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Abstract 

Deriving Executable Models of Biochemical Network Dynamics from Qualitative 

Data and Network Connectivity 

by 

Derek Ruths 

Progress in advancing our understanding of biological systems is limited by their 

sheer complexity, the cost of laboratory materials and equipment, and limitations of 

current laboratory technology. Computational and mathematical modeling provide 

ways to address these obstacles through hypothesis generation and testing without 

experimentation—allowing researchers to analyze system structure and dynamics in 

silico and, then, design lab experiments that yield desired information about phe

nomena of interest. These models, however, are only as accurate and complete as the 

data used to build them. Currently, most models are constructed from quantitative 

experimental data. However, since accurate quantitative measurements are hard to 

obtain and difficult to adapt from literature and online databases, new sources of 

data for building models need to be explored. In my work, I have designed meth

ods for building and executing computational models of cellular network dynamics 

based on qualitative experimental data, which are more abundant, easier to obtain, 

and reliably reproducible. Such executable models allow for in silico perturbation, 

simulation, and exploration of biological systems. In this thesis, I present two gen-



eral strategies for building and executing tokenized models of biochemical networks 

using only qualitative data. Both methods have been successfully used to model and 

predict the dynamics of signaling networks in normal and cancer cell lines, rivaling 

the accuracy of existing methods trained on quantitative data. 

I have implemented these methods in the software tools PathwayOracle and Monarch, 

making the new techniques I present here accessible to experimental biologists and 

other domain experts in cellular biology. 
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Chapter 1 

Introduction 

Advances in understanding and engineering cellular biology can translate into 

new, more effective treatments for diseases as well as innovative, biologically-inspired 

approaches to clean energy generation, waste disposal, and increased food production. 

However, progress in these areas is limited by the relatively slow pace of experimental 

work. Due to the sheer complexity of living systems, the cost of laboratory mate

rials and equipment, and the limitations of current laboratory technology, bringing 

a laboratory experiment to completion can take weeks, even months. Furthermore, 

biologists are additionally limited in terms of what parts of the cellular system they 

can accurately measure. As a result, biological researchers increasingly depend on 

computational and mathematical models of biochemical processes that can predict 

both structural and dynamic properties of a modeled system much more quickly. 

The daunting complexity of the cell largely derives from the fact that a cell's 

behavior emerges out of a remarkably tangled web of biochemical interactions, re

ferred to, in its entirety, as the cellular network. Scientists divide this network into 

three functionally distinct components (see Figure 1.1): signaling, transcription, and 

metabolism. The signaling network senses the outside world and carries this infor

mation from the cell membrane through the cytoplasm and into the nucleus where 

it feeds into the transcriptional network. The transcriptional network regulates gene 



I N F O O N EXTRACELLULAR E N V I R O N M E N T 

RESOURCES 

Fig. 1.1: The three major biochemical cellular networks. Signaling networks are respon
sible for sensing the external environment and delivering this information to the transcrip
tional network. This network, in turn, determines what genes are expressed. Differential 
gene expression changes the composition and, thus, the behavior of both the signaling and 
metabolic networks. The metabolic network is responsible for managing the cells resources 
such as energy and waste products. 

expression levels which determine what messenger RNA and proteins are synthesized 

at any given point in time. These gene products eventually move either back into the 

signaling network, modifying its overall behavior, or into the metabolic network which 

is responsible for managing cellular resources such as energy (adenosine triphosphate 

or ATP) levels, amino-acids recycled from degradation of unneeded proteins, and 

other molecules essential to the functioning of the cell. The tight interplay among 

these three networks determines the behavior of a cell. At any given point in time, 

a cell in the human body may express any number of over 30, 000 different proteins 
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and mRNAs encoded in the human genome. Different cell types at different stages 

in their life cycles express different combinations of these proteins. Thus, from the 

outset, mapping the vast and densely intertwined cellular network, a necessary step 

in unraveling the determinants of cellular behavior, seems an immensely challenging 

task. 

Certainly, the best way to gain an understanding of these systems is by studying 

them directly in the laboratory, which is how biologists have traditionally approached 

the problem of charting cellular networks. Unfortunately, the current state of labora

tory technologies, while an area of active and productive research, does not provide 

biologists with the tools they need to efficiently and effectively interrogate the many 

hundreds of thousands of biochemical reactions comprising the cellular network. 

Traditional experimental techniques are intensely manual. Western blots, 

still a favored method for making accurate measurements of biological quantities 

require the involvement of laboratory technicians and researchers at many steps in 

the process, making each experiment expensive both in terms of laboratory resources 

and human effort. Such techniques, as they exist today, do not scale up to handle 

the many thousands of simultaneous measurements biologists would like to make. 

High-throughput techniques have high error rates. The recent development 

of high-throughput techniques such as the gene expression arrays, reverse phase pro

tein arrays, and mass spectra phosphoproteomics have made it possible for researchers 
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to make hundreds of measurements in a single experiment [RSSR09]. However, such 

techniques exhibit high error rates as experimental results may be strongly influenced 

by a range of factors including experimental equipment and the binding selectivity of 

biological probes [FBH+03,KR05,SV06]. 

Limited biological probes. Even when researchers resolve the high-error rates 

of high-throughput techniques, they will still need to overcome the overall lack of 

probes for measuring quantities of different biological compounds. In general, for a 

biologist to measure the concentration of a specific protein, she must have a probe 

that will detect it (usually by binding to it and, thereby, giving off a signal, such as 

by becoming fluorescent). Currently, developing these probes is a manual process. 

As few probes currently exist, developing them for all 30,000 proteins in the human 

genome is likely to be an expensive and long endeavor. 

Limited ability to manipulate experimental conditions. Another issue com

plicating the process of studying cellular systems experimentally is the challenge of 

inducing specific cellular states. For example, if a biomedical researcher wants to 

study how a cancer cell responds to the elimination of a specific protein, he has a 

handful of options, each of which has significant side-effects that may dramatically 

change the way a cancer cell will response: small interfering RNA (siRNA) will sup

press expression of the gene that codes for the protein, however siRNA is highly toxic 

to the cell and furthermore will not degrade a protein that has already been produced 
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by the cell; the gene can be completely deleted from the cancer cell's genome which 

will eliminate expression of the gene, but may have unintended effects on the overall 

layout of the genome, proximity of other genes and, therefore, their expression levels 

as well; finally, the biologist may use a drug (if one exists) that targets the specific 

protein, but must remain aware than many drugs have off-target effects that lead it to 

bind with other proteins in the cell. Thus, even properly setting up an experiment in 

the laboratory can be an arduous process that, ultimately, may require the biologist 

to accept various variables that are beyond his control. 

These challenges that researchers face at many points in the process of design

ing, conducting, and interpreting the results of an experiment have provided much 

motivation for the development of modeling techniques that allow the biologist to 

"conduct" experiments in silico. The intention of such methods is not to entirely 

replace laboratory work, but rather to allow the experimentalist to use the com

puter to evaluate numerous possible experiments, refine their understanding of the 

biological system, and, ultimately, craft laboratory experiments that will yield the 

information that is most valuable to the researcher. This process of using compu

tational techniques to evaluate, design, and improve experimental work is generally 

called hypothesis generation and testing. 

The process of conducting experiments motivated by the predictions of compu

tational or mathematical models also provides additional information that can be 

used to improve the correctness of the models. By identifying parts of a model that 
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agree or disagree with experimental results, it is possible to refine the model. Thus, 

the overarching process of modeling and experimentation is an iterative process that 

improves both predictive models as well as knowledge of biological system details. 

Insofar as computational and mathematical techniques are applied to cellular net

works, they generally fall into one of two categories: structural or dynamic mod

els. Structural models pertain solely to the topology of the biochemical networks— 

capturing the patterns of connectivity that biochemical reactions create among a 

set of proteins and genes. Dynamic models characterize how the system as a whole 

behaves over time: given a starting state of the system (a specific set of protein con

centrations or gene expression levels), such a model characterizes subsequent states 

that the system enters as time progresses. 

In this thesis, we have focused on developing new computational techniques for 

abstract modeling of certain aspects of the dynamics of cellular networks. Thus far, 

we have restricted our attention to signaling networks which have been implicated in 

numerous diseases and are, therefore, heavily studied within the biomedical commu

nity. However, the methods we have developed can be extended to model metabolic 

and gene regulatory networks. This is an important topic for future work. 

Our contribution is not only new computational models of network dynamics, but 

also a more general conceptual approach to the kind of data that can be used to build 

such models: our work departs from the traditional quantitative data-based training 

that characterizes current network dynamic modeling approaches in favor of using 
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qualitative data. This distinction has significant implications for the quality of and 

speed with which computational models of cellular network dynamics can be built. 

For a computational or mathematical model of signaling network dynamics to 

make accurate predictions, it must be trained using known properties of the un

derlying biochemical network. This requires experimental data. Often this data is 

supplied by perturbation experiments which measure the dynamic response of the sig

naling network to different environmental and internal conditions. The measurements 

typically are read as changes in protein concentration, cell population size, or phe-

notypic outcomes. Numerous methods, ranging from ordinary differential equations 

to Bayesian networks, use these quantitative experimental measurements directly to 

infer model parameter values (e.g., [KBP+08,LW08,NWN+08,DGM+06]). 

Parameter values (and, therefore the models they are contained in) can only be as 

accurate as the experimental results from which they were derived. When sufficient 

training data is available to determine accurate parameter values, existing quantita

tive modeling methods such as ordinary differential equations, can provide extremely 

accurate predictions of network dynamics. Often, however, such datasets are hard 

to obtain. Noisy data can be a significant source of modeling error since experimen

tal results may be strongly influenced by a range of factors including limitations in 

laboratory technology (e.g., microarrays) and antibodies for measuring protein con

centrations [FBH+03,KR05,SV06]. 

The availability of qualitative data makes them an appealing resource for deriving 
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predictive computational models. The biomedical literature is replete with qualita

tive observations of "dominant interactions", "increasing activity", and "antagonistic 

effects"—all of which characterize the results of perturbation experiments without 

depending on exact measurement values obtained. Additionally, public databases 

such as KEGG [KAG+08] and Science's STKE (http:/ /stke.sciencemag.org/cm) 

report interactions as activating and inhibiting interactions (i.e., as x —»• y and x H y), 

which are inherently qualitative. For example, while the kinase p-AKT may not al

ways exhibit a 2.32 fold increase under a specific experimental condition, the fact that 

it increases may be highly reproducible. 

The central question posed by this thesis is: can qualitative data alone be used 

to build predictive models of biochemical networks? The contributions of this thesis 

include two strategies for building computational models of signaling network dynam

ics using only qualitative data and the network topology. These two strategies serve 

different purposes. The first method is a stochastic execution strategy that uses only 

connectivity to predict the overall dynamics of a signaling network [RMT+08]. We 

apply this execution strategy to a Petri net, constructing a modeling method called 

the signaling Petri net simulator. While in this work we use the stochastic execu

tion strategy with a Petri net, it may be applied to any other executable modeling 

technique such as state charts and boolean networks; we identify these extensions 

as a direction for future work. The performance of our method indicates that many 

of the major behavioral characteristics of a network can be derived from network 

http://stke.sciencemag.org/cm
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connectivity alone. This method will be discussed in Chapter 3. 

The second method is a deterministic method that trains a parameterized model 

of a signaling network using only qualitative data [RN]. Using this method we deter

mined the degree to which qualitative experimental data, in addition to network con

nectivity, allowed the construction of predictive models. At the core of this method, 

we use a non-linear optimization to derive parameter values from qualitative data. 

In order to evaluate the utility of such an approach, we have applied it to a state 

equation-based model of signaling network dynamics. However, like the stochastic 

execution method discussed above, the general optimization-based approach to pa

rameterization may be applied to other executable modeling techniques as well; this 

is a topic for future work. The performance and accuracy of this method demonstrate 

that optimization-based parameter value search using qualitative data as constraints 

can yield accurate models of signaling networks. This method will be discussed in 

Chapter 4. 

Overall, our results in this thesis show that, under the cell-lines and experimen

tal conditions we considered when evaluating the performance of our methods, even 

though qualitative data is less precise than quantitative data, it can be used to gen

erate computational models with accurate predictions of network dynamics. 

In order to make our methods available for use by experimentalists, both have 

been implemented and deployed as software tools, which will be discussed in Chapter 

5. PathwayOracle is a stand-alone tool that implements the signaling Petri net (for 
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dynamic analysis of signaling networks) and also includes features for analyzing the 

connectivity of signaling networks [RNR08]. Monarch is a web-based software tool 

that provides an implementation of the deterministic, optimization-based approach 

to model construction and execution [RN]. 

We begin the rest of this thesis in Chapter 2 with a discussion of the biological 

and computational background and prior work that creates context for the work we 

present here. 
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Chapter 2 

Background 

In this chapter, we introduce biological concepts and modeling techniques and 

methods relevant to the two methods at the core of this thesis. 

Biological background. Because our methods have been designed to model signal

ing networks, we discuss the biochemical principles of cellular signaling. We validated 

our methods against actual experimental data which were generated using perturba

tion experimental techniques. We briefly discuss this experimental methodology as 

well. 

Computational and mathematical modeling methods. Our methods should 

be understood within the context of existing approaches used to model biochemical 

network dynamics. These include mathematical approaches such as ordinary differen

tial equations as well as a range of computational methods. In particular, we discuss 

tokenized systems, such as Petri nets, central to the two methods we present in this 

thesis, and their prior applications in biochemical network modeling. 
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2.1 Signaling Networks 

Signaling networks are complex, interdependent cascades of signals that process 

extracellular stimuli, received at the plasma membrane of a cell, and funnel them to 

the nucleus, where they enter the gene regulatory system. These signaling networks 

underlie how cells communicate with one another, and how they make decisions about 

their phenotypic changes, such as division, differentiation, and death. Further, mal

function of these networks may alter phenotypic changes that cells are supposed to 

undergo under normal conditions, and potentially lead to devastating consequences 

on the organism. For example, altered cellular signaling networks can give rise to 

the oncogenic properties of cancer cells [HunOO, HWOO], increase a person's suscep

tibility to heart disease [FCAB05], and have been shown to be responsible for many 

other devastating diseases such as congenital abnormalities, metabolic disorders and 

immunological abnormalities [HunOO, BMRT96]. 

The sensory information that propagates through signaling networks originates at 

receptor molecules which are, with rare exception, trans-membrane proteins: proteins 

lodged in the cell membrane in such a way that one portion of the protein dangles 

outside the cell and one portion sticks inside the cell. The extracellular portion of 

the receptor is designed to bind a specific molecule (called the ligand): a hormone, 

nutrient, toxin, or any myriad other type of molecules of interest to the cell. When 

the receptor binds its ligand, it undergoes a change in shape, called a conformational 

change, which alters the orientation and shape of the intracellular portion. As this 
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Growth 
Factors E Q F 

Fig. 2 .1: A MAPK1,2 and AKT network downstream from EGFR, which we assembled 
from various sources, and used for the case study analysis in this work [RMT+08]. An edge 
u —> v ending with an arrow indicates an activating reaction, while an edge u -\v indicates 
an inhibiting reaction. 

intracellular portion undergoes its change, it reveals a sequence of amino-acids, called 

a domain, that mediates a biochemical reaction with another protein in the cell. 

This begins a cascade of biochemical reactions which, much like the ligand-receptor 

interaction, consists of proteins changing the shape of other proteins. The "signal", 

the information that the ligand was found, propagates through these conformational 

changes in proteins. 
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Because of the complexity of signaling biochemistry, biologists often favor a con

ceptual abstraction in which a protein can be in one of two configurations: active, 

in which case it can interact with other proteins, and inactive, in which case it is 

relatively inert and cannot interact with other proteins. Proteins in the active state 

are carriers of the signal. An active protein, X, can either pass this signal along 

to protein Y through an activating interaction, or suppress this signal through an 

inhibiting interaction: X —> Y and X -\Y, respectively. 

Both kinds of these interactions can be observed in Figure 2.1. AKT, for exam

ple, inhibits c-Raf, TSC2, AMPK, and GSK3b; it activates mTOR. According to 

this model, when AKT becomes active, it will deactivate molecules of c-Raf, TSC2, 

AMPK, and GSK3b, while activating mTOR. This will have the effect of diminishing 

the signal passing through the former molecules, while increasing the strength of any 

signal passing through mTOR. 

While we will adhere to this abstraction of signaling throughout this thesis, there 

are two aspects of the underlying biochemistry which are relevant to the task of 

modeling signaling networks: protein activity-levels and the enzymatic mechanisms 

of signaling. 

Protein concentration. The dynamics of the propagation of signal through a 

signaling network greatly depends on the strength of the signal at any point in time. 

On a biochemical level, the strength of a signal in a given protein corresponds to 

the concentration of proteins of that type in an active state, hereafter referred to as 
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the activity-level of a protein. Thus, the methods we devise for modeling signaling 

network dynamics will necessarily account for not only the different types of proteins 

involved in the signaling network, but also for an abstraction of the activity-levels 

each of these proteins have over time. 

Signaling through enzymatic reactions. Another important characteristic of 

signaling networks, which distinguishes them from metabolic networks and, less so, 

from transcriptional networks is that most signaling interactions occur through en

zymatic reactions: when protein A modifies the active state of protein B, neither 

protein A's existence nor its activity-level changes. Thus, A can pass signal to or 

suppress signal in another protein without losing the signal itself. This is an entirely 

different paradigm from many metabolic processes in which chains of biochemical re

actions build or break down molecules. Even transcription differs somewhat: mRNA 

molecules generally have to bind and remain bound to another mRNA or a strand 

of DNA in order to induce its effect. Thus, while in metabolic and transcriptional 

networks molecules are consumed as the network state evolves, in signaling networks 

proteins and their activities are generally conserved as they interact with other sig

naling proteins. 

2.1.1 The EGFR Network 

While our overarching goal is the development of computational methods that can 

be used with any signaling network, we needed a signaling network against which to 
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test our methods, study their performance, and evaluate their accuracy. We selected 

a network of pathways downstream of the epidermal growth factor receptor (EGFR). 

The network we study and refer to throughout this thesis is shown in Figure 2.1. 

This network was chosen because the EGFR receptor and its downstream signal

ing network play a very important role in development, differentiation, and onco

genic transformation. Two very important signaling molecules within the cell are 

the Mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), both of 

which can be activated by EGFR, and contains several potential regulatory path

ways between them. We constructed a model network of EGF regulation of MAPK 

and AKT which includes several feedback and feed-forward loops all of which were 

constructed based on experimental findings from different laboratories around the 

world [KCCR04, MCEB+05, MLLA05, KM05, AHL+06, LSX+07, IOZ+06, ORS+06]. 

For both methods we propose in this thesis, we analyzed, both experimentally and 

computationally, the change in activity-level of several proteins in response to tar

geted perturbations (discussed in Section 2.2). 

2.2 Perturbation Experiments 

While it is often possible to measure and detect individual signaling proteins, much 

of the complexity of cellular signaling lies in the interactions among these proteins. 

One of the major methods used to detect new interactions and proteins is through 

perturbation experiments. Because numerous perturbation studies already exist in 
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the literature and because many biological and biomedical labs are set up to conduct 

perturbation experiments, we focused on perturbation experiments as the source for 

all experimental results used to train and test our biological models. Here we briefly 

describe the general structure of a perturbation experiment as well as the kind of 

data that it generates. 

Within the context of signaling networks, the objective of a perturbation experi

ment is to determine the effect that a given signaling protein, X, has on the activity-

levels of other proteins, say A, B, and C, present in a specific kind of cell (e.g., a 

breast cancer cell). In order to obtain this information, first a culture of the specific 

breast cancer cell-line is grown. The population of cells is divided into two different 

groups: the control and the perturbed groups. The perturbed group is exposed to a 

drug or other pharamcological or genetic agent that blocks protein X from the cell. 

This step is referred to as the perturbation. Since the activity-level of target protein, 

X, is usually reduced, this is often called either knockout or knockdown. 

After protein X is perturbed, both cell populations are stimulated with a ligand 

that initiates a signaling cascade. The groups are left for some pre-determined amount 

of time and then are collected and lysed. Concentrations of active forms and total 

concentrations of proteins A, B, and C are measured in the control group and in the 

. i j rr,i i . - - x i i r 4 • n • Active protein concentration 
perturbed group, lhe activity-level of protein r is, m , -, , • i—r=—• 
f o r J r J lotal protein concentration 

Measurements of protein A in the two groups yield activity-level measurements Ac 

and Ap, activity-level in the control and the perturbed groups, respectively (similarly 
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for Bc and Bp, Cc and Cp). 

Given these activity-level measurements, the biologist has now gained insights 

into the effect that protein X has on the activity-level of proteins A, B, and C under 

the specific conditions of the experiment. If Ap > Ac, then blocking X increased the 

activity-level of A, implying that X has an inhibitory effect on A, either directly or 

indirectly through other molecules. On the other hand, if Ap < Ac, then blocking X 

decreased the activity-level of A, implying that X has an activating effect on A. 

Gaining insight into the effect of a given protein on the activity-level of other 

proteins in the network is a crucial step in determining the overall connectivity of 

the network. Of course, the observation that A's activity-level decreases when X is 

perturbed does not indicate that X activates A through a direct interaction. However, 

it does provide evidence that there is an activating path leading from X to A in the 

signaling network being studied. 

It is worth noting that there are many variations that can be made to a pertur

bation experiment, some of which include: 

• Combinational perturbations involve the perturbation of more than one protein 

(e.g., [NWN+08]). This type of experiment is gaining interest in biomedical 

labs in which there is interest in understanding the effect of multiple drugs on 

a given type of diseased cell. 

• Time series data collection requires that control and perturbed populations 

be collected and lysed at multiple time points, yielding information about the 
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activity-levels of proteins at multiple time points (e.g., [HF96]). Note that this 

type of experiment can be much more time and resource demanding as indi

vidual control and perturbation groups must be set up for each time collection 

point. However, because multiple time points are represented, such experimen

tal data can be more informative than single time-point experiments. 

• Varying the delivery and exposure time of the perturbation can be used to control 

or study the strength of the perturbation effect [NWN+08]. 

2.3 Modeling Methods 

Methods for modeling biochemical network dynamics fall into two classes: math

ematical and computational models [FH07]. Mathematical models are based on the 

concept of the transfer function which relates biochemical quantities to one another 

(i.e., x = 2 • y indicates that the value of x is twice the value of y). Where scale and 

theory permit, the properties of the system can be analytically derived by analyz

ing this transfer function. As these systems expand in size and complexity beyond 

the realm of analytics, they can be simulated, which renders an estimate of how the 

system behaves over a specific period of time given a specific starting condition. 

Computational models, in contrast, are rooted in the idea of the state machine: the 

biochemical system is modeled as one that moves from one global state to another. 

The system state captures the properties of individual proteins, RNA, and other 

molecules (i.e., activity-levels, concentration gradients, localization in the cell, etc.). 
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Fig. 2.2: A very simple system of ordinary differential equations in which the system being 
modeled has two quantities: x and y. The rate of change of each is a function of the 
quantities themselves. 

The biochemical network's dynamics consists of a sequence of global states that are 

connected by some transition function that contains the rules governing how the 

internal properties of any given state may change between adjacent states. 

The transition function takes an input state and yields one or more states that are 

legal transitions for the system. The existence of this function provides an implicit 

description of the state space of a biochemical network. Clearly, as the modeled 

biochemical network grows in complexity, the state space will quickly expand beyond 

the realm of exhaustive analysis or explicit modeling. However, even given such 

large state spaces, it is possible to use techniques derived from formal verification 

and model checking to identify properties of this state space and, in doing so, identify 

properties of the system dynamics. Where explicit state space analysis is not possible, 

the transition function can be executed: applied over and over in order to yield a 

sequence of states. Because the transition function is formalized as a sequence of 

steps that generate a new state from an input state, computational methods have 

been called executable methods. 
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2.3.1 Mathematical Models: Ordinary Differential Equations 

The dominant mathematical technique used for modeling biochemical network 

dynamics is systems of ordinary differential equations (ODE). As shown in Figure 2.2, 

an ODE expresses the rate of change of one quantity (e.g., a protein's concentration) 

as a function of other quantities in the system (e.g., reaction rates, the concentration 

of other proteins). A system of ODEs, therefore, can express the rates of change of 

a set of protein concentrations, gene expression levels, or metabolite concentration. 

Such a system can be used in two different ways. 

Simulation. Because a system of ODEs provides the rate of change of quantities over 

time, it can be used to project the behavior of a biochemical network forward from a 

specified starting point. ODEs have been successfully used to simulate the dynamics 

of many different biochemical systems including signaling (e.g., [NI02,APL05]), tran

scriptional (e.g., [CHC99]), metabolic (e.g., [Gor99]), and even multi-cellular systems 

(e.g., [THHD07]). In general, however, simulation is complicated by the fact that 

ODEs are, by their nature, continuous. Simulation requires that discrete time steps 

be identified and the rate of changes, which should be continuous, be broken into 

discrete functions evaluated at each time step. Particularly as the model increases 

in size (e.g., hundreds of proteins and interactions), the time discretization scheme 

selected can dramatically influence the results obtained from the simulation, making 

this a potential source of significant error in simulation. 
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Property analysis. Because an ODE is a closed-form expression of a biochemical 

network's dynamics, various analytical techniques can be applied to characterize the 

way that the network will behave under different conditions. A frequently studied 

property is the steady state solution of a system of ODEs: what is the behavior of 

the system we would expect to see after a "very" long period of time? Mathematical 

analysis can identify how the starting point of the system affects the long-term be

havior of the system [GSBH07]. The power of these analytical techniques, however, 

decreases as the size and complexity of the ODEs increase. For large-scale systems of 

tens to hundreds of proteins, it is difficult, often practically impossible, to derive the 

properties of the system using mathematical analysis alone. 

Both of these uses for ODE-based models depend on having values for parameters 

used in the model: reaction rates, diffusion constants, and stoichiometric coefficients 

frequently occur as values in individual ODEs. Obtaining biologically correct val

ues for these parameters is crucial in building an accurate model of the underlying 

biochemical network. Furthermore, ODE-based models are highly sensitive to these 

parameter values: small variations in parameter values can dramatically change the 

overall behavior of the network. As a result, biologists must take great care when 

obtaining parameter values, which are typically derived from experiments. 

2.3.2 Piece-wise ODEs 

As our focus in this thesis is to derive network dynamics from qualitative data 

and network connectivity, the class of qualitative piece-wise ODEs are noteworthy. In 
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recent years, piece-wise ODEs have been used to model dynamic features of genetic 

regulatory networks [DGH+04,dJGBH04]. The ODEs themselves are piece-wise linear 

functions - continuous, but not smooth. Insights into the model can be gained without 

having parameter values since all the points where two linear regions meet create 

a critical point where the behavior of the system may change. Identifying these 

different critical points allows the state space to be broken into qualitative states 

according to the critical points that bound them. Simulation of a piece-wise ODE, 

then, becomes the process of determining what sequence of qualitative states are 

visited as time proceeds. Furthermore, steady states of these systems can be studied 

without using parameter values by determining what qualitative states the system 

tends towards [DGH+04]. 

2.3.3 Executable Methods 

Executable models share in common a discretized model of time: the system of 

interest is assumed to move from one state to another state between time points. 

As with ODE-based models, executable models can be used both for execution (the 

computational analog of simulation) and for analysis of the structure of the state-space 

and, therefore, analysis of properties of the modeled system. Different executable 

methods have different simulation and analytical capabilities. Here we discuss several 

of the most common executable modeling method classes. Each class is defined by 

the nature of the transition function used in the model. 
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Fig. 2.3: An example of rewriting logic, taken from [EKL+02]. Note that the network 
above has been partially rewritten using a set of rules indicating how different objects are 
transformed or altered when the rules are applied. 

Rewrit ing Logic 

In rewriting logic specification systems (see Figure 2.3), the state of the system is 

a set of objects. The model consists of rules that indicate what combinations of input 

objects produce other objects. Rules can either specify specific inputs and outputs or 

classes of inputs and outputs (e.g., signaling proteins, chemical compounds, ligands, 

proteins with motif X, etc.). Given a current state, the next state is derived by 

applying one rule to the current state—effectively consuming some set of objects and 

producing some new set that is added to the current state. 

Given a rewriting logic model, it is possible to either simulate the behavior of the 
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Fig. 2.4: An example of a statechart, taken from [FPHS05]. Individual boxes indicate 
states (or parts of a state) and arrows indicate legal transitions between states. 

system by applying the rewriting rules iteratively or test, using methods from formal 

logic, whether certain properties hold for the model. PathwayLogic is a framework, 

built on top of the Maude software system, that has been used to model biochemical 

networks ranging in scale from signaling networks through neural networks [EKL+02, 

ITMB07]. 

Statechart s 

A statechart (also called a state diagram) is a directed graph that explicitly models 

the state space of a system. As shown in Figure 2.4, states are represented as vertices 

and legal state transitions are the directed edges connecting vertices. In order to 

reduce the size of the state space, the model state may be broken into its orthogonal 

components: subsets of the state that are independent on one another. 

Statecharts have been applied to modeling various biochemical systems such as 
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the aspects of C. elegans development [FPHS05]. For relatively small systems, stat-

echarts provide useful analytical capabilities. However, the broader application of 

statecharts to biochemical networks is limited by the enormous size of the state space 

for large biochemical networks (which are now common). Because statecharts must 

explicitly represent the set of states (or orthogonal components), as the state space 

increases in size, so does the size of the representation. Biochemical networks do not 

exhibit significant independence among state variables: there are numerous indirect 

relationships among state variables. As a result, even decomposition of the network 

into orthogonal components does not significantly reduce statechart model sizes. 

Boolean Networks 

Fundamentally, a boolean network is a set of boolean variables whose values are 

determined by the values of other variables in the set. The term network is derived 

from the fact that these relationships between variables can be efficiently expressed 

as a directed graph in which vertices represent boolean variables and the directed 

edges indicate the relationships between the variables, as shown in Figure 2.5. 

The first boolean networks were used to model genetic regulatory networks [Kau69]. 

Since then, boolean networks have been further extended for modeling gene networks 

and, more recently, signaling networks [LAA06]. In general, boolean networks have 

had more success in modeling transcriptional network dynamics than those of signal

ing networks. This is likely due to the fact that signaling networks have demonstrated 

greater sensitivity to concentrations of individual proteins: genes have been quite ef-



27 

Fig. 2.5: An example of a boolean network, taken from [LAA06]. Individual nodes rep
resent variables that can take on a boolean value. Edges indicate positive and inverting 
effects among variables. This boolean network models a signaling network in the stomata 
cell of a plant. 

fectively modeled as either being on or off at any point in time [RMT+08]. 

One notable success in modeling signaling network dynamics is the work in [LAA06] 

in which the effects of protein knockdowns on signal transduction speed in plant stom

ata cells were predicted using a boolean model. This work will be discussed in greater 

detail in Chapter 3. 

Petri nets 

As mentioned above, one of the challenges in using boolean networks to model sig

naling networks is modeling signaling protein activity-levels, which are fundamentally 

continuous values. It is important to note that boolean networks are fully capable of 
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Fig. 2.6: A simple Petri net. Circles are places which can contain arbitrary quantities of 
resources called tokens. Rectangles are transitions that depict events that reallocate tokens 
from input places to output places. 

modeling ranges of concentration values. Modeling this introduces a degree of com

plexity that may make purely boolean representations of signaling networks difficult 

to work with from an analytical point-of-view. The transformation from representing 

signals as on/off to a range of values (i.e., between 0 and n) requires replacing the 

single boolean node with login nodes. The combined values of these nodes will repre

sent the activity-level of the protein. Such a transformation will also require changes 

to the connectivity between these nodes and nodes representing the activity-level of 

other proteins. While this transformation is certainly possible, we are not aware of 

any efforts in this direction, likely because it faces several challenges: the size of the 

networks will be larger and the connectivity of networks will be more complicated; 

there is no one-to-one correlation between a protein and a node and an interaction 

and its edge; every transformation will require a fixed maximum activity-level which 

may be difficult to determine a priori. 

Conceptually, Petri nets can be seen as a heavily extended version of boolean 

networks. In Petri nets, boolean variables are replaced by places which can hold an 
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arbitrary number of discrete units called tokens. As shown in Figure 2.6, structurally, 

a Petri net is a directed bipartite graph in which a node is either a place (that holds 

tokens) or a transition which represents an event that reallocated tokens. When a 

transition fires, it moves tokens from its inputs (which are places) to its outputs (which 

are also places). Thus, tokens circulate through the system according to the firing 

of these transitions. Execution of a Petri net involves firing a sequence of transitions 

which simulates the effect of the corresponding sequence of events happening in the 

underlying system. 

Petri nets have been used extensively in the engineering community for the purpose 

of modeling resource allocation and communication systems [DA05]. In addition to 

their utility for visualizing and simulating processes, a great deal of work has been 

done in the area of studying the mathematical and formal properties of Petri nets. 

Three properties, in particular, have been studied extensively: 

Reachability is the problem of deciding whether there is a sequence of transitions 

(called a firing sequence) that when fired in order will transition the system 

from one specific state to another specific state. Establishing reachability be

tween two states indicates the potential for the system undergo a specific set 

of changes. In biology, reachability can be used to determine whether it is pos

sible for a system to enter a specific state when starting from a known initial 

condition (e.g., [SHK06]). 

Liveness of a transition, t, asks for guarantees about when t will be able to fire. 
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A transition can only fire when tokens exist in all its input places. Thus, a 

transition may (1) never be able to fire (L0), (2) be fired at least once (Li), (3) 

be able to fire some finite number of times (L2), (4) be able to fire an infinite 

number of times under a specific condition (L3), or (5) be able to fire an infinite 

number of times under any condition (L4). Though liveness has been mentioned 

within the context of biological system modeling, we know of no instances where 

this property has been actually used to study a biochemical network [Cha07]. 

Boundedness is the problem of deciding whether there is a positive number that is 

an upper bound on the number of tokens a place ever have. When boundedness 

can be proven, it is relevant to biochemical systems insofar as it can establish 

the maximum activity-level, gene-expression level, or metabolite concentration 

that a given molecule can achieve (or it can establish that a molecule may have 

no bound on its concentration) [Cha07,SBSW07]. 

Many different forms of Petri nets exist and, depending on the formalization, may 

be easier or harder to prove the properties above for. 

There have been significant efforts in modeling biochemical networks as Petri nets. 

These efforts concern either studying the properties of the biochemical system using 

theoretical properties of the Petri net (e.g., [LSG+06,PRA05,SHK06]) or executing the 

Petri net to obtain an estimate of the biochemical network dynamics (e.g., [SBSW07, 

MTA+03]). 

As our work in this thesis focuses on the question of estimating biochemical net-
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work dynamics, this latter research direction is of direct relevance to our work here. 

The most comprehensive work in this area has been done using hybrid functional Petri 

nets (HFPNs) [Cha07, DFM+04, MTA+03]. A hybrid functional Petri net is a Petri 

net in which edges have weights and transitions have probabilistic firing functions. 

The edge weights indicate the number of tokens which will be moved along it when 

the associated transition fires (i.e., the number of tokens that will be removed from 

the input places or the number of tokens that will be put into the output places). 

The probabilistic firing functions determine when the associated transition fires and 

commonly are written as the likelihood of the transition firing again after not firing 

for a period r. For example, if a transition should fire in a normal distribution cen

tered around 1 second of delay (with a standard deviation of a2), then the likelihood 

that the transition will fire after a delay of r is \— exp(— ^^J ). Thus, unlike in 

the basic firing model in which the firing sequence is deterministic, the firing time of 

transitions in HFPNs is stochastic in an attempt to model the stochastic nature of 

the biochemical reactions being modeled. 

HFPNs have been successfully used to model numerous biological systems ranging 

from cellular signaling (e.g., [DFM+04]) to large multicellular systems (e.g., [SBSW07]). 

Because of the complexity of the model and the numerous parameters required in or

der to build such a model, HFPNs function somewhat as a discrete analog to the 

ordinary differential equation. Thus, while the many modeling parameters allow for 

extremely accurate models, they also present serious issues for the rapid construction 
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of models, particularly when the underlying systems are large or largely uncharacter-

ized (few parameters and mechanisms are known). 

2.4 Our Work 

In this thesis, we introduce two new methods for modeling the dynamics of sig

naling networks. Both are computational methods: both involve a discrete model of 

time and emphasize a specific execution strategy that evolves the state of the system 

from one time step to another. In Chapter 3 we present a new Petri net-based model 

and execution strategy; in Chapter 4 we present a tokenized model in which the state 

of the system evolves according to explicitly written state equations. 
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Chapter 3 

From Connectivity to Dynamics: Stochastic 

Execution 

Chapters 1 and 2 presented evidence and arguments supporting the need for com

putational tools in biological and biomedical research into cellular biological networks. 

While many computational and mathematical tools and methods already exist, we 

argued for the need for methods that could use qualitative data: data that could be 

quickly and reliably derived from experiments, data that is abundantly available in 

many online databases and in the literature. In this chapter, we present the first of 

two methods we have developed to achieve this goal [RMT+08]. 

A challenge posed by many existing methods is that they rely on having kinetic 

parameters for all biochemical reactions comprising the network: parameters whose 

values must be derived from quantitative experimental data, which is recognized to 

be a significant obstacle to their utility in experimental work [Bai01,SHK06]. Here 

we present a novel signaling network simulator that can provide many of the insights 

of existing dynamic methods without needing any kinetic parameters. Our approach 

makes use of recent discoveries that network structure alone can determine many as

pects of a network's dynamics [LAA06,AC03,KB05, BaiOl]. When compared against 

experimental results, our method correctly predicted 90% of the cases considered. In 
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those where it did not agree, our approach provided valuable insights into discrepan

cies between known network structure and experimental observations. 

Our is not the first attempt to approach the network dynamics modeling problem 

using only network connectivity. Several recent efforts in this direction have produced 

encouraging results. An approach using a boolean network simulation method, based 

on work in the area of gene regulatory networks, successfully used only signaling 

network connectivity information to predict the speed of signal transduction through 

a stomata signaling network [LAA06]. The use of piecewise linear systems of ODEs, 

as discussed in Chapter 2, have also had success in analyzing some of the dynamics of 

gene regulatory and signaling networks without using exact kinetic parameters (e.g. 

[GK73,dJGBH04,MOMR08]). The challenge to extending the method in [LAA06] to 

model individual protein responses to signal transduction is the boolean model used 

to discretize the signal as it propagates. As discussed in Chapter 2, a boolean network 

can simulate any discrete network. Two problems arise: such boolean networks will 

be large and no one-to-one correlation between the boolean network's structure and 

the underlying biochemical network will exist under such a transformation. It is worth 

noting that we are not aware of any investigations into this question which, certainly, 

is a potential direction for future work. If the one-to-one correlation is preserved, then 

such two-state models of signal transduction simplify the underlying biochemistry to 

the point where it is difficult to model changes in protein concentration more precisely 

than present or absent. Modeling such gradients of concentration changes and the 



35 

effects of those changes may be important to predicting individual protein responses, 

motivating our effort to devise more fine-grained ways to model and simulate the 

dynamics of signaling networks. The challenges to using linear-piecewise ODEs to 

model a signaling network center around the issue of identifying all the ODEs required 

to model the underlying network as well as scalability issues involved in simulating 

large systems of ODEs. 

In [RMT+08], we extend the synchronized Petri net model and firing policy such 

that the resulting framework models cellular signaling processes. We call this exten

sion the signaling Petri net (SPN). By coupling this with a novel strategy for Petri 

net execution and sampling, we obtain a method capable of characterizing some dy

namics of signaling networks while using only connectivity information about these 

networks. 

To validate our method, we studied the EGFR network discussed in Chapter 2 and 

shown in Figure 2.1 in two breast cancer cell lines. We analyzed, both experimentally 

and computationally, the change in activity-level of several proteins in response to 

targeted manipulation of TSC2 and mTOR-Raptor. In these experiments, the pre

dictions from our method agreed with experimental results in over 90% of the cases, 

and in those where they did not agree, our method correctly identified discrepancies 

that could be traced back to incompleteness in the network connectivity model. 
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3.1 Methods and Models 

Our approach combines elements of the boolean network simulator in [LAA06] 

with a synchronized Petri net model [DA05]. In [LAA06], Li et al. present a non-

parametric approach that accurately predicts the speed of signal propagation through 

a network. However, as their method assumes a binary model of activation—every 

protein is either active (true) or inactive (false)—modeling a range of activity-levels 

requires a significant transformation in the meaning of nodes and the overall con

nectivity of the network. Petri nets, in contrast, preserve the meaning of edges as 

interaction and nodes as proteins. However, while able to model concentrations using 

tokens, existing approaches require parameters describing the kinetic characteristics 

of the network, which are typically difficult to obtain. 

Our method models signal flow as the pattern of token accumulation and dissipa

tion within places (proteins) over time in the Petri net. Transitions in the network 

represent directed protein interactions; each transition models the effect of a source 

protein on a target protein. Through transition firings, the source can influence the 

token-count1 of the target, modeling the way that signals propagate through protein 

interactions in cellular signaling networks. 

In order to overcome the issue of modeling reaction rates in the network, signaling 

dynamics are simulated by executing the signaling Petri net (SPN) for a set number of 

steps (called a run) multiple times, each time beginning at the same initial marking. 

*By token-count, we refer to the number of tokens assigned to a protein place at a specific time 
point. 
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For each run, the individual signaling rates are simulated via generation of random 

orders of transition firings (interaction occurrences). When the results of a large 

enough number of runs are averaged together, we find that the series of token-counts 

correlate with experimentally measured changes in the activity-levels of individual 

proteins in the underlying signaling network. In essence, the tokenized activity-levels 

computed by our method should be taken as abstract quantities whose changes over 

time correlate to changes that occur in the amounts of active proteins present in the 

cell. It is worth noting that some of the most widely used experimental techniques 

for protein quantification—western blots and microarrays—also yield results that are 

treated as qualitative statements, but not exact measurements, of protein activity-

levels within the cell. Thus in some respects, the predictions returned by our SPN-

based simulator can be interpreted like the results of a western blot or microarray 

experiment2 looking at changes relative to "control". 

The key insight behind our approach is the assumption that, while all network 

parameters determine the actual signal propagation to some extent, the network 

connectivity is the most significant single determinant. While this is clearly a gross 

simplification, several researchers have observed that the connectivity of a biological 

network dictates, to a great extent, the network's dynamics [AC03, LAA06, KB05, 

KPST04]. Some have conjectured that biological network connectivities have evolved 

to have a stabilizing effect on the overall network behavior, making the network more 

2Though it should be emphasized that experimental results provide measurements whereas com
putational simulations provide only predictions. 
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resilient to local fluctuations in other network parameters such as reaction rates and 

protein binding affinities [AC03,KB05]. Here we present the signaling Petri net (SPN) 

model and the signaling Petri net-based simulator whose designs collectively utilize 

this assumption and couple it with a Petri net tokenization scheme that quantifies 

the changes in protein activity-levels that occur as signals propagate through the 

network. In the following sections, we describe the synchronized Petri net, how we 

extended it to create the signaling Petri net, and a novel strategy for executing the 

signaling Petri net to simulate signaling network dynamics. 

3.1.1 Petri Nets 

A Petri net is a graph that consists of two types of nodes, places and transi

tions [DA05]. Edges in the graph, called arcs, are directed and connect places to 

transitions or transitions to places. Thus, the Petri net is a bipartite graph. For

mally, a Petri net is a 4-tuple Q = (P, T, / , O) where 

• P = {pi,P2, - , p m } is the set of places, 

• T = {ti, t2,..., tn} is the set of transitions, 

• I = {ii,i2, ••-,ik} is the set of input arcs where for all (u,v) G / , u G P and 

v eT, and 

• O = {oi, o2,..., 0/} is the set of output arcs where for all (w, v) G O, u G T and 

ve P. 
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In order to simulate a dynamic process, a number of tokens is assigned to each 

place in order to indicate the presence of some quantitative property. This assignment 

of tokens to places encodes the state of the system and is called a marking, denoted 

m, which is a vector of size \P\, where m[i] indicates the number of tokens at place 

i. A marked Petri net, R = {Q, m0), is a Petri net with a marking m0, called the 

initial marking. For the remainder of this chapter, the term Petri net (PN) refers to 

a marked Petri net. 

Changes in the state of the system are simulated by executing the Petri net— 

evaluating the effect of transitions on the marking of the network. These changes in 

marking are induced by sequential firing of one or more transitions. When a transition 

fires, it removes a token from each place connected to it by input arcs and adds a 

token to each place connected to it by output arcs3. A transition can only fire when it 

is enabled, meaning that each of its input places has at least one token in the current 

marking. If a transition t, when fired on a marking mi, produces marking m2, then 

we write mi|£)m2. 

This notation can be extended to represent the effect of firing a series of transitions. 

A firing sequence, a = (t\,t2, • •.,£?) is a sequence of transitions. The sequence's 

cumulative effect on the system's state is denoted m0|cr)m/ where mo is the initial 

marking and m/ is the marking produced by the firing of the sequence of transitions 

in the order specified in a. In this chapter , we write m^ to indicate the marking 

3The number of tokens removed from inputs and added to outputs can be specified by weighting 
the input arcs. However, as our extension does not use this weighting property, we do not consider 
this very common PN formulation here. 
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produced from m0 by the first g transitions in a. Therefore, in the above example, 

IIIQ = m0 and m.7, = mj. 

For a more complete introduction to types of Petri nets and their properties, we 

refer the reader to [DA05]. 

Synchronized Petri Nets 

Synchronized Petri nets model systems in which the firing of a transition is trig

gered by a specific event that occurs in the environment. The marked Petri net is 

extended to include a set of these events and a mapping function that assigns an 

event to each transition. When transition t's assigned event occurs, transition t is 

fired. Formally, a synchronized Petri net is a 3-tuple (R, E, Sync), where: 

• R =)P, T, I, 0( is a marked Petri net, 

• E = {E\, E2,..., Es} is a set of events, and 

• Sync : T —> E U {e} maps each transition in the Petri net to an event. Event 

e is the always occurring event. Any transition associated with e is always 

immediately fired upon becoming enabled. 

When executing a synchronized Petri net, transition an enabled t is fired only 

when its associated event Sync(t) occurs. The order in which events are generated 

depends upon the environment which generates them. Just as in the marked Petri 

net, when a transition fires, it removes one token from each place connected by input 

arcs and gives one token to each place connected by output arcs. 
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PROCEDURE S I M U L A T E ^ , B, r) 

1. 

2. 

3. 

Set the initial marking of S 

For i — 1 to r 

(a) Generate a random sequence with length B • |P | of the events in E 

(b) Simulate the network by executing the transitions associated with the 
events in the generated sequence 

(c) Record the number of tokens at each node, for each time block 

For each node, compute the number of tokens at each time unit t, averaged 
over r 

Fig. 3.1: A high-level outline of the procedure for simulating a signaling network. The 
input to the procedure is a signaling Petri net, S, the number of time units to simulate the 
network for, B, and the number of runs for which to repeat the simulation, r. The random 
generation of event ordering is employed to simulate the stochasticity in reaction rates and 
the differing times of signal arrivals. 

As will be discussed in the next sections, we extend the synchronized Petri net 

paradigm to model the dynamics of a signaling network. To our knowledge, ours is 

the first use of the synchronized Petri net to model biochemical systems. In principle, 

it is well suited to signaling networks since places represent proteins, tokens represent 

concentrations, and transitions represent directed protein interactions. A model of 

signaling event occurrence can be used to generate events and fire transitions, pro

viding a way of simulating the signaling network's behavior. These and other design 

details will be discussed in the next section. 

3.1.2 T h e Signaling Petri Net -based Simulator 

A high-level sketch of our simulator is given is Figure 3.1. Details and rationale 

for specific design decisions will be discussed in subsequent sections. 
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Edge ordering | 1 | 2 | 4 | 3 | 4 | 2 | 1 | 3 | 2 | 3 | 1 | 4 | 4 | 2 | 1 | 3 | 

Time steps 

Time blocks 
Block 1 

(a) 

Block 2 

(b) 

Block 3 Block 4 

Fig. 3.2: (a) By changing the speed of signaling edge 3, the value of D at the end of a 
single simulation step can be reversed. If edge 3 is slower than the cascade B —» C H D, 
then D will be active. If edge 3 is faster than the cascade, then D will be inactive, (b) An 
example of how the simulator might evaluate the individual edges during a run. In each 
time block, every edge is evaluated once. Each edge evaluation corresponds to one time 
step. Note that the order of the edge evaluation is shuffled during each time block in order 
to sample the space of possible relative signaling rates. 

During the simulation, the input signaling Petri net is executed multiple times on 

a firing sequence constructed by the signaling event generator. The signaling event 

generator imposes an ordering on transition firing such that it creates a two-time scale 

simulation. The smaller time scale is discretized as the firing of a single transition. 

This unit is referred to as the firing time scale. Firing steps are nested within a larger 

time scale, called time blocks, in which each transition is fired exactly once. Thus, 

there are \T\ firings per block. Since the simulation is run for the specified number 

of time blocks, B, there are B • \T\ firing steps in the simulation. 

The time structure for an example simulation is illustrated in Figure 3.2. This 

dual-time approach is necessitated by the rate parameter sampling strategy we em

ploy. Since the rate parameters are not known, our method executes many simulation 

runs (Step 2 in Figure 3.1) in order to sample the space of possible rate parameters. 

The markings returned by these runs are then averaged (Step 3 in Figure 3.1). The 
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only requirement placed on the different rate parameter values is that all events oc

cur within the same larger time frame—the time block. Therefore, within every time 

block each edge is evaluated once, yet the order of evaluation is not necessarily the 

same across blocks. 

This idea of evaluating random event orderings within a two-time scale system has 

appeared before in the domain of transcriptional networks [CAS05]. In that study, 

Chaves et al. employed a two-time scale formulation of network updates similar in 

concept to the one we describe here. In their work, they assumed a boolean model 

of regulation and characterized the effect of different relative rates of transcription 

within the same network on the final steady state reached. In contrast, our method 

is designed to operate on tokenized models of signaling networks with the ultimate 

intent of predicting the activity-level changes of proteins in the underlying signaling 

network over time. 

In the next sections, we discuss in greater detail the core design decisions under

lying our method: the signaling Petri net, transition firing, signaling network event 

generator, constructing the initial marking for the model, and sampling signaling 

rates. We then discuss how our strategy can be used to predict the outcome of 

perturbation experiments. 

The Signaling Petri Net 

The goal of our method is to predict the signal flow through a cell-specific network 

under specific experimental conditions. As a result, the signaling Petri net model must 
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(a) (b) 

Fig. 3.3: An example signaling network (a) and its corresponding signaling Petri net (b). 
Each signaling protein in the network, A, B, C, and D, are designated as places PA,PB,PC, 

and po- Each signaling interaction becomes a transition along with its input and output 
arcs. Note that the connectivity for an activating edge differs from that of an inhibitory-
edge. 

characterize the connectivity of the signaling network, the connectivity-level network 

properties that are unique to the cell type and experimental conditions under which 

the network is being studied, and the signaling processes of activation and inhibition. 

The signaling Petri net is a synchronized Petri net with: 

1. a specific way of modeling activating and inhibiting interactions using places, 

transitions, and arcs, 

2. a one-to-one correspondence between events and transitions such that every 

transition is associated with a unique event, 

3. modified rules regarding how many tokens are moved in response to a transition 

firing, and 
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4. a signaling network event generator. 

Places correspond to the activated forms of signaling proteins. The number of tokens 

assigned to place p in marking m s , ms(p), abstractly represents the amount of active 

protein p present in that network state. Signaling interactions are modeled using 

transitions and their connected input and output arcs. Each transition, t, is associated 

with a unique signaling event, e, such that when e occurs, transition t fires. Figure 

3.3 shows the equivalent signaling Petri net for a signaling network. Note that some 

of the edges in the Figure 3.3 are bi-directional. These arcs are called read arcs and 

indicate that the place at the endpoint is both an input and an output. When its 

associated transition fires, a read arc removes and then returns the same number of 

tokens to the place, having the overall effect of "reading" tokens from the place. 

Formally, a signaling Petri net is the 3-tuple S — {R, E, Sync), where: 

9 R= (P, T, I, O) is a marked Petri net, 

• E is a set of signaling events such that \E\ = \T\ and there is no always occurring 

event, and 

• Sync : T —• E is a one-to-one mapping which assigns each transition a unique 

signaling event. 

The initial marking of a signaling Petri net, m0, represents the state of rest from 

which the network is starting and being simulated. Proteins whose concentrations 

are known to be high are given a large number of tokens, and those whose concen

trations are known to be low are assigned few or zero tokens. Attention to the initial 
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marking is central to modeling cell-specific networks. In many cell lines, specific 

proteins are known to contain mutations that render them perpetually active or in

active [NCF+06]. Furthermore, experimental studies frequently involve the targeted 

manipulation of various proteins within the network. Both of these phenomena in

duce state changes in certain proteins at various time points that must be modeled. 

The way in which these are modeled will be discussed when the simulator design is 

explained. 

Transition Firing 

When a signaling interaction A —> B (A activates B) or A H B (A inhibits B) 

occurs, it has the effect of changing the state of the system by modifying the activity-

level of A and/or B. Thus, in the SPN used to model this network, the associated 

transition, t, will fire at time r and produce marking mT + i from m r . The way in which 

mT + 1 is computed from mT depends on the set of input and output arcs attached to 

the transition t as well as the number of tokens moved by the transition. 

The combination of input and output arcs connected to a transition is determined 

exclusively by the type of interaction and the transition firing model. However, dif

ferent topologies, combinations of input and output arcs, are needed to model the 

different biochemical processes that mediate protein-protein interactions in a sig

naling network. Here we examine four of the most common biochemical processes, 

identify the corresponding topological structures, and ultimately devise a modeling 

policy best suited for non-parametric simulation of signal flow. 
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^ ^5R«fi|p!? 

(a) (b) 

Fig. 3.4: The topological structures for differing signaling processes, (a) The token con
sumption structures for complexing and recruitment. Transition t\ encodes activation of v 
by the binding or consumption of u. Transition £2 encodes deactivation of v by the binding 
or consumption of u. In both cases, the number of tokens of pu decreases immediately after 
transitions ti and £2 fire, (b) The token conserving structures for PTM and GTP/ATP 
binding. Transition £3 encodes enzymatic activation of v by u. Transition £4 encodes enzy
matic inhibition of v by u. In both cases, the number of tokens of pu remains unchanged 
immediately after transitions £3 and £4 fire. 

In post-translational modification (PTM), a protein mediates the addition or re

moval of a phospho group at a specific phosphorylation site on another protein. In 

GTP/ATP binding, a protein triggers the exchange of GDP (ADP) from GTP (ATP) 

on another protein. In a recruitment process, a protein mediates the relocalization 

of another protein to a different part of the cell. Finally, in a complexing process, 

a protein binds to another protein to create a complex, which can then participate 

in other reactions. In the first two processes, the mediating protein usually acts as 

an enzyme that participates in the reaction but is not consumed by the reaction. In 

the latter two processes, the participating protein often becomes unavailable to other 

reactions, transiently while the protein recruitment is taking place and for longer 

durations when complexing occurs. To model these two cases, we identified the two 
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different token-passing policies implemented by the different topological structures 

depicted in Figure 3.4: 

• Token consumption. In this policy, u —> v consumes tokens in u in order to 

generate new tokens for v. In order to model this, pu is connected to transition 

t\ through an arc and pv is connected to ti through an output arc. When t\ 

fires, some number of tokens in pu are moved into pv. Similarly, u -\v consumes 

tokens in u in order to consume tokens in v. This is modeled by connecting pu to 

t2 with an input arc and pv to t2 with an input arc. When t2 fires, some number 

of tokens are removed from both pu and pv. This policy models a recruitment 

or complexing event in which u binds to another molecule, thereby creating a 

molecule of type v. A molecule of type u has been consumed in order to generate 

or deactivate a molecule of type v. 

• Token conservation. In this policy, u —> v generates new tokens for v while 

conserving those in u. In order to model this, pu is connected to transition t3 

through a read arc. Node pv is connected to £3 through an output arc. When 

£3 fires, some number of tokens in pu is read (but not removed) and copied into 

pv. Similarly, u -\ v consumes tokens in v while conserving those in u. This is 

modeled by connecting pu to £4 with a read arc (described earlier in this section) 

and pv to £4 with an input arc. When t4 fires, some number of tokens in pu are 

read and removed from pv. Enzymes will often behave in this way: inducing a 

change in a molecule (v) without themselves undergoing any change. A molecule 
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of type u has induced a change in a different molecule of type v without itself 

changing state. 

Ideally, for each interaction in the network, the associated transition could be 

embedded in the topology corresponding to the interaction's underlying biochemical 

mechanism. However, connectivity-level knowledge of the network does not provide 

this information for each interaction. In the absence of these details, we use one 

token-passing policy for all interactions in the network. We implemented and tested 

both the consuming and conserving policies and found that token conservation pro

vides significantly more accurate results for signaling networks when compared to 

experimentally-derived data. This is not surprising, as post-translational modifica

tion and GTP/ATP binding events are responsible for many state changes in signaling 

networks [IB89, HunOO, JLIOO, Bra95]. It is worth noting that our approach does not 

restrict the network structure to token conserving topologies. Thus, it is possible to 

use the token consumption topologies where such processes are known to occur. How

ever, as our focus in this chapter is on designing a purely non-parametric simulation 

method, we consider the use of information regarding the biological mechanism of sig

naling as a potential way to further improve the accuracy of our method's predictions 

and identify this as a direction for future work. 

The transition topologies, as described above, do not designate how the number 

of tokens added to or removed from pv is determined. However, we know that in bio

chemical signaling networks concentration has an effect on the strength of a signaling 
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event [GBP06, EI04b, EI04a]. Specifically, the higher it's concentration, the stronger 

its effect on v—the more tokens that pu has, the more tokens of pv should be affected 

(generated or consumed). 

However, because of the stochastic nature of the underlying biochemistry, it would 

be inaccurate to assume that all active u molecules will always participate in an 

interaction with v. In order to accomodate this observation, when transition t fires, 

we randomly select the number of pjs tokens to be involved in each signaling event4. 

Note that, according to our choice of topology, pu can always be identified as the 

node connected to the transition by a read arc. In this chapter, we assume a uniform 

distribution for selecting the number of tokens involved in a given signaling event, 

but acknowledge that other distributions may be more appropriate under certain 

circumstances and identify this as a topic deserving further consideration. 

Let ms(x) denote the number of tokens in node x at time s. For an interaction 

(u,v), under the token conservation policy detailed above, w's token-count remains 

unchanged after the firing of t, whereas v's token-count is updated based on the 

following formula: 

ms-i{v) + random(0,ms-\{u)) if u —• v 
ms(v) = I , (3.1) 

max{0,ms_i(w) — random(0,ms_i(w))} if u~\v 

where random(p, q) is a random integer m drawn from a uniform distribution over 

the range [p, q]. 

If we employ the policy of token passing with consumption, then after ms(v) has 

4By signaling event, we refer to a single evaluation of an interaction in the model network 
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been computed based on Formula (3.1), ms(u) is updated as: 

ms(u) = ms-.i{u) - min{ms-i(u), \ms(v) - ms-i(v)\}. (3.2) 

Signaling Network Event Generator 

The SPN topology and transition token-number selection policy alone do not 

specify the speed with which individual signaling interactions occur. However, such 

rates must be accounted for when simulating a signaling network. ODEs charac

teristically model such details as reaction rate constants; parameterized Petri nets 

specify these in a variety of ways including transition firing rates and firing prob

abilities [HR04, Cha07]. In synchronized Petri nets, the environment controls the 

generation of events. Thus, the signaling network event generator is responsible for 

controling the timing and ordering of signaling events. However, as our objective is a 

non-parametric simulation method, our approach must either estimate these param

eters or operate without explicit knowledge of them. 

While there has been some work in the area of predicting reaction rates, all results 

of which we are aware require knowledge about the mechanism of signaling (e.g., 

[BFGH06]). As a result, without enriching the SPN model, it is doubtful that rate 

parameters can be accurately estimated. 

For this reason, the signaling network event generator operates without explicit 

knowledge of the rate parameters. To compensate for this "missing" knowledge, we 

make use of an observation of signaling networks discussed earlier: a network's con

nectivity determines its dynamics. Several studies have found that the connectivity 
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of biochemical networks desensitizes them to small fluctuations in the kinetic bio

chemical parameters [AC03, KB05, KPST04]. This robustness to parameter values 

can be understood both within the context of evolution and survival of the organism 

in an uncertain environment. Evolution is a stochastic process that tweaks signaling 

network parameters across generations—thus robustness to exact parameter values 

is a highly desirable property as it ensures that an offspring remains viable despite 

fluctuations in the exact tuning of its cellular machinery. If this property holds, then 

small fluctuations in the rate parameters should have a marginal effect on the overall 

propagation of signal through the network. Parameter value robustness also improves 

the fitness of an organism in a variable environment: temperature changes, shifts in 

humidity, and other environmental factors can also induce small changes in the ki

netic parameters of a biochemical network. We can consider these small effects to 

be noise obscuring the underlying dynamics of the network connectivity. By taking 

many samples of the network dynamics under a variety of reaction rate assignments 

and then averaging these dynamics, we simultaneously reduce the noise introduced 

by any one rate assignment and strengthen the underlying dynamic characteristics of 

the network's connectivity. 

However, since reaction rate constants can vary by several orders of magnitude— 

from 10~10 to 103, the task of correctly selecting parameters close to the true pa

rameters is non-trivial. In fact, without having some estimate of the actual rate 

parameters, it is unclear as to how to measure closeness at all. Clearly, these are 
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PROCEDURE GENERATESIGNALINGEVENTS(J£, 

n) 

1. 

2. 

3. 

4. 

5. 

k = 

a an 

i = l 

for 6 

(a) 

(b) 

E\ 

an empty array of size (k x n) 

= 1 t o n 

£ ' = £ 

while E' ± 0 

i. e = a random event from £" 

ii. a[i] = e 

iii. ^ ' = £ ; ' - { e } 

iv. i = i + 1 

Return a 

Fig. 3.5: The algorithm that implements the signaling network event generator. This 
routine generates the time block/firing structure. Given a set of events, E, and the number 
of blocks for which the SPN will be executed, n, GENERATESIGNALINGEVENTS generates n 
blocks of events, each consisting of \E\ events ordered randomly. In each block, every event 
in E occurs exactly once. 

among the issues that make parameter estimation so difficult for ODE and parame

terized Petri net approaches. Since our comparisons will be relative and not absolute, 

we take a relative approach to modeling rate parameters. The space of possible rate 

values is the space of possible signaling event orderings. 

This idea is illustrated in Figure 3.2(a). Protein A affects the activity of protein D 

through two separate pathways. Assuming that A is active to begin with, the relative 

speed of these two pathways determines the final activity of D. If the pathway 

through C is faster than the pathway B —> D, then D will be active. However, if the 

pathway speeds are reversed, then D will remain inactive. The overall outcome of this 
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network can be represented without any use of numeric reaction rates by representing 

the reaction rates as an ordering over all the edges in the network. We can extend 

this idea to the SPN by observing that there exists a unique event for each signaling 

edge in the signaling network. 

This sampling strategy is the motivation for the dual-time framework depicted in 

Figure 3.2(b) and implemented by the signaling network event generator shown in 

Figure 3.5. Time blocks are the larger time intervals during which every signaling 

event occurs exactly once. Since every transition in the SPN is associated with a 

unique event, each transition will fire exactly once in each time block. Transition fir

ings are the smaller time units that impose a strict sequential order on the occurrence 

of signaling events. While this strict sequentiality of firing models relative reaction 

rates, it also discretizes the effect of signaling events. Though this is consistent with 

the definition of transition firing in discrete time Petri nets (only one transition is 

evaluated at a given point in time) [DA05], in biological signaling networks there is 

no such serial evaluation constraint. However, our validation with experimental data 

suggests that this discretization approximation does not affect the overall validity of 

the simulation results. 

Defining the Initial State 

As mentioned previously, the initial state of the SPN is the initial marking, m0. 

As the SPN provides no explicit information on how this marking should be built, 

we propose three ways to construct the initial state: zero, basal, or experimentally 
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derived. In a zero initial state, the simulator initializes all proteins to have zero 

tokens. The basal initial state is a random distribution of activation levels intended 

to model the cell when no impluses due directly to external stimuli are propagating 

through the signaling network. Though a basal network is considered at rest, in 

general it will not have a zero marking since signal flows are known to occur even 

in unstimulated signaling networks through autocrine and paracrine secretions by 

the cells. The experimentally derived initial state is based on knowledge about the 

activity levels of various proteins just prior to the addition of the external stimuli. 

When accurate experimental data is available such as results from microarrays 

or western blots, the experimentally derived initial state may be the most accurate. 

A challenge in using experimental data, however, is determining how best to assign 

numbers of tokens based on the experimentally observed activity levels. 

In the absence of reliable experimental data, the basal initial state seems more 

accurate than the zero initial state. However, it presents the challenge of properly 

selecting the basal activity-levels to assign to each protein in the model network. 

In [LAA06], a basal initial state was constructed by activating a small number of 

randomly selected proteins in the signaling network. However, the work in [LAA06] 

was done using a boolean model. Translating this approach into a tokenized model 

creates the additional complexity of determining how many tokens each basally active 

protein should receive. The correct values are likely to depend on the specific signaling 

network and experimental conditions. 
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We performed preliminary tests to compare the effect of using different basal versus 

zero markings on the outcome of the simulator. We found that the basal and zero 

states produced indistinguishable predictions so long as less than 30% of the proteins 

were activated and a small number of tokens (< 5) were used when constructing the 

basal marking. This is not as surprising as it may seem at first. Inhibitory edges 

will quickly consume a small number of tokens scattered throughout the network, 

effectively returning much of the network to the zero state before a stimulation event 

can propagate through. 

Furthermore, while validating our method, we also compared the predictions pro

duced by SPNs based on a zero initial state and experimentally derived initial state. 

These, too, did not produce noticeably different final results for similar reasons as 

discussed above. Details of these comparisons will be discussed further in the Results 

and Discussion sections. 

However, since all three initial state construction strategies yield qualitatively 

identical predictions, using zero initial states has the advantage of invoking the fewest 

unnecessary assumptions about the network (as in the case of the basal initial state) 

and requiring the least experimental data (as in the case of the experimentally derived 

state). Nonetheless, in our implementation of the tool, we allow for using any one of 

these three initial state construction strategies. 
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Modeling Cell-Specific Signaling Networks 

Whereas consensus signaling networks typically represent the connectivity in nor

mal cells and are typically collected from observations in different experiments, many 

experiments are conducted on abnormal cells in which oncogenic mutations, gene 

knockous, and pharmacological inhibitors have altered the behavior of various signal

ing nodes in the network. In an SPN, these alterations to the signaling network can 

be modeled by adding/removing transitions (and associated input/output arcs) and 

explicitly setting the token count for various proteins in the initial state. 

The two network alterations which are commonly induced by oncogenic mutations, 

gene knockouts, or pharmacological inhibitors are constitutively high or low protein 

activity-levels, meaning that a protein is either unable to be inhibited or unable to 

be activated. The simulator allows for proteins to be specified as either fixed High or 

Low. Here we explain how these are modeled by changes to the SPN. 

If protein u is fixed high, then this protein cannot be inhibited. Thus, all transi

tions that remove tokens from pu are removed from the SPN. The fact that u is high, 

however, also suggests that it maintains a higher activity level in general. Therefore, 

in the initial state, mo(pu) = H, where H is a non-zero number of tokens. Since all 

inhibiting transitions have been removed from the SPN, throughout any execution, 

place pu will always have at least H tokens. 

In experiments, we have observed that the choice of the value of H does not change 

the relative outcome of the simulations. While H will affect the actual number of 
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tokens present in a given place as well as the number of time blocks required to 

observe certain activity-level changes, the relative changes in activity-level (number 

of tokens) among different proteins (places) do not change. As a result, one is free to 

select any reasonable value of H (for our experiments, we used H = 10) as long as 

this H is held constant across all simulations whose results will be compared. 

If protein u is fixed low, then this protein cannot be activated. Thus, all transitions 

that add tokens to pu are removed from the SPN. The fact that u is low, however, 

also suggests that it maintains a constantly low activity level in general. Therefore, in 

the initial state, mo(pu) = L, where L is a small number of tokens (in our simulations 

we use L = 0). Since pu is only inhibited, we observed that all constitutively low 

proteins quickly had their marking reduced to zero. 

Unlike the value of H, extra caution must be taken when selecting values for 

representing L. A value of L that is too large can destabilize the early propagation of 

signal through the network. In our experiments, we obtained best results for values 

of L very close to or equal to zero (L < 2). Beyond this, the final results obtained 

depended on other values in the network, the strength of the signal, and the duration 

of the simulation. 

Simulating a Signaling Network 

Figure 3.6 provides a more detailed version of the simulation algorithm outlined 

in Figure 3.1. Steps 1 and 2 of the SIMULATE procedure construct the modified 

initial marking and network topology to incorporate perpetually high proteins, H, 
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PROCEDURE S I M U L A T E ^ 

1. 

2. 

3. 

4. 

.5. 

For each p € H 

• m0(p) = 10; 
. I = I-{(p,t) 

For each p € L 

• rn0(p) = 0; 
. I = I-{(t,p) 

for i = 1 to r 

H, L, B, 

t € T and 

t e T } ; 

r) 

( t , p ) ^ 0 } 

• cre = GenerateSignalingEvents(£', B); 
• Execute m0|<r) m B | T | ! 

For each p G ? a n d O < K B 

•m(p) = $TL 
Return (mi, m 2 , . . . , 

lmfc|T|(P); 

nSfi) 

Fig. 3.6: SIMULATE predicts the signal flow through the SPN S. The simulation is run 
for B time blocks; the results of r runs are averaged to produce the final result. Most of 
the work is done by the signaling Petri net execution procedure detailed in the preceding 
sections. This execution actually performs an individual run. This procedure takes the 
initial marking, mo and applies the sequence of transitions triggered by the event sequence, 
ae. This ordering, generated by the algorithm in Figure 3.5, has the dual time structure 
in which each block of edges contains every event in E exactly once. Each firing evaluates 
the effect of one transition. The markings at the end of each time block are extracted in 
Step 5. 

and perpetually low proteins, L. In this chapter, proteins that are assigned high 

activity-levels receive an initial token count of 10 in order to model a higher-than-

average initial activity-level. As discussed earlier, using other values of H scale the 

activity-levels of all the proteins in the network, but will not qualitatively change 

their relative activities. 

The loop in Step 3 runs r individual simulation runs. Each run receives a different 
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event ordering, ae, thereby implementing the interaction rate sampling strategy. The 

time block/step structure is contained within the ordering ae (see Figure 3.5(c)). 

As a result, the SPN execution step simulates the events by firing their associated 

transitions. Only markings at the end of time blocks are sampled. 

After SIMULATE finishes collecting the time block markings from all the runs, 

Step 4 computes the average markings for each time block and Step 5 returns these 

averages. 

Simulating a Perturbation Experiment 

We tested the accuracy and speed of our method by simulating the effect of two 

different targeted manipulations to the EGFR network in Figure 2.1. We compared 

these predictions to experimental results produced by performing the actual manip

ulations on two separate cancer cell lines. 

The perturbations we considered in this study altered the constitutive activity-

level of various proteins in the network (as opposed to affecting specific signaling 

interactions). Therefore, we modeled the perturbations as changes in the high and 

low proteins—Hc and Lc for the control5 network and Hp and LP for the perturbed 

network. 

A variant of the SIMULATE method was required to quantify how a perturbation 

changed the protein token-counts for each time block. Figure 3.7 shows the algo

rithm we used. In the procedure DIPFERENTIALSIMULATE, the input S provides 

5By control, we refer to the normal cell line. 
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PROCEDURE DIFFERENTIALSIMULATE(5, HC, LC, HP, 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Sc = S,SP = S; 

For each p £ Hc 

(a) mg(p) = 10 and F = Ic-

For each p SL Lc 

(a) mg(p) = 0 and Ic = Ic-

For each v e Hp 

(a) mg(v) = 10 and F = i* 

For each v £ Lp 

(a) mg(u) = 0 and F = P -

for i = 1 to r 

-{(P,*) 

{(*,P) = 

-{(«,*) 

{(t,v): 

Lp, B,r) 

:teTc and (i,p) 0 Oc} 

i € T c}; 

: i e Tp and (i, 

t e Tp}-

(a) cre = GenerateSignalingEvents(i?, T); 

(b) Execute mQ|0-)m^,T,; 

(c) Execute mo|cr)mg|T,; 

(d) For j = 0 to B 

i. d5 = m5 |r |-m^ |r | 

For each p G P and 0 < 6 < B 

(a) A6(P) = iELi4(p) ; 

Return (Ai, A 2 , . . . , AB ) ; 

v) 0 Op} 

Fig. 3.7: The algorithm for predicting the effect on signal propagation of a targeted ma
nipulation on signaling network with connectivity G. The 'c' and 'p' superscripts are used 
to denote parameters in the control and perturbed versions, respectively, of the SPN. 

the consensus SPN. Inputs Hc and Lc specify the control high and low proteins, the 

inputs Hp and LP specify the perturbed high and low proteins. After Steps 1—5 

construct two separate SPNs for the control and perturbed conditions, the loop in 

Step 6 performs r independent simulations over the control and perturbed models. 

Step 6d computes the difference between the markings at the end of each time block 
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in the perturbed and control networks. The marking difference d* = m^ — m^ yields 

the marking d* where dlj(v) = m^(v) — m^(v) for each v € P. Following the loop, 

the marking differences are averaged to obtain the time series (Ai, A 2 , . . . , A#) where 

&b(v) is the average change in the token-count for protein v at the end of time block 

b. 

For values of |A(,(w)| > 0 for a given molecule v, we can conclude that the pertur

bation caused a change in the activity-level of v at the end of time block b only if the 

difference observed is statistically significant. We use a t-test to determine whether 

this change is statistically significant for protein v at the end of time block b. Com

puting the t-test for two distributions (control and perturbation) requires knowledge 

of the mean (/iC){, and /iP)&) as well as the variance (of and a^) for both distributions. 

In order to obtain these parameters for the control network, a large number, X, of 

independent simulations is run. Simulation i provides a single series of markings, 

(m\, m^, . . . ,m^) . The mean is then computed: 

„ _ E£i"4(") 
H>c,b,v y 

The variance is computed similarly: 

c,b,v v 1 

The parameters \ivf>,v and ap,b,v f° r * n e perturbed network are computed as described 

above by substituting the perturbed network for the control network. Using these 

parameters, the t-value for molecule v at the end of time block b can be computed 
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from the formula 

t - value = - ^ ' M ~ flp'b'v . 
A f C,Q,V [ P,Q,V 

V ~x ' 3T~ 
The statistical significance of the difference can then be obtained by comparing the 

t-value to the desired critical value. 

Note that the DIFFERENTIALSIMULATE procedure and the associated significance 

test can predict the effect not only of perturbations, but also of any two different 

experimental (or cellular) conditions imposed on the same signaling network. As 

a result, in addition to perturbation experiments, our method can also be used to 

study the effects of other phenomena that induce changes in the propagation of signal 

through a signaling network. 

3.2 Materials 

3.2.1 Cell-specific Signaling Network Models 

Figure 2.1 shows the signaling network we analyzed. We obtained the core connec

tivity from a published literature survey on the EGFR network [IGG05]. We added 

to this several other well-established interactions taken from literature [KCCR04, 

MCEB+05, MLLA05, KM05, AHL+06, LSX+07, IOZ+06, ORS+06]. The response of 

this network to various perturbations was measured and simulated in two separate 

breast cancer cell lines: MDA231 and BT549. The core signaling Petri net used, 

SEGFR, is captured by the following signaling proteins and interactions: 

• Places (the set P): VEGFR, VSRC, vRac, VMEKK4, VMEKA, VJNK, VMEKKQ, VMEKQ, 
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VSTAT, VGrb2, Vshc, VsOS, VRB, VELK, VBAD, V^FKB, VRAS, VGAB1, ^ P / P 3 , VPI3K, 

VpDKl, VpTEN, Vc-Raf, VAKT, VLKB\, % E K ) VGSK3/3, VAMPK, VTSC2, VMAPK\,2, 

VRSK, VRheb, VmTOR-Raptor, V^EBPl, a n d VpT0S6K-

• Protein interaction network structures (the combination of arcs and transitions): 

VEGFR —> VGrb2, 

VGrb2 —>• Vshc, Vshc ~ • VsOS, ^SOS ~* ^Pas , VQrb2 ~> VQABI, VQABI ~» VpisK, 

VEGFR —* VSRC, VSRC ~^ VsTAT, VpizK ~> ^ P J P 3 , ^ P / P 3 ~> VpDKl, VRas ~* Vc-Raf, 

VPDK1 —* VAKT, VRas —>• VRac, VRac —>• VMEKKA, VMEKKA —> VMEK4, VMEKA ~^ 

VjNK, VjNK —> VsTAT, VRac ~* VMEKKS, VMEKK6 ~¥ VMEKG, VMEK6 —> VsTAT, 

VPDK1 —»• PplOSQK, VpTEN ^ VAKT, V AKT ^ VC-Raf, V AKT H VGSK3/3, V AKT H 

VTSC2, VAKT H VAMPK, VAKT H ^PAD, ^A/CT —• Vj^FKB, ?>AKT —> Wp70S6AT, 

VLKBI -^ VAMPKi VMEK ~> % i P i f l , 2 , ^AfAPKl,2 ~~• V P B , % A P J f l , 2 " ^ VELKI 

VMAPK1,2 —* VsTAT, VGSK3/3 —> VTSC2, VAMPK ~> VTSC2, VMAPK1,2 ^ VEGFR, 

VMAPK1,2 ^ VTSC2, VMAPK1,2 ~» Vp70S6K, VMAPK1,2 ~> VRSK, VRSK ^ VTSC2, 

VTSC2 H ^Rfce&j ^P/ie& ~ • VmTOR-Raptor, VAKT ~> VmTOR-Raptor, VmTOR-Raptor ~^ 

VAEBPl, VmTOR-Raptor ~^ Vp70S6K, v
pmS6K ^ VEGFR, 

VSRC H ^SflC) ^Pac H ^Pac, VMEKKA H VMEKK4, VMEKA ^ VMEKA, VJNK H 

VJNK, VMEKK6 ^ VMEKK%, VMEKQ ^ VMEK6, VSTAT H ^STAT, ^Gr62 ^ ^GV62, 

«S/JC H fShc, ^SOS H fSOS, ^Pas H ^Pas , ^ c - R a / H ^ c - P a / , ^ M £ K H ^ M £ K , 

^MAPK1,2 ^ VMAPK1,2, VRB H *>PB, «£LK H ^£L/f, ^PSK H ^P5/C, ^GABl ^ ^GABl, 

^ P / P 3 H VpiP3, VpizK H VPIZK, VpDKl H VpDKl, VAKT H ^AKT, ^BAD H ^BAD, 
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VNFKB H VNFKB, VAMPK ^ VAMPK, VmTOR-Raptor ^ VmTOR-Raptor, Vp70S6K H 

Vp70S6K, ^p56 ̂  VpS6, V4EBP1 H t»4£,BPl-

Notice that the last several edges are self-inhibitory loops (e.g., VRas H VRas). 

These loops are used to model regulatory mechanisms that are not present in the 

model network. 

For molecules that do not have specific inhibitory edges modeled in the network, 

we use the self-inhibitory loop to prevent exponential increase in the token counts 

and to model inhibitory mechanisms beyond the scope of the network. For example, 

consider the molecule Ras in the network shown in Figure 2.1. In the model, this 

protein is not inhibited. However, biologically we know that Ras has intrinsic GTPase 

function which inactivate itself [JBS99]. In order to model this, we introduce a self-

inhibitory loop. 

The differences between the two cell-specific networks are captured by following 

activity assignments to various proteins in the SPN. In the MDA231 cell line, HMB = 

{vRas,vEGF} and LMB = 0. In the BT549 cell line, HBT = {VEGF} and LBT = 

{VPTEN}-

Of the two perturbations we considered, one significantly knocked down the activity-

level of TSC2 and the other knocked down mTOR-Raptor. While the core SPN still 

modeled these networks, separate perturbed activity-assignments were required for 

each cell line-perturbation pairing: LMB'TSC2 = LMBU{vTSC2}, LMB-mTOR = LMBU 

{VmTOR-Raptor}, L ~ =L U{vr5C2}andL ~m = L U{vmTOR-Raptor}-
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3.2.2 Setup for Perturbation Experiments 

The following experiments were conducted by Dr. Prahlad T. Ram's lab. We 

include description and results for readability and self-containment of the thesis 

manuscript. 

Cell culture and stimulation. Human MDA-MB-231 (MDA231) and BT549 breast 

cancer cells were routinely maintained in RPMI supplemented with 10% FBS. For 

signaling experiments, logarithmically growing cells were serum-starved for 16 hours 

and then subjected to treatments by epidermal growth factor (EGF) (20 ng/mL) 

(Cell Signaling Technology, Beverly, MA) for 30 minutes. Controls were incubated 

for corresponding times with DMSO. To knock down TSC2, cells were treated with 

short interfering RNA (siRNA) (Dharmacon, Lafayette, CO) for 72 hours prior to 

EGF stimulation. Control cells were transfected with non-targeting (N/T) siRNA 

(Dharmacon, Lafayette, CO) prior to EGF treatment. 

Antibodies. The following antibodies were used for immunoblotting: anti-phospho-

p44/42 MAPK, anti-phospho-GSK3/?(S21/S9); anti-phospho-AKT(ser473); anti-phospho-

TSC2(T1462); anti-phospho-mTOR(S2448); anti-phospho-P70S6K(T389) (Cell Sig

naling Technology, Boston, MA); and anti-/?-Actin (Sigma-Aldrich, St. Louis, MO). 

SDS-PAGE and Immunoblotting. Cells were lysed by incubation on ice for 15 

minutes in a sample lysis buffer (50 mM Hepes, 150 mM NaCl, ImM EGTA, 10 

mM Sodium Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgC12, 10% glycerol, 

1% Triton X-100 plus protease inhibitors; aprotinin, bestatin, leupeptin, E-64, and 
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pepstatin A). Cell lysates were centrifuged at 15,000 g for 20 minutes at 4C. The 

supernatant was frozen and stored at -20C. Protein concentrations were determined 

using a protein-assay system (BCA, Bio-Rad, Hercules, CA), with BSA as a stan

dard. For immunoblotting, proteins (25 fig) were separated by SDS-PAGE and 

transferred to Hybond-C membrane (GE Healthcare, Piscataway, NJ). Blots were 

blocked for 60 minutes and incubated with primary antibodies overnight, followed by 

goat anti-mouse IgG-HRP (1:30,000; Cell Signaling Technology, Boston, MA) or goat 

anti-rabbit IgG-HRP (1:10,000; Cell Signaling Technology, Boston, MA) for 1 hour. 

Secondary antibodies were detected by enhanced chemiluminescence (ECL) reagent 

(GE Healthcare, Piscataway, NJ). All experiments were repeated a minimum of three 

independent times. 

3.2.3 Setup for Perturbation Simulations 

To select the block duration parameter, B, we compared the experimentally de

rived fold change of AKT in the MDA231 cell line to the AKT fold changes predicted 

for B = 10, 20, 50,100, and 1000. We found B = 20 to be the best fit and used this 

value for all simulations in this study. 

We also experimented with input parameter r, the numbers of individual simu

lation runs averaged per simulation. We tried a range extending from r = 100 to 

r = 1000. We found that no observable changes occurred in trends for r > 400. 

Therefore, r = 400 was used for all simulations in this study. 

We considered both the zero and experimentally derived initial states as the ini-
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Table 3.1: The experimentally derived initial markings used in the simulations. 

Molecule 
mTOR-Raptor 

TSC2 
GSK3/3 
p70S6K 

AKT 
MAPK 

Control TSC2 Inhibited 
0 1 
0 0 
5 3 
0 2 
0 0 
2 6 

MB231 
Molecule 

mTOR-Raptor 
TSC2 

GSK3/? 
p70S6K 

AKT 
MAPK 

Control TSC2 Inhibited 
5 5 
6 0 
3 6 
0 0 
7 7 
1 2 

BT549 

tial markings for the TSC inhibition simulations. The experimental states for both 

cell lines were derived from western blots produced from cells that were incubated in 

DMSO and serum-starved for 16 hours. Unsampled molecules were assigned a mark

ing of zero. The number of tokens assigned to each sampled molecule was directly-

proportional to the darkness of the line on the western blot. This assignment was 

done by hand, though devising automated and standardized methods for the con

struction of experimentally derived initial states is an important direction for future 

work. Since most of the molecules in the network were not sampled, only mTOR-

Raptor, TSC2, GSK3/3, p70S6K, AKT, and MAPK were given non-zero markings. 

The initial markings used are shown in Table 3.1. 

Since experimental results for the mTOR-Raptor inhibition were obtained from 
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literature, we did not have experimental results for construction of experimentally-

derived initial states. Therefore, we used the zero initial states for the mTOR-Raptor 

inhibition simulations. 

3.3 Results 

In order to evaluate the accuracy of our simulation method, we tested its predic

tions of the effect of targeted manipulations on two cell-specific versions of the sig

naling network depicted in Figure 2.1. In each cell line, a TSC2-specific siRNA was 

applied and the concentration of several key proteins in the EGFR network were sam

pled 30 minutes after stimulation with EGF. This was repeated in the absence of the 

TSC2 siRNA in order to obtain the concentration in the control network. We also col

lected a corpus of literature detailing the response of signaling proteins activity-levels 

to the inhibition of mTOR-Raptor using Rapamyacin [SAS05,ORS+06]. Predictions 

were generated by our simulator for the TSC2 and mTOR-Raptor perturbations in 

both cell lines. 

3.3.1 Simulation 

To simulate a perturbation, we used two networks both based on the signaling 

network shown in Figure 2.1: the control network for the cell line and the perturbed 

network for the cell line. The control networks for the cell lines were different because 

it was important to model the cell-specific mutations. In the case of the BT549 cell 
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Fig. 3.8: The results of the TSC2 perturbation experiments and simulations. In the western 
blots, columns (or lanes) are as follows: (1) non-targeting (NT) control siRNA, (2) NT 
siRNA + EGF, (3) TSC2 siRNA, (4) TSC2 siRNA + EGF. The effect of the TSC2 siRNA 
on a given molecule can be assessed by comparing column 4 against column 2. For each 
molecule in the western blot, there is a corresponding simulation curve showing the predicted 
change in protein activity over time. For the purposes of this analysis, we compared the 
concentration change after 20 time steps (the left-most data points in the plots) for each 
molecule. Each simulation point corresponds to the average of 400 measurements that 
were computed using the procedure described in Figure 3.7. Experimentally-derived initial 
states were used in the simulations. The results of both the experiments and simulations 
are qualitatively summarized in Table 3.3. 

line, there is a mutation that leads to the loss of PTEN, which makes AKT always 

active. In the MDA231 cell line, there is a mutation in Ras, which makes it always 

active. As shown in the formulation of the model, these are modeled using fixed 

activity assignments in the simulator. 

The TSC2 (mTOR-Raptor) perturbed network for a cell line was created by taking 



71 

Table 3.2: The t-values for the molecules sampled in the microarray. The critical value for 
an alpha value of 0.05 with 50 samples is 2.0086. Note that the t-values for all molecules 
except for GSK3/3 are larger than this value, confirming that these changes are statistically 
significantly. 

Molecule t-value in MDA231 t-value in BT549 

MAPK 16.35 18.93 
p70S6K 14.22 5.83 
TSC2 21.65 8.28 
AKT 6.60 9.55 

GSK3/? 0.42 0.10 
mTOR-Raptor 41.72 30.53 

the control network and fixing the activity-level of TSC2 (mTOR-Raptor) to zero for 

the duration of the simulation, effectively simulating the pharmacological inhibition 

of the protein. For each cell-line/perturbation pair, we ran the simulator on the 

control and perturbed networks using the DlFFERENTIALSlMULATE procedure in 

Figure 3.7 which computed the change in token-counts induced by the perturbation 

for all proteins in the model. These change plots are shown in Figure 3.8 for TSC2 and 

in Figure 3.9 for mTOR-Raptor. Be ran the simulations using both experimentally-

derived initial states as well as zero initial states. The initial state used did not change 

the overall trends observed in the simulations. 

Using the t-test described in the Methods section, we also computed the statistical 

significance of the final time block (b = 20) for each molecule considered. For each 

molecule considered, 400 runs, 20 time blocks, and 50 samples were used. With the 

exception of GSK3/? which did not show a significant response to the perturbation, 

the changes of all other proteins sampled were beyond the 0.05 significance level (see 
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Table 3.2). The statistical insignificance of the change in GSK3/3 is not surprising 

since, as shown in Figure 2.1, GSK3/3 is solely activated by LKB, a molecule fixed 

high in both cell lines. Thus, we should not expect either perturbation to have a 

significant effect on the activity of GSK3/?, which is what the t-value indicates. 

Table 3.3: Summary of the effect of perturbation reported by experimental and simulated 
methods. The up arrow (f) indicates that the perturbation caused a rise in the level of the 
phosphorylated protein; the straight line (—) indicates no change; and the down arrow (j) 
indicates that a decrease occurred. Values in the Experiment column were estimated by 
comparing lanes 4 and 2 in Figure 3.8. We estimated the Simulation column by determining 
whether the top quartile of the distribution for the final time point was above, below, or 
at zero. In some cases it is difficult to judge for certain whether the total quantity of 
the phosphorylated protein changed or remained the same both for the experimental and 
computational cases. In these situations, we indicated the uncertainty by listing the possible 
changes that the protein could have feasibly undergone. 

Protein 

mTOR 
TSC2 

GSK3/? 
p70S6K 

AKT 
MAPK1,2 

MDA231 
Experiment 

T 
i 
— 

T 
j or -

— 

Simulation 

T 
1 
— 

T 
i 
— 

Protein 

mTOR 
TSC2 

GSK3/? 
p70S6K 

AKT 
MAPK1.2 

BT549 
Experiment 

| or — 

i 
— 

i 
i 
— 

Simulation 

T 
i 
— 

T 
1 
— 

3.3.2 Experimental Resul ts 

After the TSC2 perturbation was applied to a cell line, the protein concentrations 

were collected using western blots. Details are given in the Section 3.2.2. The western 

blot results are shown in Figure 3.8. 



73 

1-
3 

• • Tsca 
• • • U M 
— GSKMs 

P7GSSK 

- - TSC2 
» .M*PK 
— GSfO* 

pJBSCK 

i ̂ n i»mi<H—^—^P^SiSi l li» l#i.xtl«T« f+f 't*ii^.a ' f * 

Tlm«b«x»(b) 
M 

(a) (b) 

Fig. 3.9: The predicted response of the network to an mTOR-Raptor perturbation in the 
(a) MDA231 and (b) BT549 cell lines. Our method predicts that the amount of avail
able AKT increases in response to the perturbation, which is in agreement with results 
published in the literature [SAS05, ORS+06]. Our method also predicts that the activity-
level of p70S6K in the MDA231 cell line decreases in response to the perturbation, which 
has been observed experimentally [CRF05]. Each point corresponds to the average of 400 
measurements that were computed using the procedure described in Figure 3.7. 

3.4 Discussion 

As can be seen in Table 3.3, our method correctly predicted the relative protein 

activity-level changes induced by the TSC2 perturbation in both cell lines, for most 

molecules sampled. Notice that no change (—) was reported for the predicted re

sponse of MAPK to the TSC2 perturbation despite the fact that a small change did 

occur in its marking during the simulation (see Figure 3.8) and the t-value for the 

change is significant (see Table 3.2). At first, interpreting this value as no change 

may seem misleading. However, one of the significant challenges in experimental 

perturbation experiments is separating true system responses from the background 

noise created by experimental variables that cannot be precisely controlled (among 
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them cell population sizes, variability in microarray antibody binding effectiveness, 

limited sensitivity of hardware and software used to quantify experimental results). 

As a result, a common practice is to only consider those substantial changes that are 

well beyond the background noise level. Our interpretation of the small predicted 

change in MAPK as no change reflects the fact that such small changes would not be 

detectable in microarray or western blot results. Thus, though such a small fluctu

ation might have occurred in the real data, it would not have been detected by the 

biologists and most likely would appear in the experimental data to have not changed. 

Similar reasoning guided our decision to characterize the simulation (and exper

imental) results as either up (f), down (J.), or no change (—) in general. Since the 

amount of protein registered in a microarray or western blot is not always a reliable 

indicator of the exact amount of protein (or protein form) being measured, biologists 

are often reluctant to report degrees of increases or decreases—preferring qualitative 

observations such as up or down which are less subject to influence by extraneous 

experimental conditions. It is true that our simulation method produces precisely 

quantified increases or decreases which can be taken to indicate degrees of change 

in response to perturbations. However, as experimental techniques cannot reliably 

measure degrees of increase or decrease, we judged the qualitative (up or down) 

characterization to be a more reliable way of validating our method. Certainly, our 

method provides additional information of degrees of change and we consider studying 

the accuracy of these degrees to be an important area for future work. 
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Table 3.4: The number of paths connecting several pairs of compounds in the EGFR 
model used in our simulations. The multiple paths connecting pairs of proteins highlight 
the complex interactions present within the network that give rise to its overall dynamic 
behavior. 

Source Protein Destination Protein 
EGFR TSC2 
AKT mTOR-Raptor 
MEK EGFR 
AKT P70S6K 

Number of Paths 
7 
6 
4 
8 

Our method also correctly predicted the activity-level change of AKT in response 

to mTOR-Raptor inhibition as reported by a number of studies [SAS05, ORS+06]. 

Further, our method predicted that, when mTOR-Raptor is inhibited, the level of 

p70S6K in the MDA231 cell line decreased, which also had been observed experimen

tally [CRF05]. 

The only incorrect prediction made by our method was the activity-level change 

of p70S6K in the BT549 cell line. However, BT549 cells contain a retinoblastoma 

tumor suppressor (RB) mutation [NCF+06] which could alter p70S6K phosphoryla

tion [MVG+02]. It is a strength of our simulator that the discrepancy between our 

method's predictions and the experimental results identified a section of the model in 

which additional connectivity has been found which might account for the difference 

observed. 

The predictions made by our simulator would be exceedingly difficult to derive by 

visual or manual inspection. Table 3.4 shows the number of paths between several 

pairs of compounds within the network. Where there is more than one path connect-
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ing two molecules, feed forward and feed backward loops are present. Attempting to 

determine, by hand, how these different loops will interact with one another is, by it

self, a difficult endeavor even when not considering the additional task of deriving the 

rest of the network dynamics simultaneously. For the larger networks that are now 

becoming available, computational analysis becomes even more crucial to obtaining 

insights into the dynamic behavior of the network. 

Despite the complexity of the network dynamics, it was straight-forward to find 

and integrate the connectivity information used to build it. Most of the information 

sources [KCCR04, MCEB+05, MLLA05, KM05, AHL+06, LSX+07, IOZ+06, ORS+06] 

established the existence of various pathways and provided few or no biochemical or 

kinetic details. As a result, the literature we used would have provided little assistance 

is building a parameterized Petri Net or ODE model. Due to the proliferation of 

curated signaling network repositories and searchable literature archives, connectivity 

information is relatively abundant, which makes the ad hoc assembly of networks a 

relatively straight-forward endeavor. This further underscores the advantage of using 

our method over ODEs or parameterized Petri Nets to quickly model and characterize 

some of the dynamics of a signaling network. 

For simulations that will be compared to experimental results, the time parameter 

must be selected carefully. The time parameter, B, indicates how many time blocks 

our method will simulate. The time block is an abstract unit of time. Therefore, 

before comparing experimental results and predictions, it is necessary to determine 
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how many seconds, minutes, or hours correspond to a time block. This can be done by 

comparing a prediction of the simulator with the experimentally measured activity-

level of one or two proteins at several time points in order to determine what time 

blocks correspond to the different sampled time points. In the present study, we 

calibrated our time blocks only once for two cell lines and six experimental conditions 

(two cell lines, with/without TSC2, with/without mTOR-Raptor). To select the time 

parameter we used the experimentally measured activity changes in two proteins at 

two time points. In contrast to other predictive dynamic analysis tools which require 

multiple time points and multiple protein samples in order to calibrate simulation 

and model parameters, our method has relatively low time and resource investment. 

Besides the time parameter, the other component of our simulations which in

volved experimentally-obtained knowledge was the initial states. The experimentally-

derived initial states require that some experimental data be available providing in

formation on the initial concentrations of individual signaling proteins in the network 

prior to stimulation. However, in the network that we considered here, the overall 

behavior of the network and of individual signaling proteins was resilient to changes 

in the initial states used. Zero and experimentally-derived both produced the same 

overall change predictions. Thus, while experimentally-derived initial states may be 

important for the simulation of some networks, it may well be the case that many 

networks (such as the one we considered in this chapter) can be simulated without 

this knowledge—further reducing the experimental work that must be done prior to 
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simulation. 

The fact that our simulator produced accurate predictions for a variety of experi

mental conditions using the one core network model and set of simulation parameters 

also distinguishes our method from other predictive approaches. The only aspect of 

the model that was modified during the simulations were activity-levels reflecting the 

immediate effects of either the underlying tumor mutations (Ras and PTEN) or the 

perturbations (mTOR-Raptor and TSC2 targeted manipulation). In contrast, the ac

curacy of ODEs and parameterized Petri nets predictions are known to be sensitive to 

small changes to the model. For comparative studies such as the one conducted in this 

chapter, an ODE or parameterized Petri net model might need to be re-constructed 

with different parameters for each experimental condition of interest. As a result, 

while it is possible to obtain our simulation results using these models, it remains 

beyond the capabilities of any existing ODE or parameterized Petri net system to 

provide insights into the effects of experimental conditions on the dynamic behavior 

of a signaling network with so little initial time and resource investment. 

Though our method's predictions will not be as accurate as the results returned by 

a correctly parameterized ODE, biologists using our method can derive information 

about a network's dynamic behavior without having to conduct extensive experimen

tation and computationally expensive parameter estimation. This novel capability 

offers scientists the exciting prospect of being able to test hypotheses regarding sig

nal propagation in silico. As a result, by using our method researchers can evaluate a 
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wide array of network responses in order to determine the most promising experiments 

before even entering the laboratory. 
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Chapter 4 

From Connectivity and Qualitative Data to 

Dynamics: Deterministic Execution 

In Chapter 3 we presented a method that used only network connectivity to pre

dict the dynamics of a signaling network. Despite the absence of any parameters, this 

method accurately predicted the behavior of the signaling network in 90% of con

ditions considered. This success was largely due to the fact that network structure 

appears to be a major determinant of the overall network dynamics. Nonetheless, 

parameters can be important. Consider the feedforward motif shown in Figure 4.1. 

In this example, A has both activating and inhibiting effects on C. What is the 

overall effect of A on CI Does A have the overall effect of activating or inhibiting 

CI Answering this question is central to accurately predicting the dynamics of the 

network. Given such a network, the signaling Petri net approach discussed in Chapter 

3 would sample the different relative rates and arrive at some sort of average between 

the two—in this case, the overall effect would be 'no change' (one path activates, one 

path inhibits). However, more than likely one of these paths is stronger nudging the 

overall effect to be either activating or inhibiting. In order to model this situation, 

parameters are needed to weight the effect of the different interactions. 

These weights must come from experimental data. Often this data is supplied by 
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(a) 

Edge Ordering 
1,2,3 
2,1,3 
2,3,1 
1,3,2 
3,1,2 
3,2,1 

Effect of A on C 
- • 

-» 
-> 
H 
H 
H 

(b) 

Fig. 4.1: Example signaling network where the parameters' weights do matter. Table (b) 
shows the overall effects that different evaluation orderings would create. 

perturbation experiments which measure the dynamic response of the signaling net

work to different environmental and internal conditions. The measurements typically 

are read as changes in protein concentration, cell population size, or phenotypic out

comes. Numerous methods, ranging from ordinary differential equations to Bayesian 

networks, use these quantitative experimental measurements directly to infer model 

parameter values (e.g., [KBP+08,LW08,NWN+08,DGM+06]). 

However, as has been discussed previously, using such quantitative data introduces 

a variety of challenges that require the experimentalist to expend significant effort. We 

have proposed that qualitative data can be used for building predictive models and, 

in this chapter, present a method that uses qualitative data to derive parameterized 

models of signaling networks [RN]. Our method uses a simplified discrete-time model 

of signal propagation in which each protein has a degradation rate parameter and each 

interaction has a weight parameter that abstractly models both strength and speed. 
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The values for these parameters are determined by solving a non-linear optimization 

problem in which the model equations themselves and the qualitative results from 

perturbation experiments are used to define the space of valid parameter values. The 

final values selected maximize the number of qualitative results that the parameterized 

model can reproduce through simulation. 

We use our new method to build a predictive model of a network of signaling 

pathways downstream of EGFR (see Figure 2.1) in the MCF-7 cell-line. A number 

of perturbation experiment results for this cell-line were reported in [NWN+08]. To 

determine model parameter values, we supply our method with the qualitative results 

of three independent perturbation experiments from [NWN+08]. On the remainder 

of the dataset, the trained model correctly predicts the effect of a perturbation on a 

protein's activity-level 85.7% (60 out of 70 predictions) of the time. This predictive 

accuracy is particularly favorable when compared with the method in [NWN+08] 

which required training on the numerical results of 20 perturbation experiments from 

the same dataset to achieve the same recall/prediction accuracy. 

After validating our method, we investigate the derived interaction weight param

eters. The paths with the strongest weights correspond to interactions with known 

significance in the MCF-7 cell-line. This analysis both validates our method and 

demonstrates how parameterized models produced by our method can be used to 

gain cell-specific insights. 

To our knowledge, ours is the first method to use purely qualitative assertions to 
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perform an entirely automated search for biochemical network model parameter val

ues. However, the idea of moving away from requiring quantitative data has appeared 

in a number of other methods. The use of piece-wise linear differential equations to 

model genetic interactions introduced a way of simulating qualitative state changes 

using differential systems of equations [DGH+04]. Flux-balance analysis uses only 

connectivity and stoichiometric constants to infer the steady-states of metabolic net

works and other systems for which mass conservation laws exists [PPW+03, PP04]. 

In the signaling domain, the signaling Petri net employs only connectivity (and no 

parameters) to predict signaling network dynamics [RMT+08]. 

Mendes et al. [MK98] provide a good overview of the use of non-linear optimization 

for inferring network structure and parameters. Recently, in [LW08], a multi-objective 

optimization scheme was proposed to infer an S-system structure for experimental 

time-series data. The work presented in [KBP+08] uses non-linear optimization al

gorithms to fit linear models of regulatory biochemical networks to time-series data. 

In our work, we assume the network connectivity is known, and devise a method for 

parameterizing it so as to achieve a maximally predictive model [RN]. 

4.1 Method 

4.1.1 A simplified model of signaling network dynamics 

Dynamic models of biochemical systems fall into two classes: continuous-time and 

discrete-time. Continuous-time schemes typically model the behavior of the system 
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as a first-order differential equation 

where Y(t) is a vector containing the values of the state variables at time t. The tra

jectory that the system state vector follows at time t is determined by some function 

of the current state, f(Y(t)). 

Discrete-time models, in contrast, explicitly break time into a series of steps in 

which the behavior of the system is expressed as the inductive formula 

Yt+i = f(Yt) (4.1) 

where f(x) is the transition function that evaluates to the next state visited after 

x. Often such discrete-time models are linear in the system state variables, in which 

case the state transition formula can be rewritten 

Yt+1 = AYt 

where A is the transition matrix. In models of metabolic networks, A corresponds 

to the stoichiometric matrix. This correlation does not extend to signaling systems, 

however, since the underlying biochemical reactions are rarely explicitly modeled. 

Regardless of the interpretation of A, a given state variable y\+l is determined by 

i<j<\y\ 

where a;j is the element of A at row i, column j . Thus, the system's next state 

depends entirely upon the current state and the elements of A. These the 

parameters of the system. Once the values of these have been determined and a 

starting condition, YQ has been specified, the model is complete. 
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Though continuous-time models seem to express the biochemical processes more 

accurately (the underlying system is continuous in nature), discrete-time models enjoy 

a number of practical advantages over continuous-models that can make them the 

better suited for certain types of problems: (1) though the underlying biochemical 

systems may be continuous, time-series data is inherently discrete, representing one 

or more time points at which the state of the system was observed; (2) the inductive 

structure of Equation 4.1 makes it easy to derive the state space of the system; and 

(3) Equation 4.1 allows the explicit derivation of the finite sequence of states visited 

given a starting state and a number of time steps. The third property is of particular 

interest to us here as we use the finiteness property of this sequence to efficiently find 

parameter values for a model that satisfy certain qualitative properties. 

In order to take advantage of this finite state sequence property, we build a 

discrete-time model of a signaling network with the form: 

Vt+i = max(<^ + Y^ wj,iy{ ~ J2 wi'iyt' °)" (42) 

State variable i corresponds to the activity-level of a signaling protein, Si is the 

degradation rate of that protein, Ai are other proteins in the system that activate 

i, and Hi are other proteins in the system that inhibit i. Since Ai and Hi specify 

the proteins that interact directly with i, the A^s and H^s for all i's in the system 

constitute the connectivity of the system—the directed interactions that connect the 

proteins in the system together. The parameter Wjti denotes the strength of the effect 

that j has on i through the interaction that connects them. Models similar to this 
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have been used to capture transcriptional dynamics (e.g., [CMW07, KC08]). 

Therefore, in our model of a signaling network each individual protein has a sep

arate equation of the form in Equation 4.2; collectively they are called the state 

equations, S. For a signaling network, the state equations are determined by the set 

of proteins in the system, P = {1,..., JV}, and the activating and inhibiting interacting 

protein sets for each protein i G P, Ai and Hi, respectively. When the parameters 

Si and Wij are specified and a starting point is selected, the resulting system can be 

simulated by iteratively evaluating the state equations for increasing values of time, 

t. 

4.1.2 Qualitative data from perturbation experiments 

To determine values for Si and w^j, we require qualitative data from perturbation 

experiments. A perturbation experiment activates or inhibits the function of one or 

more proteins (called targets) through the use of various mechanisms such as drugs, 

gene knockouts, or siRNA. These perturbations have varying effects on the response of 

other proteins and cell phenotypes to signaling events. For a given signaling protein, 

the perturbation's effect is measured by comparing the activity-level of that protein 

in an unperturbed cell to the activity-level of the same protein under the perturbed 

condition. Ordinarily the cell is stimulated prior to measuring the activity-levels in 

order to determine how the perturbed protein(s) influence the signal that reaches 

other proteins. 

Given the unperturbed and perturbed activity-levels for proteins X, Y, and Z 
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(Xu and Xp, Yu and Yp, Zu and Zp, respectively), we can make qualitative assertions 

about the effect of the perturbation on the activity-level of each protein: Xu < Xp if 

X increased in response to the perturbation, Yu > Yp if Y decreased, and Zu — Zp if 

Z exhibited no change. 

It is possible to make many other kinds of qualitative assertions about the exper

imental results. For example, the biologist may observe that the perturbed concen

tration of Z is greater than that of Y: Zp > Yp; or that the unperturbed value of 

Z appears to be two times that of X: Zu = 2XU. In fact, any observations taking 

such forms can be used to constrain the parameter values of the model. However, 

using such constraints must be done with great care since comparison across pro

tein types and conditions may not be meaningful due to differing concentrations and 

measurement accuracy for various protein types. 

For the remainder of this chapter, we consider (without loss of generality) the three 

fundamental assertions: Yu < Yp, Yu > Yp, and Yu = Yp as the types of qualitative 

data that constrain the training process. 

4.1.3 Training a model using qualitative data 

Given the connectivity for a signaling network of interest—the sets At and Hi 

for all proteins i in the system—we designed a training method that takes a set of 

qualitative data from perturbation experiments and infers values for the parameters 

5i and Wij that make the resulting model reproduce the maximum number of qual

itative behaviors specified possible (when the appropriate perturbed conditions are 
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simulated). 

Our method works by converting the model and the qualitative data into a series 

of constraints for a non-linear optimization problem. The optimization algorithm is 

directed to find values for all 5t and witj such that the model's behavior satisfies as 

many qualitative data constraints as possible. 

The specific optimization problem is constructed as follows. Given a simulation 

time period, T, we use the discrete-time model in Equation 4.2 to explicitly write 

the activity-level of each protein at each time step in terms of (1) activity-levels from 

prior time steps and (2) the parameters whose values we seek. Therefore, we construct 

one constraint having exactly the form of Equation 4.2 for each protein in the model 

for each condition being used for training. The number of conditions equals one plus 

the number of perturbations being used for training (the "extra" condition is the 

un-perturbed condition). 

Once these model constraints have been constructed, all the qualitative data con

straints can be written in terms of the protein activity-level values (y\) for the different 

conditions. 

Modeling perturbation experiments 

Formally, a perturbation experiment can be characterized as the set of inhibited 

proteins, P C P. The perturbed signaling network is structurally the same as the 

unperturbed network except where the perturbation has its effect. As a result, the 

state equations of the perturbed network, Sp, are largely the same as those in the 
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unperturbed network, S°: 

S°[i] i f i g P 
SP[i\:=\ 

yl+1 = 0 iiieP 

where Sx[i] is the state equation for protein i under condition X. 

Given the state equations for a perturbation experiment, Sp, and the unperturbed 

signaling network, S°, we can compute the qualitative change in protein i due to the 

perturbation by simulating both networks from some initial state lo- The predicted 

qualitative change in protein i is: 

< if Aj < - e 

Qi = < > if Ai > e 

= if - e < Aj < e 

where A, = Xlo<t<r(^'0^' t\ ~ SP[h A) *s ̂ e difference in the activity-level of protein 

i over the time of the simulation (Sx[i, t] denotes the value of the state equation for 

protein i at time t under condition X). The e parameter is incorporated into the def

inition in order to desensitize the measure to extremely small, probably insignificant, 

changes (e.g., Aj = 10~12 most likely does not indicate a change of any significance). 

Training a model using qualitative data from perturbation experiments 

To train a model, S°, a set of qualitative changes are provided, 

Q — {(PI?<ZI)J (P2,<72),—j (PR,QR)} where qr G { < , > , = } indicates the way that the 

activity-level of protein pr changed in response to perturbation Sp with respect to 

the unperturbed system S°. 
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The objective of the training procedure is to select an initial condition, Y0, degra

dation rates, Si, and interaction weights, Wij, such that when the original and per

turbed systems are simulated (S° and Sp, respectively), qp = q for (p,q) £ Q' such 

that Q' C Q and \Q'\ is as large as possible. 

As with most training procedures, ours is a search for parameter values that 

cause the model to which they belong to behave in a certain way. We formalize the 

parameter search as a non-linear optimization problem in which the parameters are 

free variables constrained by the 

1. state equations in 5° and Sp, 

2. the qualitative behavioral assertions, Q, and 

3. a set of logical constraints: 0 < 8i < 1 (the activity-level of a protein can never 

fall below zero), and Wij > 0 (the effect of a protein can not be negative). 

It is worth noting that, because this non-linearity takes such a regular form, we 

suspect that there may be more optimal search strategies than a general non-linear 

optimization algorithm. We identify this as a topic for future work. 

In order to build the non-linear optimization problem, a simulation time, T, must 

be specified. Optionally, a set of weights for individual constraints can be specified 

Q = {u>i, ...,U\Q\}. Conceptually, these weights can be used to make the optimizer 

favor satisfying certain constraints over others. If Q is not specified, all constraints 

are assumed to be equally important (i.e. ur = 1 for all 1 < r < |Q|). The problem 

is then constructed as follows: 
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• Free variables 

— S°[i, t] - the activity-levels for each protein, 1 < i < N, for each time step, 

0 < t < T, in the original network 

— Sp[i, t] - the activity-levels for each protein, 1 < i < N, for each time step, 

0 < t < T, in the perturbed network 

— 0 < 5i < 1 - the degradation rate of each protein 

— Wij > 0 for all interactions - the interaction weight of each edge in the 

network 

— X[r] £ {0,1} for all qualitative data constraints 1 < r < R. 

• Constraints 

— State equations for the unperturbed and perturbed network: 5° and Sp 

— Qualitative changes due to perturbations as characterized in Q: 

* The following rule is produced for all rules (j>r,'<'): (proteins that 

increased in response to the perturbation) 

( T T \ 

J2S°\pr,t}- J>P[pr,*] <X[r](-€r) 
t=0 t=0 ) 

* The following rule is produced for all rules (p r, '>'): (proteins that 
decreased in response to the perturbation) 

( T T \ 

^ M - ^ S ' W ] >X[r]er 
t=o t=o / 
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* The following rule is produced for all rules (pr,'='')'• (proteins that did 

not change in response to the perturbation) 

X[r] ^2s°\pr,t]-^sp\pr,t] 
4=0 t=0 

Objective function: maximize Ylr=i wrX[r] 

< X[r]er 

The choice to use er rather than a strict inequality was based on the need to ensure 

that the optimization algorithm did not satisfy the condition using a trivial differ

ence (e.g., 10~20) and the desire to incorporate support for changing the difference 

thresholds that signaled a qualitative change (recall the use of a similar e parameter 

earlier in the definition of At). 

When all constraint weights are equal (e.g., ur = 1 for all r), then the objective 

function forces the optimization algorithm to find parameter values that satisfy the 

maximum number of qualitative constraints. Giving the optimization algorithm the 

flexibility to ignore specific constraints is important since certain network structures 

might make satisfying some qualitative constraints impossible. In these cases, rather 

than failing outright, the optimization algorithm simply satisfies all other qualitative 

constraints. 

The constraint weights, fi, are used to bias the optimizer towards satisfying cer

tain perturbation constraints over others. This is useful when some experimental 

results have higher confidence than others. In such cases, the more highly supported 

experimental result constraints can be given larger weights in order to cause the op

timizer to favor satisfying them over other results in which the researcher has less 
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4.2 Results 

4.2.1 Testing the predictive power of our method on MCF-7 cells 

In order to test the ability of our approach to predict dynamic properties of a 

signaling network, we evaluated its performance on a series of perturbation experi

ments conducted on the MCF-7 cell-line and published in [NWN+08]. In these ex

periments, a series of proteins were targeted: EGFR (ZD1839), mTOR (rapamycin), 

MEK (PD0325901), PKC-5 (rottlerin), PI3-kinase (LY294002), and IGF1R (A12 anti-

IGF1R inhibitory antibody). In total, 21 different perturbation experiments were 

conducted. In each, one or two of these molecules were inhibited, after which EGF 

stimulation was applied. Phospho-levels for several proteins were measured at the end 

of each experiment: p-AKT-S473, p-ERK-T202/Y204, p-MEK-S217/S221, p-eIF4E-

S209, p-c-RAF-S289/S296/S301, p-P70S6K-S371, and pS6-S235/S236. The effect of 

these perturbations on two phenotypic processes, cell cycle arrest and apoptosis, were 

also measured. 

For our analysis, we considered a subset of molecules in the EGFR network pre

sented in Figure 2.1 and shown again in Figure 4.2(a). Based on this subset, we 

considered all protein targets except IGF1R and PKC-<5—both of which are not rec

ognized members of EGFR signaling [CFR99, SVL+92]. This provided a set of 10 

perturbation experiments (out of the 21 in [NWN+08]). We included phospho-levels 



94 

(a) (b) 

Fig. 4.2: (a) A detailed diagram of the EGFR signaling network [RMT+08]. (b) The 
EGFR signaling network largely restricted to the proteins inhibited or measured in the 
experiments reported in [NWN+08]. 

for all proteins measured. Since our current methods are focused on signaling pro

cesses, we did not consider the two phenotypic processes since these are the result of 

a combination of signaling, transcriptional, and metabolic processes. 

The complete network in Figure 4.2(a) was reduced in order to minimize the 

number of proteins and interactions in the model for which measurement information 

was not available. The motivation for this is to limit the number of parameters whose 

values are unconstrained by observations, which otherwise makes the parameter space 

much larger. Clearly, however, it is desirable to support such unmeasured proteins 

in a predictive model. We identify the problem of extending our methods to handle 

such unconstrained signaling members as a direction for future work. 



95 

The connectivity for the network induced by the measured molecules is shown 

in Figure 4.2(b). This reduced form of the EGFR network was obtained by keeping 

only proteins that either (1) were targets, (2) were measured, or (3) were required 

to maintain connectivity among targets and measured proteins in a non-trivial way. 

GSK3b was retained in order to ensure that TSC2 had at least one activating input. 

The molecules AA_mTOR and AA_GSK3b were added in order to model signifi

cant sources of activity that reside outside of the EGFR network (GSK3b activity is 

largely determined by environmental factors and mTOR is activated by Rheb which 

maintains a high basal activity-level). 

To test the predictive ability of our method, we performed a cross-validation 

procedure in which the model parameters were trained using qualitative data from 

three experiments. The resulting model was then used to simulate the remain

ing seven perturbation conditions. The predicted activity-levels from these simu

lations were interpreted as qualitative observations (e.g., the perturbation caused 

an increase/decrease/no-change in p-AKT). These predicted observations were then 

compared to the true qualitative changes in the data. The correctness of the trained 

model was taken to be the percent of predictions that agreed with the qualitative 

experimental results. 

Each different triplet of perturbation experiments yielded a different parameter

ized model (the full set of training triplets and their predictive accuracy is provided in 

the Supporting Information). Most triplet training sets yielded models with > 70% 
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Fig. 4.3: The agreement of one of the best trained model's predictions with perturbation 
experiments reported in [NWN+08]. Columns are the individual experiments, rows corre
spond to molecules. The columns set apart to the far right constitute the three experiments 
used to train the model. In the perturbation experiments matrix, a bold "x" indicates 
inhibited molecules. In the prediction agreement matrix, a " / " square indicates that our 
method's prediction for that molecule in that condition agreed with the experimental mea
surement. Our method correctly predicted 85.7% (60 out of 70) of the test experiment 
measurements. 

accuracy. We observed that good training sets corresponded to those whose perturba

tion targets were well-distributed throughout the network. The best trained models 

obtained had 85.7% (60 out of 70) predictive accuracy, one of which was selected for 

further analysis and is shown in Figure 4.3. As a point of comparison, the predictive 

model reported in [NWN+08] was trained and tested on this same dataset. Though 

they trained their method on 20 of the 21 experiments, their method's ability to recall 

the correct qualitative change for a given molecule in a specific perturbation experi

ment was 85.7% (60 out of 70). Thus, despite using much less and only qualitative 

data, our method was able to predict the behavior of individual molecules with a 
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comparable degree of accuracy. 

The errors in our method's predictions may be due to cell-specific signaling prop

erties, some of which are suggested in [NWN+08]. The most significant source of 

error stems from the misprediction of c-Raf under three different perturbations, c-

Raf is activated by Ras and by various isoforms of PKC, none of which is PKC5 

[CFR99,SVL+92]. Nonetheless, [NWN+08] detects a significant interaction between 

PKCS and c-Raf suggesting that, in the MCF-7 cell-line, this isoform may have some 

interaction with c-Raf. The absence of such a signaling mechanism in our model could 

well account for the prediction errors of c-Raf. 

The incorrect prediction of eIF4E under the MEK/mTOR perturbation may be re

lated to the complicated mechanisms actually governing eIF4E. Experimental results 

report eIF4E increasing in response to this perturbation. Regardless of parameter 

values, the connectivity of our model cannot explain this since MAPK and mTOR 

are the only activators of eIF4E activity. This suggests that the increase in eIF4E 

activity in response to this perturbation is either the result of an entirely different 

mechanism or experimental error. 

Both our method and the method in [NWN+08] failed to correctly predict the 

response of AKT to the EGFR/mTOR perturbation. Under the perturbation, AKT 

is reported to have shown no change (0.0 fold increase). While it is certainly possible 

for AKT to have not changed, it is also possible that the change (up or down) was suf

ficiently small as to not register as a change during analysis: note that in [NWN+08], 
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the AKT blots are quite dark and cover much of the channel, factors that make 

discerning small fold changes more difficult. It is also possible that AKT signaling 

occurs differently in the MCF-7 cell-line due to a known mutation in PIK3CA (the 

catalytic subunit of PI3K) which causes MCF-7 cells to have higher basal levels of 

AKT phosphorylation than normal cells [SVL+92]. 

Like AKT, the incorrect prediction of MEK activity under the EGFR/MEK per

turbation may be the result of the existence of some mechanism not present in our 

model. Typically, MEK is activated through the pathway EGFR ~» c-Raf ~» MEK. 

However, MEK is observed to increase while c-Raf activity drops, which cannot be 

explained by interactions in the model. Thus, other cell-specific signaling pathways 

may dominate MEK's activity under this perturbation. Close inspection of the west

ern blots for c-Raf in [NWN+08] also raise the possibility that the reported changes 

are simply artifacts of the western blots themselves. 

4.2.2 Interpretation of Interaction Weights 

In addition to predictive capabilities, our method produces a model whose pa

rameters have been derived from experimental data. There are several aspects of the 

interaction weights (shown in Figure 4.4) inferred for the EGFR network in the MCF-

7 cell-line that offer insights into cell-specific signaling. The four heaviest pathways 

in the network are: 

• EGFR -> c-Raf -+ MEK -»• MAPK, 
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Fig. 4.4: The EGFR signaling network model with relative interaction weights depicted 
by the width of arrows. 

• EGFR - • PI3K -»• AKT, 

• EGFR -»• PI3K - • P70S6K - • pS6, and 

• AA_GSK3b -^ GSK3b -> TSC2 H mTOR. 

Notice that the first three constitute the three ways in which EGF signal enters 

the network through the receptor. The interaction weights suggest a relative order

ing in the strength of these different signaling paths (listed by signaling endpoint): 

pS6 < AKT < MAPK. 
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Cell-specific behavior of AKT. Our model suggests that the EGFR -w AKT pathway 

is much less significant than the c-Raf pathway. This is a surprising result when 

the general significance of the PI3K pathway is considered. Our method appears 

to have identified a cell-specific attribute, since MCF-7 has a PI3K mutation that 

induces the constitutive overexpression of AKT [SCY+08]. Additional evidence in 

support of this hypothesis is that, in our model, AKT was given a degradation rate 

slower than the network average degradation rate (0.53 compared to the network-wide 

average degradation rate of 0.47, see Supporting Information) which will cause AKT 

to maintain its activity-level for longer than other members of the network. 

Also notice that the relative strengths of EGFR ~* MAPK and EGFR ~* 

AKT —> mTOR suggests a relative ordering of the negative feedback loops that reg

ulate EGFR. Because the MAPK H EGFR interaction receives stronger signal than 

the p70S6K H EGFR interaction, it is likely the case that in the MCF-7 cell-line, 

MAPK is the stronger negative regulator of EGFR. This coincides with the results 

in [NWN+08] in which they found significant evidence of negative regulation of EGFR 

by MAPK, but no indication for that of p70S6K. 

Tumor cell use of GSKSb. GSK3b participates in regulating a number of important 

cellular processes including cell cycle and energy metabolism [Mar08]. A mounting 

body of experimental evidence also suggests that it may be a mechanism by which 

cancer cells satisfy their significant energy demands. The strong activation of GSK3b 
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Table 4.1: The contribution that correct connectivity and trained parameters make to 
overall model accuracy for the EGFR network. 

Connectivity 
Correct 
Correct 
Random 
Random 

Parameters 
Trained 
Random 
Trained 
Random 

Accuracy 
85.7% (60/70) 

59.3% (approx. 40/70) 
21.2% (approx. 15/70) 
0.4% (approx. 3/70) 

(and the very strong inhibition of mTOR) in our model may be an indication that 

MCF-7, a breast cancer cell-line, belongs to the class of tumor cells that up-regulates 

certain cell processes partially through increased GSK3b activity. 

The presence of these pathways in our model as strong chains of interactions 

both provides additional evidence for the predictive capabilities of our method and 

demonstrates how the parameters of the models can be used to gain insights into the 

system being studied. 

4.2.3 The Importance of Connectivity and Parameters 

Since in Chapter 3 we discussed a method that used only connectivity to predict 

the activity-levels of signaling proteins, an important question to answer is how much 

the presence of well-trained parameters contributed to the accuracy of our method. 

In order to understand the contribution of parameters and connectivity in this regard, 

we evaluated the accuracy achieved by a model (1) with the correct connectivity, but 

random parameter values, (2) random connectivity with trained parameter values, 

and (3) random connectivity and random parameter values. Correct connectivity 
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PROCEDURE RANDOMIZE(V,.E) 

1. 
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eV 

> 0 

> 0 

Fig. 4.5: The algorithm used to randomize the connectivity of a network G = (V, E). 

corresponded to the connectivity in Figure 4.2; random connectivity corresponds 

to a network with all the nodes and edges in the correct network, connected in a 

randomized pattern (with node degree preserved). The algorithm used to randomize 

a network's connectivity is shown in Figure 4.5. Trained parameters refers to using the 

optimal training dataset to select good parameter values; random parameters refers 

to using parameter values selected within a range of 0 to 1 for retention parameters 

and 0 to 15 for interaction weights (note that various ranges for parameter values 

were tested with no change in the overall results we report next). For each scenario 

considered, 1000 networks were constructed and their accuracy tested against the 7 

remaining datasets. Table 4.1 shows the outcome of the results. 

The results of these experiments indicate that connectivity is, by far, the most 

significant contributor to the accuracy of the model's predictions. Even when random 
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parameters are used, predictions are correct nearly 60% of the time. Having trained 

parameters, however, does have an impact on accuracy: evidenced by the fact that 

trained parameters increase accuracy by another 25%. 

What these results also show is that training parameters is not always succeptible 

to the issue of overfitting. While there is always concern that a sufficiently complicated 

system can always be parameterized to produce certain behavior, for the EGFR 

network considered here, the degree of connective complexity could only be fit to 21% 

(approximately 15 out of 20 data points) of the experimental data through training 

of parameter values. 

4.2.4 Selecting Good Training Sets 

Not surprisingly, obtaining the right training dataset is central to building a good 

predictive model. In the previous sections in this chapter we used the training dataset 

that yielded the most accurate model. However, researchers using this and other 

methods often do not have the benefit of knowing, a priori, what the best training 

dataset is for their model. In these cases, the question is: what training dataset 

will give the model with the most accurate predictions? While we identify this as 

a direction for future work, in the course of this study we have observed that path 

coverage appears to distinguish particularly good training datasets and comment on 

this here. 

Recall that models are being trained on the results of perturbation experiments. In 

each experiment one or more molecules are perturbed and then some (pre-determined) 
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Fig. 4.6: The x-axis is the set of all possible three-experiment training datasets derived 
from [NWN+08], ordered according to how good each training dataset is (determined in 
terms of how accurate the resulting model's predictions were). The solid line shows the % 
of accurate predictions made by the model trained on the dataset. Note that many datasets 
yield equivalent degrees of accuracy. The dotted line indicates the coverage of the training 
dataset as computed using Equation 4.3. The position of the dot indicates the average 
coverage for all datasets that had the same resulting accuracy. Note the trend of better 
datasets having better coverage. 

set of molecules, called the observables, are measured. Our aim in selecting a training 

dataset is to build a model that predicts the behavior of those same observables under 

a range of different perturbation conditions. 

In order to understand the properties of a good training set, we analyzed all 120 of 

the three-experiment training sets that could be derived from the data in [NWN+08]. 

We considered the quality of the training set to be the accuracy of the predictions of 

the resulting model. The quality of these datasets are shown in Figure 4.6. 

In careful analysis of these different training datasets, we discovered a correlation 

between training dataset quality and how well the perturbations in the training data 

covered the paths among observables in the network. Formally, let II be the set 

of complete paths connecting all observable and stimulated proteins in the signaling 

network and let P = {Pi, P2? ••-, Pn} be the set of perturbations in the training dataset 

of interest (Pi C V is a subset of the molecules in the network being studied that 

<3 't; 

t 4.' 
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were perturbed in experiment i). We define the coverage measures as 

cm = l{»en:3P6P,Pc,r}| (4 3) 

C(P) is the fraction of all paths connecting observable and stimulated proteins along 

which a perturbation of the training dataset lies. Figure 4.6 shows how this measure 

correlates to the quality of the training set. While the curve is not monotonic, there 

is a clear association between better training datasets and higher coverage scores, as 

computed by the equation above. 

While this is only a preliminary result, intuitively, we expect that datasets that 

perturb more paths in the network may produce better models. By perturbing more 

paths that influence observables, the contribution of more parts of the network are 

represented in the training dataset. The problem in using this measure is that it 

weights all paths equally. Were all paths equally important to the behavior of the 

network, this would be an appropriate assumption. However, the contribution of dif

ferent paths are not all equal (otherwise we would not need to know parameters at 

all). Therefore, an improving this measure, it will be important to take into consider

ation the relative contributions that different paths make to the overall behavior. It 

is unclear as to whether such information can be determined a priori. However, this 

is certainly an area that deserves additional investigation. 
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4.3 Discussion 

The performance of our method on the MCF-7 cell-line perturbation experiments 

underscores the two important focal points of our work: simple models of signaling 

network dynamics are sufficient to capture much of the behavioral complexity of bio

chemical systems and qualitative data can be effectively used to derive meaningful 

parameters for computational models. Using the results from only three independent 

perturbation experiments, our training method identified model parameters that pre

dicted the response of signaling proteins to a variety of other perturbations with over 

85.7% (60 out of 70) accuracy. 

In our analysis we have shown that experimental results can be used to construct 

predictive models even when confidence in the exact values obtained is not high. 

Furthermore, our method can leverage experimental data that is readily available 

from a wide array of other sources including online databases and literature. In such 

sources, it is difficult to know whether the numerical values reported can be applied 

directly to one's system. Nevertheless, the qualitative trends in the data are still 

a rich source of information. Using our method, these trends can now be used to 

train predictive models of signaling networks. Even scientific intuitions and untested 

hypotheses can be easily incorporated into the training process. Having the ability 

to evaluate such unverified (or unverifiable) ideas can be an important step in the 

larger process of gaining scientific insight into a system's characteristics. Our methods 

provide scientists working on cellular signaling this ability. 



107 

Chapter 5 

Tools 

In Chapters 3 and 4 we have discussed two methods for building and executing 

models of signaling network dynamics. In order to make these methods available to 

biologists, we have developed software tools that make it possible to easily construct, 

load, and execute models through a user interface. 

This chapter is broken into two sections. In Section 5.1 we discuss the Pathway-

Oracle software tool, implementing the signaling Petri net simulator. In Section 5.2, 

we discuss the Monarch web application, implementing the deterministic simulator. 

5.1 Pathway Oracle 

In this section, we present the software tool Pathway Oracle [RNR08]. The core 

functionality of this system revolves around the signaling Petri net simulator, de

scribed in Chapter 3. In order to deliver more comprehensive capabilities, its scope 

has been broadened such that it provides an integrated environment for connectivity-

based structural and dynamic analysis of signaling networks, supporting 

• visualization of signaling network connectivity; 

• two versions of the signaling Petri net simulator where 
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— the first allows prediction of signal flow through a given network for a 

specific experimental condition, and 

— the second predicts the difference in signal flow through a given network 

induced by two different experimental conditions; 

• enumeration of the paths connecting arbitrary pairs of nodes in the network; 

and 

• visualization of experimental concentration data on the signaling network dis

play. 

Directions for future versions include expanded capabilities in all three areas of 

analysis—dynamic, structural, and experimental—with a focus on providing effec

tive ways of integrating results from each together. Pathway Oracle has been designed 

in a modular fashion in order to facilitate extension of existing capabilities and the 

addition of new features. 

In the following subsections, we explain the architecture and core concepts un

derlying PathwayOracle and then examine the individual features, how they can be 

used, and how they compare to existing tools. 

5.1.1 Implementation 

PathwayOracle is written in Python [pyt]. The user experience is oriented around 

visualization of and interaction with three main types of data: the signaling network, 

markings, and paths. At any given time, one signaling network is open, which is the 
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basis for all analyses. Any simulation or concentration data is loaded and inspected 

as markings. Currently all static analyses revolve around paths, which are the third 

data type. In the following subsections, these individual data types and the user 

interfaces to them are discussed in more detail. 

The Signaling Network Model 

While the implementation of our methods use the signaling Petri net model dis

cussed in an earlier section of this paper, we provide a simpler and more convenient 

representation of the network to the user which omits the internal topology of the 

transitions and allows the user to specify interactions simply as either activating or 

inhibiting. Thus, for the remainder of this paper we use the following definition of 

the signaling network which is consistent with the experience the user will have when 

working with Pathway Oracle. The signaling network connectivity is a directed graph 

G = (V, E) where 

• V is the set of nodes, which are signaling proteins and complexes (hereafter 

referred to collectively as signaling nodes) and 

• E is the set of edges, which are signaling interactions. Each edge is of one of 

two types: u —>• v for activation and u H v for inhibition. 

Within Pathway Oracle, each signaling node has a name, unique within the net

work. A signaling edge has no properties besides its type and is only defined by its 

source and target. 
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(a) 

EGFR -> P1-3-K 
EGFR --> Urn 
PTEN | Pi-3-K 
PI-3-K > AKT 
Ras -> e-Raf 

(b) 

Fig. 5.1: An example of a Network in the Connectivity Format, (a) A graphical represen
tation of a signaling network's connectivity, (b) The signaling network in (a) written in the 
Network Connectivity Format. 

In order to facilitate the rapid construction of such signaling network models, we 

devised a file format called the Connectivity Format. It is capable of expressing both 

general networks as well as paths. When representing a network in the format, as 

shown in the example in Figure 5.1(b), one signaling interaction is written on a line 

with the format 

u -> v or u - \ v 

where u is the name of the source signaling node and v is the name of the target 

signaling node. Each node is taken to represent the active form of the protein it is 

named for. Thus, from the example above, the interaction PI-3-K—>AKT means that 

the active form of PI-3-K increases the activity-level of AKT whereas the interac

tion PTENHAKT means that the active form of PTEN decreases the activity-level 
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of AKT. While these types of unparameterized relationships can be represented in 

SBML, SBML was designed for encoding much more information than just connectiv

ity [HFS+03]. As a result, we deemed it appropriate to design a more concise format 

for our purposes. However, in a future release, PathwayOracle will support loading 

and saving in the SBML format. 

At a given point in time, only one signaling network can be open in PathwayOracle. 

The main window displays a graphical representation of the network. The layout of 

the network can be modified by dragging nodes or by s/w/t-clicking on edges to create, 

remove, or move waypoints. These layouts can be saved with the network and loaded 

again. 

Signaling Network Markings 

In signaling networks, signal flow is measured and quantified as the fluctuation 

of concentrations of various forms of signaling proteins over time. In PathwayOracle, 

we model concentrations using the concept of a network marking, which was adapted 

from Petri nets in which it was first used [PRA05]. 

Markings. In PathwayOracle, a marking, // is an assignment of real values to the 

nodes of a signaling network such that every signaling node receives a value. Earlier, 

the concept of a marking was introduced as the assignment of tokens to protein 

places in the signaling Petri net. In a signaling Petri net, tokens are discrete. In 

PathwayOracle, a marking is an average of the markings from many independent 
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simulation runs, which gives rise to the real, rather than integral values, assigned by 

the marking. 

As discussed earlier, the value of the marking of a signaling node, fj,(v), can be 

interpreted as an estimate of the concentration or change in concentration of the 

active form of the signaling protein v (we call the amount of the active form of 

the signaling protein its activity-level). The two different versions of the simulator 

generate markings with these different meanings. The first simulator predicts the 

signal flow due to an experimental condition and generates markings whose values 

are taken to represent the actual activity-level of signaling protein present over the 

assumed basal levels. The second version of the simulator predicts the difference in 

signaling due to changing experimental conditions. The values assigned by markings 

produced by this simulator correspond to the change in the activity-level of the protein 

induced by the change in experimental condition. This will be discussed further in 

the Results and Discussion section. 

Marking Series. In order to model signal flow, a single marking is not enough since 

it only provides a single snapshot of concentrations throughout the network. A mark

ing series is an sequence of markings, (//i, ^2, •••, ^T) in which the marking fj,t is a snap

shot of the concentration distribution at time step t. Thus, it is possible to see how 

the activity-level of protein v changed by plotting the values ni(v), ^(v),..., HT(V)-

Pathway Oracle provides the ability to do this. 
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mTOR/raptor, AKT, EGFR, RSK 
0.3, 0.2, 0.1, 1.1 

2.1, 0.001, 0.1, 1.5 

mTOR/raptor, AKT, EGFR, RSK 
DMSO, 0.3, 0.2, 0.1, 1.1 

EGF.30min, 2.1, 0.001, 0.1, 1.5 
(a) (b) 

Fig. 5.2: Examples of marking series and group file formats, (a) An example marking 
series dataset in the comma-separated value file format. The first row specifies the signaling 
proteins whose concentrations were measured. Each row thereafter specifies the concentra
tion for a given time step: row i specifies the concentrations for each signaling protein at 
time step i — 1. (b) An example marking group dataset in the comma-separated value file 
format. The first row specifies the signaling proteins whose concentrations were measured. 
The first column specifies the names for each marking in the group dataset. The numbers 
in each row specify the concentration measured for each signaling protein in that marking. 

PathwayOracle supports loading a marking series dataset from comma-separated 

value (.csv) files. As shown in Figure 5.2(a), the file has a header row which specifies, 

for each column, the name of the molecule whose concentration values will appear in 

that column. Each subsequent row contains the value assignments for a marking: the 

second row contains the marking for time step 1, the third row contains the marking 

for time step 2, and so on. 

Marking Groups. In many experiments, the activity-level of various proteins are 

sampled at different time points and under different experimental conditions. Since 

the marking series is not able to represent changes due to different experimental 

conditions, we introduced the more general concept of a marking group in which each 

marking can correspond to an arbitrary activity-level distribution. Each marking is 

given a descriptive label that can be used to identify the conditions under which the 

activity-level was sampled. 

Like the marking series, a marking group is loaded from a .est;file. However, unlike 
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the marking series in which each row corresponds to a time step, in the marking group, 

each row corresponds to an independent marking (experimental condition). As shown 

in Figure 5.2(b), the first row is a header row specifying the molecule names for each 

column, the first column specifies the names for the individual markings (experimental 

conditions). 

The Marking Manager 

PathwayOracle includes a specific user-interface, the Marking Manager, designed 

to manage the three different types of markings. The Marking Manager provides a 

central interface within which it is possible to view all markings loaded and inspect 

them in ways that are relevant to their type (marking, marking series, or marking 

group). The specific ways in which markings can be inspected will be discussed further 

in the Results section. 

5.1.2 Signaling Paths 

The current structural analysis capabilities available in PathwayOracle allow in

spection of signaling paths within the network. A signaling path p is a sequence of 

nodes, (fi,f2, • •-,l'fc) where Vi G V VI < i < k, and (v{,Vi + 1) € E VI < i < k. In 

this case, we say that node V\ is the source of path p, and node Vk is the target of p. 

Given a path, a variety of statistics may be of interest to the user. Additionally, it 

may be useful to view the path within the larger network. PathwayOracle provides 

these capabilites which will be discussed in the Results and Discussion section. 
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(a) "~" " ~~ " ~ W ~~~~ ~ "~' 

Fig. 5.3: An example of a Path in the Connectivity Format, (a) A graphical representation 
of two signaling paths, (b) The signaling paths in (a) represented in the Connectivity 
Format. Each line corresponds to a single signaling path. 

Sets of paths can be saved to a file and loaded back into a session. Like networks, 

paths are also stored in the Connectivity Format. When representing a set of paths, 

as shown in Figure 5.3, the full node names and the edge types are written so that 

all path information is directly available within the file itself. One line contains one 

path. 

5.1.3 Results 

Pathway Oracle provides a variety of tools for analyzing the structural and dy

namic properties of a signaling network based on its connectivity. While its main 

differentiating feature is the ability to predict signal flow through a network using 

only the connectivity of the signaling network, PathwayOracle also provides the abil

ity to visualize the network, analyze its connectivity, and inspect concentration-based 

experimental data. 

With the exception of the signaling Petri net simulator, PathwayOracle's features 

can be found in various combinations in other tools. Figure 5.4 provides a matrix 

of the features and capabilities of several tools most commonly-used for signaling 
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Fig. 5.4: A comparison of features supported by tools commonly used for signaling network 
analysis. The table shows the features and analytical capabilities supported by different 
tools commonly used for the analysis of signaling networks. Tools included in the compar
ison are: CellDesigner [FMKT03], Celllllustrator [NDMM03], CellNetAnalyze [KSRG07], 
COPASI [HSG+06], Cytoscape [SMO+03], the System Biology Toolkit for Matlab [SJ06], 
and PathwayOracle. 

network analysis. While other tools support a variety of simulation techniques, Path

wayOracle, alone, provides non-parameterized simulation capabilities. It is worth 

noting that the commercial software package Celllllustrator [FMKT03] provides Petri 

net-based simulation capabilities. The difference between Celllllustrator and Path

wayOracle Petri net approaches is the extensive set of kinetic parameters required 

by Celllllustrator in order to simulate a biological system. In this regard, hybrid 

functional Petri nets, the underlying technology used by Celllllustrator, are not sig

nificantly different from ODEs. 

Another important distinguishing characteristic of PathwayOracle is the combi

nation of features that it supports. Biological network analysis is a multi-faceted 

process that may involve structural, dynamic, and data analysis in parallel. Whereas 

other tools tend to focus on one or two of these general areas of analysis, we consid

ered it important for PathwayOracle to incorporate all three in order to provide the 
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researcher a single environment in which all their analysis could be done. In future 

releases we plan to increase PathwayOracle's support for all three of these directions 

of investigation: structural, dynamic, and data analysis. 

In the remainder of this section, we discuss the features currently available in 

PathwayOracle. 

Network Visualization 

As in many other computational analysis tools for signaling networks (e.g., [SMO+03, 

FMKT03]), an interactive graphical representation of the signaling network connec

tivity is at the center of the PathwayOracle interface. The main window provides a 

visualization of the signaling network connectivity. This visualization interface allows 

the user to edit the layout of the network by clicking on and dragging nodes and by 

s/ii/f-clicking on edges to create, remove, or move waypoints. Waypoints are points 

that lie on an edge. Holding down shift will display all edge waypoints. Existing 

waypoints can be dragged to change the path that an edge follows. Right-clicking on 

a waypoint will remove it. Left-clicking on a straight segment of the edge will create 

a new waypoint. 

The network visualization also provides a view onto which path and experimental 

data analysis may be mapped. As will be discussed in subsequent sections, selected 

paths may be highlighted in this view and markings from experiments can set the 

colorings of individual nodes. 
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Network Signal Flow Simulation 

The main feature differentiating Pathway Oracle from other tools, such as CellDe-

signer [FMKT03] and COPASI [HSG+06], is its ability to simulate signal flow using 

an unparameterized signaling network model. Simulations can be performed in two 

different ways. In the first (Single Simulation), the simulator predicts the signal flow 

through the network for a specific experimental condition. In the second (Differential 

Simulation), the simulator predicts the difference in signal flow due to two different 

experimental conditions on the same network. These simulation methods themselves 

are described in [RMT+08]. Here we focus on how simulations are configured, run, 

and analyzed. 

Whereas the consensus networks typically represent the connectivity in normal 

cells, many experiments are conducted on abnormal cells in which oncogenic muta

tions, gene knockous, and pharmacological inhibitors have altered the behavior of 

various signaling nodes in the network. In Pathway Oracle users can model these cell-

and experiment-specific conditions by specifying each signaling node as either High, 

Low, or Free. The High state models any condition under which a protein's activity-

level is held high for the duration of the experiment. This may be due to external 

stimulation or a known mutation in the protein that makes it constitutively active, 

for example. Similarly, a Low state models any phenomenon that forces a protein 

to have a persistently suppressed activity-level. This may be due to mutations that 

render the protein inactive, gene knockouts, or pharmacological inhibitors that force 
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the activity-level of the protein low. In general, most signaling nodes will be Free, 

which means that their activity-level is unconstrained throughout the simulation. 

Only those nodes designated as High or Low will have their activity-level fixed for the 

duration of the simulation. 

In order for a protein to be held high during the simulation, it is necessary to 

indicate the initial activity-level that the protein will be elevated to. This is done 

by specifying the number of tokens that the protein will receive. Since a protein 

with a High state cannot be inhibited (even if inhibitory edges target it in the actual 

network), the protein's activity level will never fall below this initial value. The initial 

value for a High protein is indicated by placing it in parentheses next to the protein's 

name, as shown in Figure 5.5. 

Two other parameters that must be specified for a simulation are: 

• the number of simulation runs to perform and 

• the number of time blocks 

The number of runs sets the number of independent simulations whose time block 

markings are averaged together to yield the overall simulation markings. In general, 

using more runs is a tradeoff between reliability of the results and simulation speed. 

In practice, the number of runs needed is dependent on the signaling network model 

and should be selected by observing the reproducability of the simulation results. An 

appropriate number of iterations will be large enough so that for a given experimental 

condition, the results are very similar across multiple simulations. 
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Fig. 5.5: The tokenized simulator user interface, (a) The setup window for the tokenized 
simulator. The simulation is being configured to have two High nodes, EGF and LKB-
auto. EGF will be initialized with a token-count of 10, LKB-auto with a token-count of 3. 
The token-count of AMPK will be zero for the duration of the simulation, (b) The setup 
window for the differential simulator. Two different scenarios are being compared through 
simulation: different token assignments are being tried with EGF and LKB-auto, with and 
without AMPK being fixed low. (c) The plot window for the marking series generated by 
a simulation. Observe that the signaling nodes whose activity-levels are plotted correspond 
to those selected in the checklist directly to the left of the plot. 

The time block, as discussed earlier, is a fundamental unit of time in the simulator. 

The appropriate number of time blocks for which to simulate will vary depending on 

the size of the signaling network and the scale of the network behavior of interest. 
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Generally it should be selected by running simulations for a variety of time block 

values and determining which yields the most biologically reasonable activity-level 

changes for a known protein. While this is a manual process in the current version of 

Pathway Oracle, we are investigating automated methods for estimating the number 

of time blocks by training against experimental time series data. 

In Pathway Oracle, the setup window for the Single Simulation (see Figure 5.5(a)) 

prompts the user for a single experimental condition. The setup window for the 

Differential Simulation (see Figure 5.5(b)) prompts the user for two experimental 

conditions. Both simulators produce a marking series. The tokenized simulation 

marking series corresponds to the activity-level time series predicted for the specified 

experimental condition. The differential simulation marking series corresponds to the 

change in activity-levels over time produced by switching from experimental condition 

2 to experimental condition 1. 

The marking series produced by a simulation can be accessed through the Marking 

Manager. Choosing to inspect a marking series will present the user with a blank plot. 

By selecting signaling nodes, the plot is populated by the marking series values for 

individual nodes over time, as shown in Figure 5.5(c). 

While this plot generation capability exists in many other dynamic simulation 

tools, the simplicity of the model used for simulation and the speed with which a sim

ulation runs set PathwayOracle apart from other tools which require specification of 

the numerical values of kinetic parameters for each reaction in the network of interest 
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(e.g., [FMKT03,HSG+06]). Pathway Oracle, because of its novel approach, does not 

have such requirements. It is worth noting, however, where PathwayOracle provides 

approximations of signal flow, an ODE generates the actual concentration changes 

using extremely detailed and accurate models of the underlying biochemistry. The 

simulators in PathwayOracle provide an attractive, time- and resource-saving alterna

tive this more exhaustively parameterized techniques. In particular, PathwayOracle's 

features will benefit researchers interested in quickly assessing characteristics of signal 

flow in their network. 

For some networks, biologists will have partial knowledge of kinetic parameters or 

of other biological details which the signaling Petri net model does not, at present, 

consider. By integrating this knowledge into the simulator, it may be possible to 

improve the simulator's predictions. We identify this as a direction for future inves

tigation. As the signaling Petri net simulator is extended, these new capabilities will 

be incorporated in future releases of PathwayOracle. 

Signaling Path Analysis 

The use of the simulators and plotting tools allows the user to observe trends in 

the activity-level of individual signaling nodes over time. Since the activity-level of a 

node is determined by the activity-level of other nodes in the network, the activity-

level time series of a node may be explained by changes in the activity-level history 

of nodes upstream of it. In order to investigate such indirect interactions, it is useful 

to enumerate all the paths leading from a specific protein to the protein of interest. 
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Pathway Oracle provides this capability. Additionally, it provides various statistics on 

the set of paths linking two signaling nodes as well as a classification of the effect of 

each path as either coherent or incoherent (e.g. [Alo07]). 

A coherent path is a directed series of interactions that leads from x to y such 

that an increase in the activity-level of x causes an increase in the activity of y and 

a decrease in the activity-level of x causes a decrease in the activity-level of y. An 

incoherent path is a directed series of interactions leading from x to y such that an 

increase in the activity-level of x causes a decrease in the activity-level of y and a 

decrease in the activity-level of x causes a increase in the activity-level of y. It is 

possible to classify a path p as either coherent or incoherent by counting the number of 

inhibitory edges along p. A path with an even number of inhibitory edges is coherent; 

a path with an odd number of inhibitory edges is incoherent [KSRLS06]. 

This logic is assumed in Pathway Oracle. All simple paths (paths without loops) 

connecting two specified signaling nodes are enumerated by an exhaustive depth-

first search. These paths then are classified as either coherent or incoherent, and 

presented to the user for further inspection in a window similar to the one shown 

in Figure 5.6(a). When a path is selected in the results window, it is highlighted in 

the main window, allowing the user to evaluate it within the context of the complete 

network (see Figure 5.6(b)). 
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Fig. 5.6: The path interrogation user interface, (a) The result window enumerating the 
set of all paths between Ras and mTOR/raptor. (b) The main network view showing the 
selected path highlighted. 

Experimental D a t a Analysis 

A model of the connectivity of a signaling network makes it possible to identify 

components of the model that are inconsistent with experimental data or visa versa. 

Pathway Oracle enables this kind of analysis by allowing users to load experimental 

concentration data and visualize it both as a heatmap (see Figure 5.7(a)) or superim

posed on the network view (see Figure 5.7(b)). Several other software tools provide 

similar capabilities (e.g., [SMO+03]). In Pathway Oracle, experimental concentration 

data is loaded as a marking group in which a single marking corresponds to a con

dition for which concentrations were sampled. Figure 5.7(a) shows a marking group 

with 24 conditions (rows). The concentration of seven signaling proteins were sam

pled for each condition. This is the heatmap view for the marking group. When a 
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Fig. 5.7: The marking group user interface, (a) The heat map visualization of a marking 
group. The selected marking, MDA231-B-DMS01, is highlighted in blue, (b) The color 
distribution for the selected marking in the group is applied to the network view in the 
main window. Note that signaling nodes for which values were not given are not assigned 
a color on the valid red to green spectrum. 

specific marking in the group is selected, the colors for that marking are applied to the 

network view. This is particularly useful when assessing whether the experimental 

data is consistent with the interactions in the model. In Figure 5.7, the MDA231-B-

DMS02 marking has been superimposed on the network. We can see that RSK has 

a relatively low concentration despite the high concentration of MAPK. Given that, 

in the model, RSK is activated by MAPK, this combination of activity-levels seems 

unlikely to occur. Such an inconsistency suggests that there may be other signaling 

interactions contributing to the overall activity-level of RSK. Such an insight can help 



126 

a researcher quickly identify areas where the model or experimental results need to 

be re-evaluated or improved. 

5.2 Monarch 

In this section we discuss the Monarch software system [RN]. The purpose of 

the Monarch software system is to provide an implementation of the deterministic 

method described in Chapter 4. Because of the computational tools needed to solve 

the optimization problem used by the trainer, deploying Monarch as a stand-alone 

application presents issues both from an installation and a resource standpoint. Thus, 

Monarch is a web application (located at http://www.monarchscience.com) which 

uses a dedicated server to run training and simulation processes. 

This web interface is the major reason that the deterministic simulator has not 

been incorporated into the PathwayOracle software package. In the remainder of this 

section, we will discuss the architecture of the back-end system as well as the features 

supported by the front-end. 

5.2.1 Back-end System Architecture 

Conceptually, the Monarch system consists of three parts: the training algorithm, 

the simulation algorithm, and the front-end. With the exception of one 3rd party tool 

(BONMIN), the entire system is implemented in Python. The training and simulation 

algorithms constitute the back-end. The front-end allows user interaction with these 

http://www.monarchscience.com
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Fig. 5.8: The different components comprising the architecture of the Monarch system. 
The dashed line connecting the Training Algorithm and the Bonmin MINLP Solver indicates 
that the Bonmin solver is run on a separate machine dedicated to running MINLP solving 
jobs. 

algorithms. 

Training Algor i thm 

The training algorithm takes a model of a signaling network's connectivity, the 

number of timesteps for which to parameterize the model, and a set of qualitative 

constraints on the dynamics of the network. It produces a parameterized model of 

the signaling network. The parameterized model is the input connectivity with a 

degradation rate specified for each node and a weight parameter specified for each 

edge. 
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Fig. 5.9: Examples of the input accepted and output produced by the Monarch system: (a) 
the signaling network's connectivity, (b) the qualitative constraints, (c) the parameterized 
model, and (d) the initial conditions for each condition included in the training process. 

Represent ing connectivity. As shown in Figure 5.9(a) and (c), the DOT format 

is used to represent both the model of connectivity as well as the parameterized model 

[GN99]. The DOT format specifies the properties of one node or one edge on each 

line. When parameterized, each node has a retention parameter (= 1 — degredation) 

and each edge has a weight property. 
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Fig. 5.10: Example of how qualitative constraints are derived from a western-blot. In 
this example, the results from the western-blot (a) were used to derive the qualitative 
constraints (b). The experimental data in (a) was generated by conducting two different 
experiments (shown in columns 2 and 4). In lane 2, the cell-line was exposed to EGF, 
which induced the propagation of signal through the EGFR receptor. In lane 4, first a 
TSC2 inhibitor was applied to the cell-line, followed by EGF. The individual activity-levels 
of proteins were measured under both conditions. The EGF stimulation was captured 
by the qualitative constraint "source EGF;" which indicates that the signal will originate 
from the node labeled "EGF". The TSC2 knockout in the second condition is captured 
by the the constraint "knockout P TSC2;" indicates that the node labeled "TSC2" has an 
activity-level of zero under the condition "P". The remaining constraints are derived by 
comparing lanes 2 and 4. For example, comparing mTOR in lane 2 and 4 reveals that 
mTOR had less activity in the control condition than in the perturbed condition. Thus: 
U{mTOR) < P(mTOR). 

Represent ing qualitative constraints. Qualitative constraints, as discussed in 

Chapter 4, assert the relationship between the activity-level of a protein observed in 

one condition versus the activity-level of a protein observed in a second condition. 

Thus, qualitative constraints take the form Ci(X)-C2(X) where C\(X) is the activity-

level of protein X under condition C\, Cz(X) is the activity-level of protein X under 
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condition C2, and • G { < , > , = } is the relation between the two (less-than, greater-

than, or equal, respectively). These constraints can be derived from experiments as 

shown in Figure 5.10: Figure 5.10(a) shows a set of western-blots and (b) shows the 

qualitative constraints that are derived from it. 

The training algorithm uses the input network connectivity and the qualitative 

constraints to construct a mixed-integer non-linear programming problem using the 

formulation discussed in Chapter 4. This problem is then given to the BONMIN 

solver, a program specifically designed to solve such problems. The results returned 

by BONMIN specify the (1) protein retention and interaction weight values for the 

model, (2) the initial condition of the network, and (3) the set of constraints satisfied. 

These details are then presented back to the user through the front-end. 

Simulation Algorithm 

The simulation algorithm accepts a parameterized model of the signaling network's 

connectivity, an initial condition, and a specific number of time steps for which to 

run the simulation. The simulator itself is implemented entirely in Python. The 

simulator computes the activity-level of each protein over the course of the simulation 

and returns these values to the user through the front-end. 

5.2.2 Web Front-end 

The front-end is responsible for delivering dynamically generated web pages to 

the user's browser and receiving jobs submitted by the user through these pages. To 
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Fig. 5.11: The workflow of the Monarch front-end: (a) the process of training a network 
model and (b) the process of simulating the model. 

achieve this purpose, it was implemented as a Django application, which enables the 

rapid development of dynamic content webpages. 

Training a network model. As shown in Figure 5.11(a), the front-end presents 

the user with a page on which to specify inputs. After submitting the training request 

(by clicking the "Train" button, the user sees a "Training in progress" page. When 

training is complete, this page is replaced with a page showing the results of the 

training: a parameterized model and the initial conditions for each condition used 

to train the model. The user is also shown any constraints that are not satisfied by 

the trained model (indicating that not all constraints could be fit to the connectivity 

specified). 

Simulating a network model. Figure 5.11(b) shows the workflow for simulation 

of a network model. The user is presented with a page requesting inputs: (1) a 
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parameterized model of network connectivity, (2) the initial conditions to use as a 

starting point for the simulation, and (3) the number of time steps for which to run 

the simulation. After submitting the simulation request (by clicking the "Simulate" 

button, the user sees a "Simulation in progress" page. When the simulation finishes, 

this page is replaced with a page showing the results of the simulation: the sum-total 

of the activity-level of each protein during the course of the simulation. 
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Chapter 6 

Conclusions and Future Work 

Unraveling and understanding biochemical networks is a central challenge facing 

cellular biological and biomedical research with a multitude of implications for bio-

engineering, clean energy production, and better treatments for devastating diseases 

such as cancer. Limitations of current laboratory technology make it difficult to per

form large-scale analysis and studies on the biological systems of interest, motivating 

the need for good computational or mathematical models that can be investigated 

through other means. 

To date, modeling has involved the use of quantitative data to estimate the pa

rameter values for models. While such models can be very accurate, they require 

significant investments to be made in obtaining the experimental data necessary to 

build them. Often this experimental can be difficult or impossible to obtain. 

In this thesis, we have proposed that qualitative experimental data can be used 

to build predictive computational models of biochemical network dynamics. While 

qualitative data has been used extensively for the purpose of reconstructing network 

connectivity or studying trends in cellular behavior, little work has been done on the 

question of how qualitative data might be used to actually predict the behavior of 

biochemical networks. To this end, in this thesis we have presented two novel methods 

that do exactly this for signaling network dynamics. 
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The signaling Petri net is a method that uses signaling network connectiv

ity as the underlying model. A stochastic simulation method evaluates how signal 

propagates through this network connectivity over time. Under the networks and 

experiments we have used thus far, our method shows the ability to predict the cor

rect behavior of the network over 90% of the time. Because the model used has no 

parameters or weights, it is possible to quickly build models for use with signaling 

Petri nets from existing maps of signaling networks, from online databases such as 

KEGG, and from the collected experience of researchers themselves. 

The Monarch system is a method that also uses signaling network connectivity 

as the underlying model. Unlike the signaling Petri net, this model also has parame

ters whose values are trained using qualitative experimental data—data that is much 

easier to obtain and more readily available from literature and online data repos

itories. Once parameter values are trained, the model can be used to predict the 

dynamics of the signaling network under a variety of conditions. Under a broad array 

of experiment considered here, our method correctly predicts the affect of a network 

perturbation 85% of the time (60 out of 70 predictions). This degree of accuracy is 

competitive with existing ODE-based models that must be trained on quantitative 

data. In general, ODE-based methods require nearly 10 times the amount of training 

data in order to achieve comparable degrees of accuracy. 

We have implemented both of these methods and made them available as the 

software tools PathwayOracle and Monarch. The goal of this investment in imple-
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mentation is to make our methods accessible to experimental and theoretical biologists 

who are in need of such modeling capabilities. 

PathwayOracle is an integrated software environment in which biologists may 

conduct structural and dynamic analysis of signaling networks of interest. This tools 

is distinguished from other tools in the field of systems biology by its ability to pre

dict the signal flow through a network using a simplified, connectivity-based model of 

the signaling network. Simulations are fast and, based on a published study, predic

tors of signal propagation. This novel simulation capability, combined with support 

for structural analysis of connectivity between pairs of proteins and for analysis of 

certain kinds of experimental data make PathwayOracle a powerful asset in the exper

imentalist's endeavor to gain a more complete understanding of the cellular signaling 

network. 

Monarch is a web-based tool that focuses on delivering the ability to quickly build 

and simulate models of signaling network dynamics from connectivity and qualitative 

data. 

6.1 Future Directions 

We consider the success of our methods and tools in predicting the dynamics of 

signaling networks to be compelling evidence in favor of using qualitative data to build 

models of biochemical networks. As our work thus far has considered only signaling 

networks, we identify several directions for future work: 
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Modeling transcription and metabolism Transcriptional networks are responsi

ble for determining how gene expression levels change over time and respond to 

various cellular events. Metabolic networks are responsible for managing and 

regulating the resources available to the cell (e.g., energy and amino acids). As 

important contributors to overall cellular behavior, it is important to identify 

ways of building models of these networks using qualitative data. 

Integrated models of cellular networks Ultimately, cellular behavior emerges from 

the interactions among the different biochemical networks present in the cell. 

Qualitative data is often the only data we have about cell-level events, mak

ing the development of methods for building combined models of transcription, 

signaling, and metabolism from qualitative data important. 

Multi-cellular models Though disease is often investigated on the cellular or sub

cellular levels, most diseases involve the failure of cellular systems: whether 

organ systems or interacting groups of cells (e.g., diabetes results from the 

failure of pancreas, muscle, fat, and liver cells). Thus, building multi-cellular 

models of cellular dynamics is an important long-term goal. 

6.1.1 PathwayOracle 

Our goal is to develop PathwayOracle into an integrated and expansive suite of 

tools that allow the biologist to extract as much information as possible from models 

of signaling network connectivity and experimental data relating to those models. 
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We consider future directions for Pathway Oracle to fall into several categories: net

work construction, network augmentation, experimental and computational analysis 

integration, and architecture. 

One of the benefits of working with connectivity models of signaling networks is 

the abundance of databases and other online resources that publish connectivity-level 

data. Future versions of PathwayOracle will have support for querying such databases 

for connectivity components and, ultimately, for automated connectivity construction 

based on a set of signaling nodes specified by the user. 

Analysis of network connectivity and topology is increasingly relevant to biological 

research. We intend to expand PathwayOracle's structural analysis features to include 

the ability to search for and identify motifs in the signaling networks. 

Network connectivity can also be inferred from experimental data, which provides 

another direction for research and development. By using experimental results to 

identify inconsistencies between experimental results and the current network model, 

it may be possible for PathwayOracle to augment the network with new connectiv

ity based on hints supplied by experimental results. At present only experimental 

concentration data is supported. However, as experiments produce more information 

beyond concentration profiles of signaling nodes, we plan to expand the experimental 

data that PathwayOracle can load, visualize, and use as part of network analyses. 

Experimental results can also provide computational analysis methods information 

that can improve their final predictions or decompositions. Taking advantage of 
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the additional, potentially obfuscated, information present in experimental results to 

improve the results returned by computational tools is a major goal for future versions 

of Pathway Oracle. 

A longer term direction for PathwayOracle is the integration of transcriptional 

and metabolic network analysis. In the biological systems of interest, the behavior of 

any one of these networks is dependent on the characteristics of the other two. As a 

result, developing a complete understanding of signaling, transcriptional regulation, 

or metabolism depends in part on integrating knowledge from the others. 

Finally, an ongoing priority in the design of PathwayOracle is its role as an open 

platform for the development and deployment of new analytical capabilities by other 

groups. Currently PathwayOracle employes a modular architecture that facilitates 

easy integration of new functionality. However, in future releases we plan to expose 

a plugin interface which will make it easier to developers and researchers to develop 

and deploy tools within PathwayOracle. 

6.2 Monarch 

The current version of Monarch provides users the ability to train and simulate 

models of signaling network dynamics through a web interface. Future work on this 

tool will add or improve on a number of capabilities: 

Extend qualitative constraints Currently the language used to specify qualita

tive constraints only allows three relations between molecule activity-levels in 
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different conditions. We recognize the need for a more sophisticated language 

allowing the specification of many other types of qualitative relationships such 

as scaled relations (e.g., U(X) < 2 * P1(X)). 

Integration into PathwayOracle At present, Monarch is a web-based application. 

However, by wrapping all the web-based functions in a simple XML-based API, 

it will be possible to embed all the front-end capabilities in the stand-alone 

client PathwayOracle. 

Qualitative constraints from experimental data Biologists frequently keep ex

perimental results in spreadsheets. Allowing biologists to directly upload these 

experimental results as input qualitative constraints for the training algorithm 

eliminates the time-consuming process of having the biologist convert all their 

experimental observations into individual qualitative constraints. 
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Abbreviations 

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 2 

Ras v-Ha-ras Harvey rat sarcoma, viral oncogene homolog 

c-Raf v-raf-1 murine leukemia viral oncogene homolog 1 

MEK MAPK1,2 kinase 

MAPK1,2 mitogen-activated protein kinase 1,2 

RSK ribosomal protein S6 kinase, 90kDa, polypeptide 1 

PI3K phosphoinositide-3-kinase 

PTEN phosphatase and tensin homolog 

PDK1 pyruvate dehydrogenase kinase, isozyme 1 

AKT v-akt murine thymoma viral oncogene homolog 1 

LKB1 serine/threonine kinase 11 

GSK3/3 glycogen synthase kinase 3 (3 

AMPK protein kinase, AMP-activated, beta 1 non-catalytic subunit 

TSC2 tuberous sclerosis 2 

Rheb Ras homolog enriched in brain 

mTOR Mammalian Target of Rapamycin 

p70S6K ribosomal protein S6 kinase, 70kDa, polypeptide 1 

4EBP1 eukaryotic translation initiation factor 4E binding protein 1 

ODE ordinary differential equation 

siRNA small interfering RNA 

RB Retinoblastoma tumor suppressor protein 
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siRNA small interfering RNA 

PN Petri Net 

SPN Signaling Petri Net 



Bibliography 
143 

[AC03] Aldana M and Cluzel P. A natural class of robust networks. Proceedings 
of the National Academy of Sciences 100(15):8710-8714 (2003) 

[AHL+06] Avruch J, Hara K, Lin Y, Liu M, and Long X. Insulin and amino-acid 
regulation of mTOR signaling and kinase activity through the Rheb 
GTPase. Oncogene 25(48):6361-6372 (2006) 

[Alo07] Alon U. An introduction to systems biology: Design principles of bio
logical circuits. Mathematical and Computational Biology Series (2007) 

[APL05] Araujo R, Petricoin E, and Liotta L. A mathematical model of combi
nation therapy using the EGFR signaling network. BioSystems (2005) 

[BaiOl] Bailey J. Complex biology with no parameters. Nature Biotechnology 
19:503-504 (2001) 

[BFGH06] Blinov M, Faeder J, Goldstein B, and Hlavacek W. A network model of 
early events in epidermal growth factor receptor signaling that accounts 
for combinatorial complexity. BioSystems 83:136-151 (2006) 

[BMRT96] Belloni E, Muenke M, Roessler E, and Traverso G. Identification of 
sonic hedgehog as a candidate gene responsible for holoprosencephaly. 
Nat Genet 14:353-356 (1996) 

[Bra95] Bray D. Protein molecules as computational elements in living cells. 
Nature 376:307-312 (1995) 

[CAS05] Chaves M, Albert R, and Sontag E. Robustness and fragility of boolean 
models for genetic regulatory networks. Journal of Theoretical Biology 
235:431-449 (2005) 

[CFR99] Corbit K, Foster D, and Rosner M. Protein Kinase C delta mediates 
neurogenic but not mitogenic activation of mitogen-activated protein 
kinase in neuronal cells. Molecular and Cellular Biology 19(6):4209-
4218 (1999) 

[Cha07] Chaouiya C. Petri net modelling of biological networks. 
Bioinformatics 8(4):210-219 (2007) 

Briefings in 



144 

[CHC99] Chen T, He H, and Church G. Modeling gene expression with differential 
equations. In Pacific Symposium on Biocomputing, 29-40 (1999) 

[CMW07] Ciliberti S, Martin O, and Wagner A. Robustness can evolve gradually in 
complex regulatory gene networks with varying topology. PLoS Comput 
Biol 3(2):el5 (2007) 

[CRF05] Chen Y, Rodrik V, and Foster D. Alternative phospholipase D/mTOR 
survival signal in human breast cancer cells. Oncogene 24:672-679 (2005) 

[DA05] David R and Alia H. Discrete, Continuous, and Hybrid Petri Nets. 
Springer (2005) 

[DFM+04] Doi A, Fujita S, Matsuno H, Nagasaki M, and Miyano S. Constructing 
biological pathway models with hybrid functional Petri nets. In Silico 
Biology 4(3):271-291 (2004) 

[DGH+04] Dejong H, Gouze J, Hernandez C, Page M, Sari T, and Geiselmann J. 
Qualitative simulation of genetic regulatory networks using piecewise-
linear models. Bulletin of Mathematical Biology 66(2):301-340 (2004) 

[DGM+06] Dojer N, Gambin A, Mizera A, Wilczynski B, and Tiuryn J. Applying 
dynamic bayesian networks to perturbed gene expression data. BMC 
Bioinformatics 7(1):249 (2006) 

[dJGBH04] de Jong H, Geiselmann J, Batt G, and Hernandez C. Qualitative sim
ulation of the initiation of sporulation in Bacillus subtilis. Bulletin of 
Mathematical Biology 66:261-299 (2004) 

[EI04a] Eungdamrong N and Iyengar R. Computational approaches for model
ing regulatory cellular networks. Trends in Cell Biology 14(12):661-669 
(2004) 

[EI04b] Eungdamrong N and Iyengar R. Modeling cell signaling networks. Biol 
Cell 96(5):355-362 (2004) 

[EKL+02] Eker S, Knapp M, Laderoute K, Lincoln P, and Talcott C. Pathway 
logic: Executable models of biological networks. In Electronic Notes in 
Theoretical Computer Science, vol. 71 (2002) 



145 

[FBH+03] Fang Y, Brass A, Hoyle DC, Hayes A, Bashein A, Oliver SG, Waddington 
D, and Rattray M. A model-based analysis of microarray experimental 
error and normalisation. Nucleic Acids Research 31(16):e96 (2003) 

[FCAB05] Feldman D, Carnes C, Abraham WT, and Bristow MR. Mechanisms 
of disease: beta-adrenergic receptors—alterations in signal transduction 
and pharmacogenomics in heart failure. Nature Clinical Practice Car
diovascular Medicine 2:475-483 (2005) 

[FH07] Fisher J and Henzinger TA. Executable cell biology. Nat Biotechnol 
25(11):1239-1249 (2007) 

[FMKT03] Funahashi A, Morohashi M, Kitano H, and Tanimura N. CellDesigner: 
a process diagram editor for gene-regulatory and biochemical networks. 
Biosilico 1:159-162 (2003) 

[FPHS05] Fisher J, Piterman N, Hubbard E, and Stern M. Computational in
sights into Caenorhabditis elegans vulval development. Proceedings of 
the National Academy of Sciences 102(6): 1951-1956 (2005) 

[GBP06] Gianchandani E, Brautigan D, and Papin J. Systems analyses character
ize integrated functions of biochemical networks. Trends in Biochemical 
Sciences 31(5):284-291 (2006) 

[GK73] Glass L and Kauffman S. The logical analysis of continuous, non-linear 
biochemical control networks. J Theor Biol 39:103-129 (1973) 

[GN99] Gansner ER and North SC. An open graph visualization system and its 
applications to software engineering. Software Practice and Experience 
00(Sl):l-5 (1999) 

[Gor99] Goryanin I. Mathematical simulation and analysis of cellular metabolism 
and regulation. Bioinformatics (1999) 

[GSBH07] Grimbs S, Selbig J, Bulik S, and Holzhiitter H. The stability and ro
bustness of metabolic states: identifying stabilizing sites in metabolic 
networks. Mol Syst Biol 3:146 (2007) 



146 

[HF96] Huang C and Ferrell J. Ultrasensitivity in the mitogen-activated pro
tein kinase cascade. Proceedings of the National Academy of Sciences 
93:10078-10083 (1996) 

[HFS+03] Hucka M, Finney A, Sauro H, Bolouri H, and Doyle J. The systems 
biology markup language (SBML): a medium for representation and ex
change of biochemical network models. Bioinformatics 19(4):524-531 
(2003) 

[HR04] Hardy S and Robillard P. Modeling and simulation of molecular biol
ogy systems using Petri nets: modeling goals of various approaches. J 
Bioinform Comput Biol 2(4):619-637 (2004) 

[HSG+06] Hoops S, Sahle S, Gauges R, Lee C, and Pahle J. COPASI - a COmplex 
PAthway Simulator. Bioinformatics 22:3067-3074 (2006) 

[HunOO] Hunter T. Signaling—2000 and beyond. Cell 100(1):113-127 (2000) 

[HW00] Hanahan D and Weinberg R. The hallmarks of cancer. Cell 100(l):57-70 

(2000) 

[IB89] Iyengar R and Birnbaumer L. G Proteins. Academic Press (1989) 

[ICG05] Inoki K, Corradetti MN, and Guan KL. Dysregulation of the TSC-

mTOR pathway in human disease. Nat Genet 37(l):19-24 (2005) 
[IOZ+06] Inoki K, Ouyang H, Zhu T, Lindvall C, and Wang Y. TSC2 integrates 

Wnt and energy signals via a coordinated phosphorylation by AMPK 
and GSK3 to regulate cell growth. Cell 126(5):955-968 (2006) 

[ITMB07] Iyengar M, Talcott C, Mozzachiodi R, and Baxter D. Executable sym
bolic modeling of neural processes. In NETTAB (2007) 

[JBS99] Joneson T and Bar-Sagi D. Suppression of Ras-induced apoptosis by the 
Rac GTPase. Molecular and Cellular Biology 19(9):5892-5901 (1999) 

[JLI00] Jordan J, Landau E, and Iyengar R. Signaling networks: The origins of 
cellular multitasking. Cell 103(2): 193-200 (2000) 



147 

[KAG+08] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, 
Katayama T, Kawashima S, Okuda S, Tokimatsu T, and Yamanishi 
Y. KEGG for linking genomes to life and the environment. Nucleic 
Acids Research 36:D480-D484 (2008) 

[Kau69] Kauffman SA. Metabolic stability and epigenesis in randomly con
structed genetic nets. Journal of Theoretical Biology 22:437-467 (1969) 

[KB05] Klemm K and Bornholdt S. Topology of biological networks and relia
bility of information processing. Proceedings of the National Academy 
of Sciences 102:18414-18419 (2005) 

[KBP+08] Kim J, Bates DG, Postlethwaite I, Heslop-Harrison P, and Cho KH. Lin
ear time-varying models can reveal non-linear interactions of biomolec-
ular regulatory networks using multiple time-series data. Bioinformatics 
24(10):1286-1292 (2008) 

[KC08] Kwon YK and Cho KH. Quantitative analysis of robustness and fragility 
in biological networks based on feedback dynamics. Bioinformatics 
24(7):987-994 (2008) 

[KCCR04] Karbowniczek M, Cash T, Cheung M, and Robertson G. Regulation 
of B-Raf kinase activity by tuberin and Rheb is mTOR-independent. 
Journal of Biological Chemistry 279(29):29930-29937 (2004) 

[KM05] Kwiatkowski D and Manning B. Tuberous sclerosis: a GAP at the 
crossroads of multiple signaling pathways. Human Molecular Genetics 
14(Review Issue 2):R251-R258 (2005) 

[KPST04] Kauffman S, Peterson C, Samuelsson B, and Troein C. Genetic networks 
with canalyzing boolean rules are always stable. Proceedings of the 
National Academy of Sciences 101(49):17102-17107 (2004) 

[KR05] Kriel DP and Russel RR. There is no silver bullet - a guide to low-
level data transforms and normalization methods for microarray data. 
Briefings in Bioinformatics 6(l):86-97 (2005) 

[KSRG07] Klamt S, Saez-Rodriguez J, and Gilles E. Structural and functional 
analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2 
(2007) 



148 

[KSRLS06] Klamt S, Saez-Rodriguez J, Lindquist J, and Simeoni L. A methodology 
for the structural and functional analysis of signaling and regulatory 
networks. BMC Bioinformatics 6:56 (2006) 

[LAA06] Li S, Assmann SM, and Albert R. Predicting essential components of 
signal transduction networks: a dynamic model of guard cell abscisic 
acid signaling. Plos Biol 4(10):e312-e328 (2006) 

[LSG+06] Li C, Suzuki S, Ge Q, Nakata M, and Matsuno H. Structural model
ing and analysis of signaling pathways based on Petri nets. Journal of 
Bioinformatics and Computational Biology 4(5): 1119-1140 (2006) 

[LSX+07] Liang J, Shao S, Xu Z, Hennessy B, and Ding Z. The energy sens
ing LKB1-AMPK pathway regulated p27(kipl) phosphorylation medi
ating the decision to enter autophagy or apoptosis. Nature Cell Biology 
9(2):218-224 (2007) 

[LW08] Liu PK and Wang FS. Inference of biochemical network models in 
S-system using multiobjective optimization approach. Bioinformatics 
24(8): 1085-1092 (2008) 

[Mar08] Martinez A. Preclinical efficacy on GSK-3 inhibitors: Towards a future 
generation of powerful drugs. Med Res Rev 28(5):773-796 (2008) 

[MCEB+05] Ma L, Chen Z, Erdjument-Bromage H, Tempst P, and Pandolfi PP. 
Phosphorylation and functional inactivation of TSC2 by Erk implica
tions for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179—193 
(2005) 

[MK98] Mendes P and Kell DB. Non-linear optimization of biochemical path
ways: applications to metabolic engineering and parameter estimation. 
Bioinformatics 14(10):869-883 (1998) 

[MLLA05] Manning B, Logsdon M, Lipovsky A, and Abbott D. Feedback inhibition 
of Akt signaling limits the growth of tumors lacking Tsc2. Genes & 
Development 19(15):1773-1778 (2005) 

[MOMR08] Muller M, Obeyesekere M, Mills GB, and Ram PT. Network topology 
determines dynamics of the mammalian MAPK1,2 signaling network: 
bifan motif regulation of C-Raf and B-Raf isoforms by FGFR and MC1R. 



149 

The Journal of the Federation of American Societies for Experimental 
Biology 22:1393-1403 (2008) 

[MTA+03] Matsuno H, Tanaka Y, Aoshima H, Doi A, and Matsui M. Biopathways 
representation and simulation on hybrid functional Petri net. In Silico 
Biology 3(3):389-404 (2003) 

[MVG+02] Makris C, Voisin L, Giasson E, Tudan C, and Kaplan D. The Rb-
family protein pl07 inhibits translation by a PDKl-dependent mecha
nism. Oncogene 21(51):7891-7896 (2002) 

[NCF+06] Neve R, Chin K, Fridlyand J, Yeh J, and Baehner F. A collection of 
breast cancer cell lines for the study of functionally distinct cancer sub
types. Cancer Cell 10(6):515-527 (2006) 

[NDMM03] Nagasaki M, Doi A, Matsuno H, and Miyano S. Genomic object net: I. a 
platform for modelling and simulating biopathways. Appl Bioinformatics 
2(3):181-184 (2003) 

[NI02] Neves S and Iyengar R. Modeling of signaling networks. Bioessays (2002) 

[NWN+08] Nelander S, Wang W, Nilsson B, She QB, Pratilas C, Rosen N, Gen-
nemark P, and Sander C. Models from experiments: combinatorial drug 
perturbations of cancer cells. Mol Syst Biol 4:11 (2008) 

[ORS+06] O'Reilly K, Rojo F, She Q, Solit D, and Mills G. mTOR inhibition 
induces upstream receptor tyrosine kinase signaling and activates Akt. 
Cancer Research 66(3): 1500-1508 (2006) 

[PP04] Papin J and Palsson B. The JAK-STAT signaling network in the human 
B-Cell: An extreme signaling pathway analysis. Biophysical Journal 
87:37-46 (2004) 

[PPW+03] Papin J, Price N, Wiback S, Fell D, and Palsson B. Metabolic pathways 
in the post-genome era. Trends in Biochemical Sciences 28(5):250-258 
(2003) 

[PRA05] Peleg M, Rubin D, and Altman R. Using Petri net tools to study proper
ties and dynamics of biological systems. Journal of the American Medical 
Informatics Association 12(2): 181-199 (2005) 



150 

[pyt] Official website for the Python programming language. URL 
http://www.python.org 

[RMT+08] Ruths D, Muller M, Tseng JT, Nakhleh L, and Ram PT. The signaling 
Petri net-based simulator: A non-parametric strategy for characterizing 
the dynamics of cell-specific signaling networks. PLoS Comput Biol 
4(2):el000005 (2008) 

[RN] Ruths D and Nakhleh L. Deriving predictive models of signaling network 
dynamics from qualitative experimental data. Mol Syst Biol Submitted 

[RNR08] Ruths D, Nakhleh L, and Ram P. Rapidly exploring structural and 
dynamic properties of signaling networks using PathwayOracle. BMC 
Syst Biol 2:76 (2008) 

[RSSR09] Ritz A, Shakhnarovich G, Salomon AR, and Raphael BJ. Discovery of 
phosphorylation motif mixtures in phosphoproteomics data. Bioinfor-
matics 25(1):14-21 (2009) 

[SAS05] Sarbassov D, Ali S, and Sabatini D. Growing roles for the mTOR path
way. Current Opinion in Cell Biology 17(6):596-603 (2005) 

[SBSW07] Steggles L, Banks R, Shaw O, and Wipat A. Qualitatively modelling 
and analysing genetic regulatory networks: a Petri net approach. Bioin-
formatics 23(3):336-343 (2007) 

[SCY+08] She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, 
DeFeo-Jones D, Huber HE, and Rosen N. Breast tumor cells with PI3K 
mutation or HER2 amplification are selectively addicted to AKT signal
ing. PLoS ONE 3(8):e3065 (2008) 

[SHK06] Sackmann A, Heiner M, and Koch I. Application of Petri net based anal
ysis techniques to signal transduction pathways. BMC Bioinformatics 
7:482-498 (2006) 

[SJ06] Schmidt H and Jirstrand M. Systems Biology Toolbox for MATLAB: a 
computational platform for research in systems biology. Bioinformatics 
22(4):514-515 (2006) 

http://www.python.org


151 

[SMO+03] Shannon P, Markiel A, Ozier O, Baliga N, and Wang J. Cytoscape: A 
software environment for integrated models of biomolecular interaction 
networks. Genome Res 13(ll):2498-2504 (2003) 

[SV06] Steinhoff C and Vingron M. Normalization and quantification of differ
ential expression in gene expression microarrays. Briefings in Bioinfor-
matics 7(2):166-177 (2006) 

[SVL+92] Sozeri 0 , Vollmer K, Liyanage M, Firth D, Kour G, Mark GE, and 
Stabel S. Activation of the c-Raf protein kinase by protein kinase C 
phosphorylation. Oncogene 7(ll):2259-2262 (1992) 

[THHD07] To T, Henson M, Herzog E, and Doyle F. A molecular model for inter
cellular synchronization in the mammalian circadian clock. Biophysical 
Journal 92:3792-3803 (2007) 


