rates observed during gray-scale pattern transfer using deep reactive ion etching (DRIE). The developed gray-scale techniques were used to integrate variable-height components into the actuation mechanism of electrostatic MEMS devices for the first time. In static comb-drives, devices with 3-D comb-fingers were able to demonstrate &gt;34% improvement in displacement resolution by tailoring their force-engagement characteristics. Lower driving voltages were achieved by reducing suspension heights to decrease spring constants (from 7.7N/m to 2.3N/m) without effecting comb-drive force. Variable-height comb-fingers also enabled the development of compact, voltage-controlled electrostatic springs for tuning MEMS resonators. Devices in the low-kHz range demonstrated resonant frequency tuning &gt;17.1% and electrostatic spring constants up to 1.19 N/m (@70V). This experience of integrating 3-D structures within electrostatic actuators culminated in the development of a novel 2-axis optical fiber alignment system using 3-D actuators. Coupled in-plane motion of electrostatic actuators with integrated 3-D wedges was used to deflect an optical fiber both horizontally and vertically. Devices demonstrated switching speeds &lt;1ms, actuation ranges &gt;35&amp;#956;m (in both directions), and alignment resolution &lt;1.25&amp;#956;m. Auto-alignment to fixed indium-phosphide waveguides with &lt;1.6&amp;#956;m resolution in &lt;10 seconds was achieved by optimizing search algorithms

    A micromachined zipping variable capacitor

    No full text
    Micro-electro-mechanical systems (MEMS) have become ubiquitous in recent years and are found in a wide range of consumer products. At present, MEMS technology for radio-frequency (RF) applications is maturing steadily, and significant improvements have been demonstrated over solid-state components.A wide range of RF MEMS varactors have been fabricated in the last fifteen years. Despite demonstrating tuning ranges and quality factors that far surpass solid-state varactors, certain challenges remain. Firstly, it is difficult to scale up capacitance values while preserving a small device footprint. Secondly, many highly-tunable MEMS varactors include complex designs or process flows.In this dissertation, a new micromachined zipping variable capacitor suitable for application at 0.1 to 5 GHz is reported. The varactor features a tapered cantilever that zips incrementally onto a dielectric surface when actuated electrostatically by a pulldown electrode. Shaping the cantilever using a width function allows stable actuation and continuous capacitance tuning. Compared to existing MEMS varactors, this device has a simple design that can be implemented using a straightforward process flow. In addition, the zipping varactor is particularly suited for incorporating a highpermittivity dielectric, allowing the capacitance values and tuning range to be scaled up. This is important for portable consumer electronics where a small device footprint is attractive.Three different modelling approaches have been developed for zipping varactor design. A repeatable fabrication process has also been developed for varactors with a silicon dioxide dielectric. In proof-of-concept devices, the highest continuous tuning range is 400% (24 to 121 fF) and the measured quality factors are 123 and 69 (0.1 and 0.7 pF capacitance, respectively) at 2 GHz. The varactors have a compact design and fit within an area of 500 by 100 µm

    Conceptual Study of Rotary-Wing Microrobotics

    Get PDF
    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics. Two methods for fabricating an angled wing were also attempted with photoresist and CrystalBond™ to create an angle of attack. One particular design consisted of the wing designs mounted on a gear which are driven by MEMS actuators. MEMS comb drive actuators were analyzed, simulated and tested as a feasible drive system. The comb drive resonators were also designed orthogonally which successfully rotated a gear without wings. With wings attached to the gear, orthogonal MEMS thermal actuators demonstrated wing rotation with limited success. Multi-disciplinary theoretical expressions were formulated to account for necessary mechanical force, allowable mass for lift, and electrical power requirements. The robot design did not achieve flight, but the small pieces presented in this research with minor modifications are promising for a potential complete robot design under 1 cm2 wingspan. The complete robot design would work best in a symmetrical quad-rotor configuration for simpler maneuverability and control. The military’s method to gather surveillance, reconnaissance and intelligence could be transformed given a MEMS rotary-wing robot’s diminutive size and multi-role capabilities
    corecore