15,245 research outputs found

    Stochastic Stability of Event-triggered Anytime Control

    Full text link
    We investigate control of a non-linear process when communication and processing capabilities are limited. The sensor communicates with a controller node through an erasure channel which introduces i.i.d. packet dropouts. Processor availability for control is random and, at times, insufficient to calculate plant inputs. To make efficient use of communication and processing resources, the sensor only transmits when the plant state lies outside a bounded target set. Control calculations are triggered by the received data. If a plant state measurement is successfully received and while the processor is available for control, the algorithm recursively calculates a sequence of tentative plant inputs, which are stored in a buffer for potential future use. This safeguards for time-steps when the processor is unavailable for control. We derive sufficient conditions on system parameters for stochastic stability of the closed loop and illustrate performance gains through numerical studies.Comment: IEEE Transactions on Automatic Control, under revie

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Green Scheduling of Control Systems

    Get PDF
    Electricity usage under peak load conditions can cause issues such as reduced power quality and power outages. For this reason, commercial electricity customers are often subject to demand-based pricing, which charges very high prices for peak electricity demand. Consequently, reducing peaks in electricity demand is desirable for both economic and reliability reasons. In this thesis, we investigate the peak demand reduction problem from the perspective of safe scheduling of control systems under resource constraint. To this end, we propose Green Scheduling as an approach to schedule multiple interacting control systems within a constrained peak demand envelope while ensuring that safety and operational conditions are facilitated. The peak demand envelope is formulated as a constraint on the number of binary control inputs that can be activated simultaneously. Using two different approaches, we establish a range of sufficient and necessary schedulability conditions for various classes of affine dynamical systems. The schedulability analysis methods are shown to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop several scheduling algorithms for the Green Scheduling problem. First, we develop a periodic scheduling synthesis method, which is simple and scalable in computation but does not take into account the influence of disturbances. We then improve the method to be robust to small disturbances while preserving the simplicity and scalability of periodic scheduling. However the improved algorithm usually result in fast switching of the control inputs. Therefore, event-triggered and self-triggered techniques are used to alleviate this issue. Next, using a feedback control approach based on attracting sets and robust control Lyapunov functions, we develop event-triggered and self-triggered scheduling algorithms that can handle large disturbances affecting the system. These algorithms can also exploit prediction of the disturbances to improve their performance. Finally, a scheduling method for discrete-time systems is developed based on backward reachability analysis. The effectiveness of the proposed approach is demonstrated by an application to scheduling of radiant heating and cooling systems in buildings. Green Scheduling is able to significantly reduce the peak electricity demand and the total electricity consumption of the radiant systems, while maintaining thermal comfort for occupants

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF

    Event-triggered distributed MPC for resilient voltage control of an islanded microgrid

    Full text link
    This paper addresses the problem of distributed secondary voltage control of an islanded microgrid (MG) from a cyber-physical perspective. An event-triggered distributed model predictive control (DMPC) scheme is designed to regulate the voltage magnitude of each distributed generators (DGs) in order to achieve a better trade-off between the control performance and communication and computation burdens. By using two novel event triggering conditions that can be easily embedded into the DMPC for the application of MG control, the computation and communication burdens are significantly reduced with negligible compromise of control performance. In addition, to reduce the sensor cost and to eliminate the negative effects of non-linearity, an adaptive non-asymptotic observer is utilized to estimate the internal and output signals of each DG. Thanks to the deadbeat observation property, the observer can be applied periodically to cooperate with the DMPC-based voltage regulator. Finally, the effectiveness of the proposed control method has been tested on a simple configuration with 4 DGs and the modified IEEE-13 test system through several representative scenarios
    • …
    corecore