1,803 research outputs found

    Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction

    Get PDF
    This document is the Accepted Manuscript of the following article: Mohammed Chalouli, Nasr-eddine Berrached, and Mouloud Denai, ‘Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction’, Journal of Failure Analysis and Prevention, Vol. 17 (5): 1053-1066, October 2017. Under embargo. Embargo end date: 31 August 2018. The final publication is available at Springer via DOI: https://doi.org/10.1007/s11668-017-0343-y.Finding reliable condition monitoring solutions for large-scale complex systems is currently a major challenge in industrial research. Since fault diagnosis is directly related to the features of a system, there have been many research studies aimed to develop methods for the selection of the relevant features. Moreover, there are no universal features for a particular application domain such as machine diagnosis. For example, in machine bearing fault diagnosis, these features are often selected by an expert or based on previous experience. Thus, for each bearing machine type, the relevant features must be selected. This paper attempts to solve the problem of relevant features identification by building an automatic fault diagnosis process based on relevant feature selection using a data-driven approach. The proposed approach starts with the extraction of the time-domain features from the input signals. Then, a feature reduction algorithm based on cross-correlation filter is applied to reduce the time and cost of the processing. Unsupervised learning mechanism using K-means++ selects the relevant fault features based on the squared Euclidian distance between different health states. Finally, the selected features are used as inputs to a self-organizing map producing our health indicator. The proposed method is tested on roller bearing benchmark datasets.Peer reviewe

    Multimodal analysis for object classification and event detection

    Get PDF

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed

    MACHINERY ANOMALY DETECTION UNDER INDETERMINATE OPERATING CONDITIONS

    Get PDF
    Anomaly detection is a critical task in system health monitoring. Current practice of anomaly detection in machinery systems is still unsatisfactory. One issue is with the use of features. Some features are insensitive to the change of health, and some are redundant with each other. These insensitive and redundant features in the data mislead the detection. Another issue is from the influence of operating conditions, where a change in operating conditions can be mistakenly detected as an anomalous state of the system. Operating conditions are usually changing, and they may not be readily identified. They contribute to false positive detection either from non-predictive features driven by operating conditions, or from influencing predictive features. This dissertation contributes to the reduction of false detection by developing methods to select predictive features and use them to span a space for anomaly detection under indeterminate operating conditions. Available feature selection methods fail to provide consistent results when some features are correlated. A method was developed in this dissertation to explore the correlation structure of features and group correlated features into the same clusters. A representative feature from each cluster is selected to form a non-correlated set of features, where an optimized subset of predictive features is selected. After feature selection, the influence of operating conditions through non-predictive variables are removed. To remove the influence on predictive features, a clustering-based anomaly detection method is developed. Observations are collected when the system is healthy, and these observations are grouped into clusters corresponding to the states of operating conditions with automatic estimation of clustering parameters. Anomalies are detected if the test data are not members of the clusters. Correct partitioning of clusters is an open challenge due to the lack of research on the clustering of the machinery health monitoring data. This dissertation uses unimodality of the data as a criterion for clustering validation, and a unimodality-based clustering method is developed. Methods of this dissertation were evaluated by simulated data, benchmark data, experimental study and field data. These methods provide consistent results and outperform representatives of available methods. Although the focus of this dissertation is on the application of machinery systems, the methods developed in this dissertation can be adapted for other application scenarios for anomaly detection, feature selection, and clustering
    • …
    corecore