22 research outputs found

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Author index to volumes 301–400

    Get PDF

    Algorithms for nonuniform networks

    Get PDF
    In this thesis, observations on structural properties of natural networks are taken as a starting point for developing efficient algorithms for natural instances of different graph problems. The key areas discussed are sampling, clustering, routing, and pattern mining for large, nonuniform graphs. The results include observations on structural effects together with algorithms that aim to reveal structural properties or exploit their presence in solving an interesting graph problem. Traditionally networks were modeled with uniform random graphs, assuming that each vertex was equally important and each edge equally likely to be present. Within the last decade, the approach has drastically changed due to the numerous observations on structural complexity in natural networks, many of which proved the uniform model to be inadequate for some contexts. This quickly lead to various models and measures that aim to characterize topological properties of different kinds of real-world networks also beyond the uniform networks. The goal of this thesis is to utilize such observations in algorithm design, in addition to empowering the process of network analysis. Knowing that a graph exhibits certain characteristics allows for more efficient storage, processing, analysis, and feature extraction. Our emphasis is on local methods that avoid resorting to information of the graph structure that is not relevant to the answer sought. For example, when seeking for the cluster of a single vertex, we compute it without using any global knowledge of the graph, iteratively examining the vicinity of the seed vertex. Similarly we propose methods for sampling and spanning-tree construction according to certain criteria on the outcome without requiring knowledge of the graph as a whole. Our motivation for concentrating on local methods is two-fold: one driving factor is the ever-increasing size of real-world problems, but an equally important fact is the nonuniformity present in many natural graph instances; properties that hold for the entire graph are often lost when only a small subgraph is examined.reviewe

    Deriving executable models of biochemical network dynamics from qualitative data

    Get PDF
    Progress in advancing our understanding of biological systems is limited by their sheer complexity, the cost of laboratory materials and equipment, and limitations of current laboratory technology. Computational and mathematical modeling provide ways to address these obstacles through hypothesis generation and testing without experimentation---allowing researchers to analyze system structure and dynamics in silico and, then, design lab experiments that yield desired information about phenomena of interest. These models, however, are only as accurate and complete as the data used to build them. Currently, most models are constructed from quantitative experimental data. However, since accurate quantitative measurements are hard to obtain and difficult to adapt from literature and online databases, new sources of data for building models need to be explored. In my work, I have designed methods for building and executing computational models of cellular network dynamics based on qualitative experimental data, which are more abundant, easier to obtain, and reliably reproducible. Such executable models allow for in silico perturbation, simulation, and exploration of biological systems. In this thesis, I present two general strategies for building and executing tokenized models of biochemical networks using only qualitative data. Both methods have been successfully used to model and predict the dynamics of signaling networks in normal and cancer cell lines, rivaling the accuracy of existing methods trained on quantitative data. I have implemented these methods in the software tools PathwayOracle and Monarch, making the new techniques I present here accessible to experimental biologists and other domain experts in cellular biology
    corecore