4,119 research outputs found

    Self-adaptive Aided Decision-making - Application to Maritime Surveillance

    Get PDF
    Information required for decision-making in complex applications, such as flood forecast or maritime surveillance, can be represented using a mathematical function. However, due to the complexity of the considered applications and their dynamics, the parameters involved in the mathematical function can be hard to value a priori. This paper presents a Multi-Agent System, called PaMAS (Parameter Multi-Agent System) that is able to learn such parameters values on the fly, autonomously, cooperatively and by self-adaptation. It also illustrates the application of PaMAS in the context of the maritime surveillance European project I2C. It finally provides an evaluation of the PaMAS learning

    Self-adaptive Aided Decision-making - Application to Maritime Surveillance

    Get PDF
    Information required for decision-making in complex applications, such as éood forecast or maritime surveillance, can be represented using a mathematical function. However, due to the complexity of the considered applications and their dynamics, the parameters involved in the mathematical function can be hard to value a priori. This paper presents a Multi-Agent System, called PaMAS (Parameter Multi-Agent System) that is able to learn such parameters values on the éy, autonomously, cooperatively and by self-adaptation. It also illustrates the application of PaMAS in the context of the maritime surveillance European project I2C. It énally provides an evaluation of the PaMAS learning

    Self-adaptive Aided Decision-making - Application to Maritime Surveillance

    Get PDF
    Information required for decision-making in complex applications, such as éood forecast or maritime surveillance, can be represented using a mathematical function. However, due to the complexity of the considered applications and their dynamics, the parameters involved in the mathematical function can be hard to value a priori. This paper presents a Multi-Agent System, called PaMAS (Parameter Multi-Agent System) that is able to learn such parameters values on the éy, autonomously, cooperatively and by self-adaptation. It also illustrates the application of PaMAS in the context of the maritime surveillance European project I2C. It énally provides an evaluation of the PaMAS learning

    Self-adaptive multi-agent systems for aided decision-making : an application to maritime surveillance

    Get PDF
    L'activité maritime s'est fortement développée ces dernières années et sert de support à de nombreuses activités illicites. Il est devenu nécessaire que les organismes impliqués dans la surveillance maritime disposent de systèmes efficaces pour les aider à identifier ces activités illicites. Les Systèmes de Surveillance Maritime doivent observer de manière efficace un espace maritime large, à identifier des anomalies de comportement des navires évoluant dans l'espace en question, et à déclencher des alertes documentées si ces anomalies amènent à penser que les navires ont un comportement suspect. Nous proposons un modèle générique de système multi-agents, que nous appelons MAS4AT, capable de remplir deux des différents rôles d'un système de surveillance : la représentation numérique des comportements des entités surveillées et des mécanismes d'apprentissage pour une meilleure efficacité. MAS4AT est intégré au système I2C.The maritime activity has widely grow in the last few years and is the witness of several illegal activities. It has become necessary that the organizations involved in the maritime surveillance possess efficient systems to help them in their identification. The maritime surveillance systems must observe a wide maritime area, identify the anomalies in the behaviours of the monitored ships et trigger alerts when these anomalies leads to a suspicious behavior. We propose a generic agent model, called MAS4AT, able to fulfil two main roles of a surveillance system: the numerical representation of the behaviours of the monitored entities and learning mechanisms for a better efficiency. MAS4AT is integrated in the system I2C

    Context-based Information Fusion: A survey and discussion

    Get PDF
    This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems, tracing back the roots of the original thinking behind the development of the concept of \u201ccontext\u201d. It shows how its fortune in the distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output, etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain are presented and discussed

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Envisioning the Future Role of 3D Wireless Networks in Preventing and Managing Disasters and Emergency Situations

    Full text link
    In an era marked by unprecedented climatic upheavals and evolving urban landscapes, the role of advanced communication networks in disaster prevention and management is becoming increasingly critical. This paper explores the transformative potential of 3D wireless networks, an innovative amalgamation of terrestrial, aerial, and satellite technologies, in enhancing disaster response mechanisms. We delve into a myriad of use cases, ranging from large facility evacuations to wildfire management, underscoring the versatility of these networks in ensuring timely communication, real-time situational awareness, and efficient resource allocation during crises. We also present an overview of cutting-edge prototypes, highlighting the practical feasibility and operational efficacy of 3D wireless networks in real-world scenarios. Simultaneously, we acknowledge the challenges posed by aspects such as cybersecurity, cross-border coordination, and physical layer technological hurdles, and propose future directions for research and development in this domain
    • …
    corecore