307 research outputs found

    Recent advances in deep learning for object detection

    Get PDF
    Object detection is a fundamental visual recognition problem in computer vision and has been widely studied in the past decades. Visual object detection aims to find objects of certain target classes with precise localization in a given image and assign each object instance a corresponding class label. Due to the tremendous successes of deep learning based image classification, object detection techniques using deep learning have been actively studied in recent years. In this paper, we give a comprehensive survey of recent advances in visual object detection with deep learning. By reviewing a large body of recent related work in literature, we systematically analyze the existing object detection frameworks and organize the survey into three major parts: (i) detection components, (ii) learning strategies, and (iii) applications & benchmarks. In the survey, we cover a variety of factors affecting the detection performance in detail, such as detector architectures, feature learning, proposal generation, sampling strategies, etc. Finally, we discuss several future directions to facilitate and spur future research for visual object detection with deep learning. Keywords: Object Detection, Deep Learning, Deep Convolutional Neural Network

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    An Evaluation of Deep Learning-Based Object Identification

    Get PDF
    Identification of instances of semantic objects of a particular class, which has been heavily incorporated in people's lives through applications like autonomous driving and security monitoring, is one of the most crucial and challenging areas of computer vision. Recent developments in deep learning networks for detection have improved object detector accuracy. To provide a detailed review of the current state of object detection pipelines, we begin by analyzing the methodologies employed by classical detection models and providing the benchmark datasets used in this study. After that, we'll have a look at the one- and two-stage detectors in detail, before concluding with a summary of several object detection approaches. In addition, we provide a list of both old and new apps. It's not just a single branch of object detection that is examined. Finally, we look at how to utilize various object detection algorithms to create a system that is both efficient and effective. and identify a number of emerging patterns in order to better understand the using the most recent algorithms and doing more study

    Deep learning for real-world object detection

    Get PDF

    A survey of face recognition techniques under occlusion

    Get PDF
    The limited capacity to recognize faces under occlusions is a long-standing problem that presents a unique challenge for face recognition systems and even for humans. The problem regarding occlusion is less covered by research when compared to other challenges such as pose variation, different expressions, etc. Nevertheless, occluded face recognition is imperative to exploit the full potential of face recognition for real-world applications. In this paper, we restrict the scope to occluded face recognition. First, we explore what the occlusion problem is and what inherent difficulties can arise. As a part of this review, we introduce face detection under occlusion, a preliminary step in face recognition. Second, we present how existing face recognition methods cope with the occlusion problem and classify them into three categories, which are 1) occlusion robust feature extraction approaches, 2) occlusion aware face recognition approaches, and 3) occlusion recovery based face recognition approaches. Furthermore, we analyze the motivations, innovations, pros and cons, and the performance of representative approaches for comparison. Finally, future challenges and method trends of occluded face recognition are thoroughly discussed

    FBNet: Feedback Network for Point Cloud Completion

    Full text link
    The rapid development of point cloud learning has driven point cloud completion into a new era. However, the information flows of most existing completion methods are solely feedforward, and high-level information is rarely reused to improve low-level feature learning. To this end, we propose a novel Feedback Network (FBNet) for point cloud completion, in which present features are efficiently refined by rerouting subsequent fine-grained ones. Firstly, partial inputs are fed to a Hierarchical Graph-based Network (HGNet) to generate coarse shapes. Then, we cascade several Feedback-Aware Completion (FBAC) Blocks and unfold them across time recurrently. Feedback connections between two adjacent time steps exploit fine-grained features to improve present shape generations. The main challenge of building feedback connections is the dimension mismatching between present and subsequent features. To address this, the elaborately designed point Cross Transformer exploits efficient information from feedback features via cross attention strategy and then refines present features with the enhanced feedback features. Quantitative and qualitative experiments on several datasets demonstrate the superiority of proposed FBNet compared to state-of-the-art methods on point completion task.Comment: The first two authors contributed equally to this work. The source code and model are available at https://github.com/hikvision-research/3DVision/. Accepted to ECCV 2022 as oral presentatio

    Robust object detection in the wild via cascaded DCGAN

    Get PDF
    This research deals with the challenges of object detection at a distance or low resolution in the wild. The main intention of this research is to exploit and cascade state-of-the-art models and propose a new framework for enabling successful deployment for diverse applications. Specifically, the proposed deep learning framework uses state-of-the-art deep networks, such as Deep Convolutional Generative Adversarial Network (DCGAN) and Single Shot Detector (SSD). It combines the above two deep learning models to generate a new framework, namely DCGAN-SSD. The proposed model can deal with object detection and recognition in the wild with various image resolutions and scaling differences. To deal with multiple object detection tasks, the training of this network model in this research has been conducted using different cross-domain datasets for various applications. The efficiency of the proposed model can further be determined by the validation of diverse applications such as visual surveillance in the wild in intelligent cities, underwater object detection for crewless underwater vehicles, and on-street in-vehicle object detection for driverless vehicle technologies. The results produced by DCGAN-SSD indicate that the proposed method in this research, along with Particle Swarm Optimization (PSO), outperforms every other application concerning object detection and demonstrates its great superiority in improving object detection performance in diverse testing cases. The DCGAN-SSD model is equipped with PSO, which helps select the hyperparameter for the object detector. Most object detectors struggle in this regard, as they require manual effort in selecting the hyperparameters to obtain better object detection. This research encountered the problem of hyperparameter selection through the integration of PSO with SSD. The main reason the research conducted with deep learning models was the traditional machine learning models lag in accuracy and performance. The advantage of this research and it is achieved with the integration of DCGAN-SSD has been accommodated under a single pipeline
    corecore