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Deep Learning for Real-World Object Detection
WU Xiongwei

Abstract

Despite achieving significant progresses, most existing detectors are designed to

detect objects in academic contexts but consider little in real-world scenarios. In

real-world applications, the scale variance of objects can be significantly higher

than objects in academic contexts; In addition, existing methods are designed for

achieving localization with relatively low precision, however more precise localiza-

tion is demanded in real-world scenarios; Existing methods are optimized with huge

amount of annotated data, but in certain real-world scenarios, only a few samples are

available. In this dissertation, we aim to explore novel techniques to address these

research challenges to make object detection algorithms practical for real-world ap-

plications.

The first problem is scale-invariant detection. Detecting objects with multiple

scales is covered in existing detection benchmarks. However, in real-world appli-

cations the scale variance of objects is extremely high and thus it requires more

discriminative features. Face detection is a suitable benchmark to evaluate scale-

invariant detection due to the vastly different scales of faces. In this dissertation, we

propose a novel framework of “Feature Agglomeration Networks” (FAN) to build

a new single stage face detector. A novel feature agglomeration block is proposed

to enhance low-level feature representation and the model is optimized in a hier-

archical manner. FAN achieved state-of-the-art results in real world face detection

benchmarks with real-time inference speed.

The second problem is high-quality detection. This challenge requires detectors

to predict more precise localization. In this dissertation, we propose two novel de-

tection frameworks for high-quality detection: “Bidirectional Pyramid Networks”

(BPN) and “KPNet”. In BPN, a Bidirectional Feature Pyramid structure is proposed



for robust feature representations, and a Cascade Anchor Refinement is proposed to

gradually refine the quality of pre-designed anchors. To eliminate the initial anchor

design step in BPN, KPNet is proposed which automatically learns to optimize a

dynamic set of high-quality keypoints without heuristic anchor design. Both BP-

N and KPNet show significant improvement over existing on MSCOCO dataset,

especially in high quality detection settings.

The third problem is few-shot detection, where only a few training samples are

available. Inspired by the principle of meta-learning methods, we propose two nov-

el meta-learning based few-shot detectors: “Meta-RCNN” and “Meta Constrastive

Detector” (MCD). Meta-RCNN learns an binary object detector in an episodic

learning paradigm on the training data with a class-aware attention module, and

it can be end-to-end meta-optimized. Based on Meta-RCNN, MCD follows the

principle of contrastive learning to enhance the feature representation for few-shot

detection, and a new hard negative sampling strategy is proposed to address im-

balance of training samples. We demonstrate the effectiveness of Meta-RCNN and

MCD in few-shot detection on Pascal VOC dataset and obtain promising results.

The proposed techniques address the problems discussed and show significant

improvement on real-world utility.
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Chapter 1

Introduction

In this chapter, we first briefly introduce the background of object detection, and

then we point out the limitations when applying generic detection algorithms into

real-world problems. In this dissertation, we cover three real-world detection prob-

lems: scale-invariant detection, high-quality detection and few-shot detection. For

each of the real-world problem, we present the main challenges of applying exist-

ing detection algorithms, and introduce our proposed methods. Finally we give the

contribution summary and the structure of this dissertation.

1.1 Background

(a) Image Classifica-
tion

(b) Object Detection (c) Semantic Segmen-
tation

(d) Instance Segmenta-
tion

Figure 1.1: Comparison of different visual recognition tasks in computer vision.
(a) “Image Classification” only needs to assign categorical class labels to the im-
age; (b) “Object detection” not only predict categorical labels but also localize each
object instance via bounding boxes; (c) “Semantic segmentation” aims to predict
categorical labels for each pixel, without differentiating object instances; (d) “In-
stance segmentation”, a special setting of object detection, differentiates different
object instances by pixel-level segmentation masks.
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Object detection is a fundamental computer vision problem. In the field of com-

puter vision, there are several fundamental visual recognition problems: image clas-

sification [62], object detection and instance segmentation [48, 60], and semantic

segmentation [14] (see Fig. 1.1). In particular, image classification (Fig 1.1.1(a)),

aims to recognize semantic categories of objects in a given image. Object detection

not only recognizes object categories, but also predicts the location of each objec-

t by a bounding box (Fig. 1.1(b)). Semantic segmentation (Fig. 1.1(c)) aims to

predict pixel-wise classifiers to assign a specific category label to each pixel, thus

providing an even richer understanding of an image. However, in contrast to object

detection, semantic segmentation does not distinguish between multiple objects of

the same category. A relatively new setting at the intersection of object detection

and semantic segmentation, named “instance segmentation” (Fig. 1.1(d)), is pro-

posed to identify different objects and assign each of them a separate categorical

pixel-level mask. In fact, instance segmentation can be viewed as a special set-

ting of object detection, where instead of localizing an object by a bounding box,

pixel-level localization is desired. A good detection algorithm should have a strong

understanding of semantic cues as well as the spatial information about the image.

And thus, object detection is the basic step towards many computer vision applica-

tions, such as face recognition [189, 188, 124], pedestrian detection [105, 69, 2],

video analysis [86, 136], and logo detection [67, 186, 185].

After the success of applying deep convolutional neural networks (DCNN) in-

to image classification task [96], object detection also achieved remarkable pro-

gresses based on DCNN backbone architecture [162, 45]. Currently, deep learn-

ing based object detection frameworks can be primarily divided into two fami-

lies: (i) two-stage detectors, such as Region-based CNN (R-CNN) [48] and its

variants [47, 162, 118] and (ii) one-stage detectors, such as YOLO [157] and its

variants [159, 123]. Two-stage detectors first use a proposal generator to generate

a sparse set of proposals and extract features from each proposal, followed by re-

gion classifiers which predict the category of the proposed region. One-stage detec-
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tors directly make categorical prediction of objects on each location of the feature

maps without the cascaded region classification step. Two-stage detectors com-

monly achieve better detection performance and report state-of-the-art results on

public benchmarks, while one-stage detectors are significantly more time-efficient

and have greater applicability to real-time object detection.

Real-world Object Detection Problems

Scale-invariant 
Detection

High-quality 
Detection

Few-shot
Detection

FAN
Novel Feature Block for 

Multiscale Representations
Chapter 3

BPN
Strong Feature Block and 

Anchor Refinement
Chapter 4

KPNet
Learnable Keypoints

Representations
Chapter 5

Anchor is still 
manually designed

Meta-RCNN
Optimize Detectors under 
Meta-Learning Paradigm

Chapter 6

MCD
Contrastive Learning and 
Hard Negative Sampling

Chapter 7

Need a More 
Discriminative 
Representation

Literature Review

Figure 1.2: The organization of the dissertation

1.2 Real-world Problems

Despite the state-of-the-art performances on public benchmarks, directly applying

existing detection frameworks into real-world problems in not optimal. Real-world

problems open many new challenges such as insufficient training samples, large

scale variance and high localization demand. In this section, we introduce three

important real-world problems: scale-invariant detection, high-quality detection

and few-shot detection. We present the main difficulties of these problems and

introduce our proposed methods. Figure 1.2 shows the organization of the topics in

this dissertation.
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1.2.1 Scale-invariant Detection

The first problem is to detect objects in multiple scales. Although existing detec-

tion benchmarks such as MSCOCO [120] also present multiscale property of the

objects, the scale variance of objects in real-world problems is significantly larger,

which requires the detectors to learn more robust features for prediction. For this

real-world problem, we select face detection as our research topic. Face detection

is a real world computer vision problem to detect human face in the wild. There

is one critical difference between face detection with generic detection: the scale

ranges of object in face detection is much larger than objects in generic detection.

And thus face detection is suitable to validate the algorithms for scale-invariant de-

tection. Considering the properties of face detection, a carefully designed feature

representation of face objects is required to handle varied scales of faces and diverse

characteristics of real-world faces captured from different scenarios. One existing

routine is to train multi-shot single-scale detectors by using the idea of image pyra-

mid to train multiple separate single-scale detectors each of which is tuned for one

specific scale (e.g., the HR detector in [72] trained multiple scale-specific RPN

detectors). However, such approach with the image pyramid is computationally ex-

pensive since it has to pass a very deep network multiple times during inference,

which is also not suitable in real-world applications.

In this dissertation, we propose a novel face detector, FAN [232] with real-time

inference speed, which achieves state-of-the-art results in many public datasets and

is extremely robust to faces with various scales. FAN consists two novel structures,

Feature Agglomerate Block and Hierarchical Loss. Feature Agglomerate Block

integrates adjacent layer features in hierarchical way, which is more robust to learn

scale-invariance features, while Hierarchical Loss makes the whole training process

more stable. FAN is discussed in Chapter 3 in detail.
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1.2.2 High-quality Detection

The second problem is to detect objects with high IoU thresholds. Most existing

object detectors are designed for achieving localization with relatively low-quality

precision, i.e., with a default IoU threshold of 0.5. However, real-world applications

such as autopilot, requires detectors with high localization ability, where the goal is

to achieve higher quality localization precision (IoU=0.7 etc.). Unfortunately, the

detection performance often drops significantly for more precise prediction [10].

There are two major difficulties in real-world high-quality detection: (i) Naively

increasing the IoU threshold during training is not effective since a high IoU will

lead to significantly less amount of positive training samples and thus make the

training results prone to overfitting, especially for single-shot SSD-like detectors.

(ii) In real-world applications, anchor design is non-trivial which requires domain

knowledge and makes the problem even harder to address. The ill-designed anchors

and the heuristic IoU matching strategy significantly can reduce detection accuracy.

In this dissertation we are motivated to investigate an effective single-shot detec-

tion scheme towards high-quality object detection. We first proposed frameworks

BPN. Our proposed framework BPN [214] is based on a set of pre-defined anchors

to match objects and it calibrates the shape of the anchors to better match the object-

s during training. Two novel components are proposed in BPN: anchor refinement

and bidirectional feature pyramid. Bidirectional feature pyramid enhances the fea-

ture representation of objects, while anchor refinement calibrates the shape of prior

anchors to better match the objects. BPN achieves state-of-the-art performance in

high-quality scenario while still keep real-time inference speed.

However, in BPN the initial anchors are still manually designed, and the IoU

threshold is also set heuristically. Based on BPN, we propose an anchor-free frame-

work KPNet which directly regresses object predictions from the learned keypoints

instead of anchors. Different with the existing anchor-free methods where the key-

points layout is fixed, KPNet is able to automatically optimize a dynamic set of
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high-quality keypoints by keypoints predictor, and eliminates the heuristic anchor

design step. A set of high-quality keypoints can be automatically learned from im-

age pixels with different types of objects, and thus shows significant improvement

in detection accuracy, especially in high-quality settings. We will discuss BPN in

Chapter 4 and KPNet in Chapter 5 in detail.

1.2.3 Few-shot Detection

The last problem is to train detectors with only a few annotated images. Although

existing deep learning based detection frameworks achieve remarkable progresses,

all these methods are data hungry, which requires large amounts of annotated data

to learn an immense number of parameters. For object detection, annotating the

data is very expensive (far more than image classification), as it requires not only

identifying the categorical labels for every object in the image, but also providing

accurate localization information through bounding box coordinates. Moreover, in

some real-world applications, such as medical research, it’s often impossible to even

collect sufficient data to annotate. This warrants a need for effective detectors that

can generalize well from small amounts of annotated data. We refer to the problem

of learning detectors from limited labeled data as few-shot detection. For example,

in one-shot detection, only one image is available with objects of interest annotated,

and a detector needs to train on just this image and generalize. When presented

with such small amounts of annotated data, traditional detectors tend to suffer from

overfitting.

Inspired by the fact that humans can learn a new concept from limited training

data, we aim to develop few-shot detection methods based on the principle of meta-

learning [201]. In this dissertation, we first proposed few-shot detection algorithm:

Meta-RCNN. Meta-RCNN is an end to end trainable meta object detector, which

follows the episodic learning paradigm of meta-learning, where multiple few-shot

tasks are simulated based on a give meta-train dataset. The whole model is meta-
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optimized through a novel class-specific attention module followed by a weight-

shared binary classifier. This novel design significantly reduces parameter numbers,

and thus is robust and suitable to few-shot detection problem. Enjoying the merit of

the episodic learning paradigm, Meta-RCNN shows significantly improvement on

public benchmarks.

However, the binary classifier in Meta-RCNN potentially makes it harder to

learn discriminative feature representations for different objects. In few-shot de-

tection problem, a more discriminative feature representation is required. Based

on Meta-RCNN, we further designed a new meta-learning based framework MCD

which follows the principle of contrastive learning, and is trained by hard negative

sampling strategy. MCD is also learned under the episodic learning paradigm, and

the contrastive learning module enables it learning a discriminative representations

in a synergic manner. Furthermore, the hard negative sampling strategy further help

the training process of MCD and increases the effectiveness. We will discuss Meta

R-CNN in Chapter 6 and MCD in Chapter 7 in detail.

1.2.4 Other Real-world Problems

There are some other detection problems in real applications such as logo detection

or video detection. Logo detection and recognition has been studied in comput-

er vision and pattern recognition literature [151, 165, 83]. From a computer vi-

sion perspective, logo recognition, which can be viewed as a special case of image

recognition, aims to recognize the logo name of an input image, and logo detec-

tion is often more challenging in that it not only needs to recognize the logo name

but also need to find the locations of logo objects in the input image. Logo detec-

tion and recognition found a wide range of applications in many domains, such as

product brand recognition for intellectual property protection in e-commerce plat-

forms, vehicle logo recognition for intelligent transportation [151], product brand

management on social media [41], etc. However, most existing studies are based on
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traditional computer vision and regular machine learning approaches, and very few

has explored deep learning techniques. One reason is probably because of lacking

large-scale datasets as deep learning methods are often very data-intensive. The

other reason is logo objects are usually very small with complex contexts, which

is hard for current algorithms to detect. In my research work a large scale logo

datasets “LOGONet” [67] is collected and we conduct a systematic ablation study

based on it. This work is more focused on engineering effort so we omit the detail

of it.

1.3 Summary of Contributions

In this dissertation, we identified limitations of existing object detection algorithms

in real-world problems. Specifically, we analyze three real-world problems: scale-

variant detection, high-quality detection and few-shot detection. We proposed novel

algorithms addressing these problems respectively, and make detection algorithms

applicable to real world applications. We made following contributions in the field

of applying detection algorithms into real-world problems:

Scale-invariant Detection: A novel framework of Feature Agglomeration Net-

works (FAN) is proposed for single stage face detection, which creates a new ef-

fective feature pyramid with rich semantics at all scales by introducing a new hier-

archical agglomerative connection module to agglomerate multi-scale features via

a hierarchical agglomerative manner, with a more effective Hierarchical Loss based

training scheme to train the proposed FAN model in an end-to-end manner, which

enables us to learn discriminative features of the feature pyramid effectively; Com-

prehensive experiments on several public Face Detection benchmarks have been

conducted to evaluate the effectiveness of the proposed FAN framework. FAN de-

tector shows promising results which not only achieves the state-of-the-art perfor-

mances but also runs efficiently with real-time speed on GPU.

High-quality Object Detection: A novel framework of Bidirectional Pyramid Net-
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works (BPN) for single-shot object detector that is designed directly towards high-

quality detection. BPN consists of a novel Bidirection Feature Pyramid Structure

that improves the vanilla Feature Pyramid and a novel Cascaded Anchor Refine-

ment scheme to gradually improve the quality of predefined anchors which are

often inaccurate at the beginning. Extensive experiments on PASCAL VOC and

MSCOCO showed that the proposed method achieved the state-of-the-art results

for high-quality object detection while maintaining the advantage of computational

efficiency.

Although the anchor shapes are refined during training, BPN still requires ini-

tial manually designed anchors. Further we propose an anchor-free detector KPNet

which directly predicts objects via learnable keypoints without manual design. A

dynamic set of high-quality keypoints is automatically optimized from the image

pixels of different types of objects, which learns rich feature representations. Ex-

tensive experiments on MSCOCO showed that the proposed KPNet achieved the

state-of-the-art results.

Few-shot Detection: A novel framework of Meta-RCNN is proposed for few-shot

detection based on meta-learning. The new proposed meta-optimization strategies

make Meta-RCNN robust and is suitable for few-shot detection. Notably, it is based

on vanilla Faster RCNN but all the components of the detector, the object classifier,

the RPN and the bounding box regressor, can be meta-optimized. The whole model

is optimized through a novel class-specific attention module. We conduct extensive

experiments and obtain promising results.

To enhance the representation ability of Meta-RCNN, a novel framework of

Meta Contrastive Detector (MCD) is proposed based on Meta-RCNN. MCD im-

poses contrastive loss between positive and negative samples to achieve more dis-

criminative representation. In addition, we identify two types of negative samples

that have different distributions and effects, and propose a new negative sampling

strategy to further improve the training. The meta-contrastive learning framework

with the new negative sampling strategy makes MCD a state-of-the-art detector in
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few-shot settings. We demonstrate the effectiveness of MCD on both Pascal VOC

and MSCOCO datasets in few-shot settings.

1.4 Dissertation Structure

As shown in Figure 1.2, the remainder of this dissertation is organized as follows:

Chapter 2 is the literature review which gives a comprehensive understanding of

object detection based on deep learning. Next we have studied three real-world de-

tection problems and thus we summarize our works into three parts: scale-invariant

detection (Part I), high-quality detection (Part II) and few-shot detection (Part III).

In Part I, we have one chapter (Chapter 3) to study algorithms for real-world

scale-invariant detection problem. We select face detection benchmarks to validate

our method and we propose FAN with novel feature agglomeration blocks and hi-

erarchical learning method, which achieves state-of-the-art results in face detection

while still keeping real-time inference speed.

In Part II, we have two chapters (Chapter 4 and Chapter 5) to investigate the

methods in high quality detection. In Chapter 4, the new proposed framework BPN

tries to refine ill-defined anchors by cascaded way with more robust bidirectional

feature pyramid blocks. BPN is a real-time detector and achieves state-of-the-art

results in high quality scenarios. In Chapter 5, we point out the limitations of BPN

of using manually defined-anchors and heuristic IoU-based matching strategy. A

new anchor-free framework KPNet is proposed which automatically optimizes a

dynamic set of high quality keypoints from image pixels, without manual design.

In Part III, we have two chapters (Chapter 6 and Chapter 7) to study few-shot

detection by training detectors under the paradigm of meta-learning. In Chapter 6

we propose the Meta-RCNN which follows the episodic learning principle with a

class-aware attention module. In Chapter 7 we present MCD assigns the ability to

Meta-RCNN of learning discriminative feature representations.

Finally, Chapter 8 talks about the future direction of object detection and Chap-
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ter 9 concludes this dissertation.
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Chapter 2

Literature Review

In this section, we present a literature review of the object detection based on deep

learning. The goal of this section is to present a comprehensive understanding of

deep learning based object detection algorithms. Fig. 2.1 shows a taxonomy of

key methodologies to be covered in this section. We review various contribution-

s in deep learning based object detection and categorize them into three groups:

detection components, learning strategies, and applications & benchmarks. For de-

tection components, we first introduce two detection settings: bounding box level

(bbox-level) and pixel mask level (mask-level) localization. Bbox-level algorithms

require to localize objects by rectangle bounding boxes, while more precise pixel-

wise masks are required to segment objects in mask-level algorithms. Next, we

summarize the representative frameworks of two detection families: two-stage de-

tection and one-stage detection. Then we give a detailed survey of each detection

component, including backbone architecture, proposal generation and feature learn-

ing. For learning strategies, we first highlight the importance of learning strategy

of detection due to the difficulty of training detectors, and then introduce the opti-

mization techniques for both training and testing stages in detail. Finally, we review

some real-world object detection based applications including face detection, pedes-

trian detection, logo detection and video analysis. We also discuss publicly available

and commonly used benchmarks and evaluation metrics for these detection tasks.
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Finally we show the state-of-the-art results of different detection scenarios on public

benchmarks over the recent years.

The rest of the section are organized as follows: The history of deep learning

based detection algorithms is listed in Section 2.1. The problem settings of detection

algorithms are listed in Section 2.2. The details of detector components are listed

in Section 2.3. Then the learning strategies are presented in Section 2.4. Detection

algorithms for real-world applications and benchmarks are provided in Section 2.5

and Section 2.6.
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2.1 History of Detection Algorithms

In the early stages, before the deep learning era, the pipeline of object detection was

divided into three steps: (i) proposal generation; (ii) feature vector extraction; and

(iii) region classification. During proposal generation, the objective was to search

locations in the image which may contain objects. These locations are also called

regions of interest (roi). An intuitive idea is to scan the whole image with sliding

windows [200, 202, 59, 26, 203]. In order to capture information about multi-scale

and different aspect ratios of objects, input images were resized into different scales

and multi-scale windows were used to slide through these images. During the sec-

ond step, on each location of the image, a fixed-length feature vector was obtained

from the sliding window, to capture discriminative semantic information of the re-

gion covered. This feature vector was commonly encoded by low-level visual de-

scriptors such as SIFT (Scale Invariant Feature Transform) [128], Haar [116], HOG

(Histogram of Gradients) [26] or SURF (Speeded Up Robust Features) [4], which

showed a certain robustness to scale, illumination and rotation variance. Finally, in

the third step, the region classifiers were learned to assign categorical labels to the

covered regions. Commonly, support vector machines (SVM) [65] were used here

due to their good performance on small scale training data. In addition, some classi-

fication techniques such as bagging [142], cascade learning [203] and adaboost [37]

were used in region classification step, leading to further improvements in detection

accuracy.

Most of the successful traditional methods for object detection focused on care-

fully designing feature descriptors to obtain embedding for a region of interest.

With the help of good feature representations as well as robust region classifiers,

impressive results [227, 32] were achieved on Pascal VOC dataset [31] (a publicly

available dataset used for benchmarking object detection). Notably, deformable part

based machines (DPMs) [33], a breakthrough detection algorithm, were 3-time win-

ners on VOC challenges in 2007, 2008 and 2009. DPMs learn and integrate multiple
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Figure 2.2: Major milestone in object detection research based on deep convolution
neural networks since 2012. The trend in the last year has been designing object
detectors based on anchor-free (in red) and AutoML (in green) techniques, which
are potentially two important research directions in the future. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

part models with a deformable loss and mine hard negative examples with a latent

SVM for discriminative training. However, during 2008 to 2012, the progress on

Pascal VOC based on these traditional methods had become incremental, with mi-

nor gains from building complicated ensemble systems. This showed the limitations

of these traditional detectors. Most prominently, these limitations included: (i) dur-

ing proposal generation, a huge number of proposals were generated, and many of

them were redundant; this resulted in a large number of false positives during clas-

sification. Moreover, window scales were designed manually and heuristically, and

could not match the objects well; (ii) feature descriptors were hand-crafted based on

low level visual cues [129, 141, 4], which made it difficult to capture representative

semantic information in complex contexts. (iii) each step of the detection pipeline

was designed and optimized separately, and thus could not obtain a global optimal

solution for the whole system.

After the success of applying deep convolutional neural networks (DCNN) for

image classification [96, 62], object detection also achieved remarkable progress

based on deep learning techniques [162, 48]. The new deep learning based al-

gorithms outperformed the traditional detection algorithms by huge margins. Deep

convolutional neural network is a biologically-inspired structure for computing hier-
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archical features. An early attempt to build such a hierarchical and spatial-invariant

model for image classification was “neocognitron” [39] proposed by Fukushima.

However, this early attempt lacked effective optimization techniques for supervised

learning. Based on this model, Lecun et al. [100] optimized a convolutional neu-

ral network by stochastic gradient descent (SGD) via back-propagation and showed

competitive performance on digit recognition. After that, however, deep convo-

lutional neural networks were not heavily explored, with support vector machines

becoming more prominent. This was because deep learning had some limitations:

(i) lack of large scale annotated training data, which caused overfitting; (ii) limited

computation resources; and (iii) weak theoretical support compared to SVMs. In

2009, Jia et al. [27] collected a large scale annotated image dataset ImageNet which

contained 1.2M high resolution images, making it possible to train deep models with

large scale training data. With the development of computing resources on parallel

computing systems (such as GPU clusters), in 2012 Krizhevsky et al. [96] trained a

large deep convolutional model with ImageNet dataset and showed significant im-

provement on Large Scale Visual Recognition Challenge (ILSVRC) compared to

all other approaches. After the success of applying DCNN for classification, deep

learning techniques were quickly adapted to other vision tasks and showed promis-

ing results compared to the traditional methods. Figure 2.2 also illustrates the major

developments and milestones of deep learning based object detection techniques

after 2012.

In contrast to hand-crafted descriptors used in traditional detectors, deep con-

volutional neural networks generate hierarchical feature representations from raw

pixels to high level semantic information, which is learned automatically from the

training data and shows more discriminative expression capability in complex con-

texts. Furthermore, benefiting from the powerful learning capacity, a deep convolu-

tional neural network can obtain a better feature representation with a larger dataset,

while the learning capacity of traditional visual descriptors are fixed, and can not

improve when more data becomes available. These properties made it possible to
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design object detection algorithms based on deep convolutional neural networks

which could be optimized in an end-to-end manner, with more powerful feature

representation capability.

2.2 Problem Settings

In this section, we present the formal problem setting for object detection based

on deep learning. Object detection involves both recognition (e.g., “object classi-

fication”) and localization (e.g., “location regression”) tasks. An object detector

needs to distinguish objects of certain target classes from backgrounds in the image

with precise localization and correct categorical label prediction to each object in-

stance. Bounding boxes or pixel masks are predicted to localize these target object

instances.

More formally, assume we are given a collection of N annotated images{
x1, x2, ..., xN

}
, and for ith image xi, there are Mi objects belonging to C cat-

egories with annotations:

yi =

{
(ci1, b

i
1), (c

i
2, b

i
2), ..., (c

i
Mi
, biMi

)

}
(2.1)

where cij( c
i
j ∈ C) and bij (bounding box or pixel mask of the object) denote cate-

gorical and spatial labels of j. th object in xi respectively. The detector is f param-

eterized by θ. For xi, the prediction yipred shares the same format as yi:

yipred =

{
(cipred1

, bipred1
), (cipred2

, bipred2
), ...)

}
(2.2)

Finally a loss function ` is set to optimize detector as:

`(x, θ) =
1

N

N∑
i=1

`(yipred, xi, yi; θ) +
λ

2
‖θ‖22 (2.3)

where the second term is a regularizer, with trade-off parameter λ. Different loss
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functions such as softmax loss [47] and focal loss [119] impact the final detection

performance, and we will discuss these functions in Section 2.4.

At the time of evaluation, a metric called intersection-over-union (IoU) between

objects and predictions is used to evaluate the quality of localization (we omit index

i here):

IoU(bpred, bgt) =
Area(bpred

⋂
bgt)

Area(bpred
⋃
bgt)

(2.4)

Here, bgt refers to the ground truth bbox or mask. An IoU threshold Ω is set to deter-

mine whether a prediction tightly covers the object or not (i.e. IoU ≥ Ω; commonly

researchers set Ω = 0.5). For object detection, a prediction with correct categori-

cal label as well as successful localization prediction (meeting the IoU criteria) is

considered as positive, otherwise it’s a negative prediction:

Prediction =

 Positive cpred = cgt and IoU(bpred, bgt) > Ω

Negative otherwise
(2.5)

For generic object detection problem evaluation, mean average precision (mAP)

over C classes is used for evaluation, and in real world scenarios such as pedestrian

detection, different evaluation metrics are used. The details of evaluation metric for

different detection tasks will be discussed in Section 2.6. In addition to detection

accuracy, inference speed is also an important metric to evaluate object detection

algorithms. Specifically, if we wish to detect objects in a video stream (real-time

detection), it is imperative to have a detector that can process this information quick-

ly. Thus, the detector efficiency is also evaluated on Frame per second (FPS), i.e.,

how many images it can process per second. Commonly a detector that can achieve

an inference speed of 20 FPS, is considered to be a real-time detector.
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2.3 Detection Components

In this section, we introduce different components of object detection. The first is

about the choice of object detection paradigm. We first introduce the concepts of

two detection settings: bbox-level and mask-level algorithms. Then, We introduce

two major object detection paradigms: two-stage detectors and one-stage detectors.

Under these paradigms, detectors can use a variety of deep learning backbone ar-

chitectures, proposal generators, and feature representation modules.

2.3.1 Detection Settings

There are two settings in object detection: (i) vanilla object detection (bbox-level

localization) and (ii) instance segmentation (pixel-level or mask-level localization).

Vanilla object detection has been more extensively studied and is considered as

the traditional detection setting, where the goal is to localize objects by rectan-

gle bounding boxes. In vanilla object detection algorithms, only bbox annotations

are required, and in evaluation, the IoU between predicted bounding box with the

ground truth is calculated to measure the performance. Instance segmentation is a

relatively new setting and is based on traditional detection setting. Instance segmen-

tation requires to segment each object by a pixel-wise mask instead of a rough rect-

angle bounding box. Due to more precise pixel-level prediction, instance segmen-

tation is more sensitive to spatial misalignment, and thus has higher requirement

to process the spatial information. The evaluation metric of instance segmentation

is almost identical to the bbox-level detection, except that the IoU computation is

performed on mask predictions. Though the two detection settings are slightly d-

ifferent, the main components introduced later can mostly be shared by the two

settings.
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2.3.2 Detection Paradigms

Current state-of-the-art object detectors with deep learning can be mainly divided

into two major categories: two-stage detectors and one-stage detectors. For a two-

stage detector, in the first stage, a sparse set of proposals is generated; and in the

second stage, the feature vectors of generated proposals are encoded by deep con-

volutional neural networks followed by making the object class predictions. An

one-stage detector does not have a separate stage for proposal generation (or learn-

ing a proposal generation). They typically consider all positions on the image as

potential objects, and try to classify each region of interest as either background or

a target object. Two-stage detectors often reported state-of-the-art results on many

public benchmark datasets. However, they generally fall short in terms of lower in-

ference speeds. One-stage detectors are much faster and more desired for real-time

object detection applications, but have a relatively poor performance compared to

the two-stage detectors.

Two-stage Detectors

Two-stage detectors split the detection task into two stages: (i) proposal generation;

and (ii) making predictions for these proposals. During the proposal generation

phase, the detector will try to identify regions in the image which may potentially

be objects. The idea is to propose regions with a high recall, such that all objects

in the image belong to at least one of these proposed region. In the second stage,

a deep-learning based model is used to classify these proposals with the right cate-

gorical labels. The region may either be a background, or an object from one of the

predefined class labels . Additionally, the model may refine the original localization

suggested by the proposal generator. Next, we review some of the most influential

efforts among two-stage detectors.

R-CNN [48] is a pioneering two-stage object detector proposed by Girshick et

al. in 2014. Compared to the previous state-of-the-art methods based on a traditional
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detection framework SegDPM [35] with 40.4% mAP on Pascal VOC2010, R-CNN

significantly improved the detection performance and obtained 53.7% mAP. The

pipeline of R-CNN can be divided into three components: (i) proposal generation,

(ii) feature extraction and (iii) region classification. For each image, R-CNN gen-

erates a sparse set of proposals (around 2000 proposals) via Selective Search [199],

which is designed to reject regions that can easily be identified as background re-

gions. Then, each proposal is cropped and resized into a fixed-size region and is

encoded into a (e.g. 4096 dimensional) feature vector by a deep convolutional neu-

ral network, followed by a one-vs-all SVM classifier. Finally the bounding box

regressors are learned using the extracted features as input in order to make the o-

riginal proposals tightly bound the objects. Compared to traditional hand-crafted

feature descriptors, deep neural networks generate hierarchical features and cap-

ture different scale information in different layers, and finally produce robust and

discriminative features for classification. utilize the power of transfer learning, R-

CNN adopts weights of convolutional networks pre-trained on ImageNet. The last

fully connected layer (FC layer) is re-initialized for the detection task. The whole

detector is then finetuned on the pre-trained model. This transfer of knowledge from

the Imagenet dataset offers significant performance gains. In addition, R-CNN re-

jects huge number of easy negatives before training, which helps improve learning

speed and reduce false positives.

However, R-CNN faces some critical shortcomings: (i) the features of each pro-

posal were extracted by deep convolutional networks separately (i.e., computation

was not shared), which led to heavily duplicated computations. Thus, R-CNN was

extremely time-consuming for training and testing; (ii) the three steps of R-CNN

(proposal generation, feature extraction and region classification) were independent

components and the whole detection framework could not be optimized in an end-

to-end manner, making it difficult to obtain global optimal solution; and (iii) Se-

lective Search relied on low-level visual cues and thus struggled to generate high

quality proposals in complex contexts. Moreover, it is unable to enjoy the benefits
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of GPU acceleration.

Inspired by the idea of spatial pyramid matching (SPM) [91], He et al. proposed

SPP-net [61] to accelerate R-CNN as well as learn more discriminative features.

Instead of cropping proposal regions and feeding into CNN model separately, SPP-

net computes the feature map from the whole image using a deep convolutional

network and extracts fixed-length feature vectors on the feature map by a Spatial

Pyramid Pooling (SPP) layer. SPP partitions the feature map into an N × N grid,

for multiple values of N (thus allowing obtaining information at different scales),

and performs pooling on each cell of the grid, to give a feature vector. The feature

vectors obtained from each N × N grid are concatenated to give the representa-

tion for the region. The extracted features are fed into region SVM classifiers and

bounding box regressors. In contrast to RCNN, SPP-layer can also work on im-

ages/regions at various scales and aspect ratios without resizing them. Thus, it does

not suffer from information loss and unwanted geometric distortion.

SPP-net achieved better results and had a significantly faster inference speed

compared to R-CNN. However, the training of SPP-net was still multi-stage and

thus it could not be optimized end-to-end (and required extra cache memory to s-

tore extracted features). In addition, SPP layer did not back-propagate gradients to

convolutional kernels and thus all the parameters before the SPP layer were frozen.

This significantly limited the learning capability of deep backbone architectures.

Girshick et al. proposed Fast R-CNN [47], a multi-task learning detector which

addressed these two limitations of SPP-net. Fast R-CNN (like SPP-Net) also com-

puted a feature map for the whole image and extracted fixed-length region features

on the feature map. Different from SPP-net, Fast R-CNN used ROI Pooling layer

to extract region features. ROI pooling layer is a special case of SPP which on-

ly takes a single scale (i.e., only one value of N for the N × N grid) to partition

the proposal into fixed number of divisions, and also backpropagated error signals

to the convolution kernels. After feature extraction, feature vectors were fed into

a sequence of fully connected layers before two sibling output layers: classifica-
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tion layer (cls) and regression layer (reg). Classification layer was responsible for

generating softmax probabilities over C+1 classes (C classes plus one background

class), while regression layer encoded 4 real-valued parameters to refine bounding

boxes. In Fast RCNN, the feature extraction, region classification and bounding box

regression steps can all be optimized end-to-end, without extra cache space to store

features (unlike SPP Net). Fast R-CNN achieved a much better detection accuracy

than R-CNN and SPP-net, and had a better training and inference speed.

Despite the progress in learning detectors, the proposal generation step still re-

lied on traditional methods such as Selective Search [199] or Edge Boxes [256],

which were based on low-level visual cues and could not be learned in a data-driven

manner. To address this issue, Faster R-CNN [162] was developed which relied on

a novel proposal generator: Region Proposal Network (RPN). This proposal gener-

ator could be learned via supervised learning methods. RPN is a fully convolutional

network which takes an image of arbitrary size and generates a set of object pro-

posals on each position of the feature map. The network slid over the feature map

using an n × n sliding window, and generated a feature vector for each position.

The feature vector was then fed into two sibling output branches, object classifica-

tion layer (which classified whether the proposal was an object or not) and bounding

box regression layer. These results were then fed into the final layer for the actual

object classification and bounding box localization. RPN could be inserted into Fast

R-CNN and thus the whole framework could be optimized in an end-to-end manner

on training data. This way RPN enabled proposal generation in a data driven man-

ner, and was also able to enjoy the discriminative power of deep backbone networks.

Faster R-CNN was able to make predictions at 5FPS on GPU and achieved state-

of-the-art results on many public benchmark datasets, such as Pascal VOC 2007,

2012 and MSCOCO. Currently, there are huge number of detector variants based

on Faster R-CNN for different usage [10, 118, 95, 5].

Faster R-CNN computed feature map of the input image and extracted region

features on the feature map, which shared feature extraction computation across dif-
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ferent regions. However, the computation was not shared in the region classification

step, where each feature vector still needed to go through a sequence of FC layers

separately. Such extra computation could be extremely large as each image may

have hundreds of proposals. Simply removing the fully connected layers would re-

sult in the drastic decline of detection performance, as the deep network would have

reduced the spatial information of proposals. Dai et al. [24] proposed Region-based

Fully Convolutional Networks (R-FCN) which shared the computation cost in the

region classification step. R-FCN generated a Position Sensitive Score Map which

encoded relative position information of different classes, and used a Position Sen-

sitive ROI Pooling layer (PSROI Pooling) to extract spatial-aware region features by

encoding each relative position of the target regions. The extracted feature vectors

maintained spatial information and thus the detector achieved competitive results

compared to Faster R-CNN without region-wise fully connected layer operations.

Another issue with Faster R-CNN was that it used a single deep layer feature

map to make the final prediction. This made it difficult to detect objects at different

scales. In particular, it was difficult to detect small objects. In DCNN feature rep-

resentations, deep layer features are semantically-strong but spatially-weak, while

shallow layer features are semantically-weak but spatially-strong. Lin et al. [118]

exploited this property and proposed Feature Pyramid Networks (FPN) which com-

bined deep layer features with shallow layer features to enable object detection in

feature maps at different scales. The main idea was to strengthen the spatially strong

shallow layer features with rich semantic information from the deeper layers. FPN

achieved significant progress in detecting multi-scale objects and has been wide-

ly used in many other domains such as video detection [85, 57] and human pose

recognition [156, 146].

Most instance segmentation algorithms are extended from vanilla object detec-

tion algorithms. Early methods [149, 148, 23] commonly generated segment pro-

posals, followed by Fast RCNN for segments classification. Later, Dai et al. [23]

proposed a multi-stage algorithm named “MNC” which divided the whole detection
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framework into multiple stages and predicted segmentation masks from the learned

bounding box proposals, which were later categorized by region classifiers. These

early works performed bbox and mask prediction in multiple stages. To make the

whole process more flexible, He et al. [60] proposed Mask R-CNN, which predict-

ed bounding boxes and segmentation masks in parallel based on the proposals and

reported state-of-the-art results. Based on Mask R-CNN, Huang et al. [75] proposed

a mask-quality aware framework, named Mask Scoring R-CNN, which learned the

quality of the predicted masks and calibrated the misalignment between mask qual-

ity and mask confidence score.

Figure 2.3 gives an overview of the detection frameworks for several represen-

tative two-stage detectors.
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Figure 2.3: Overview of different two-stage detection frameworks for generic object
detection. Red dotted rectangles denote the outputs that define the loss functions.

One-stage Detectors

Different from two-stage detection algorithms which divide the detection pipeline

into two parts: proposal generation and region classification; one-stage detectors do

not have a separate stage for proposal generation (or learning a proposal generation).

They typically consider all positions on the image as potential objects, and try to

classify each region of interest as either background or a target object.
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One of the early successful one-stage detectors based on deep learning was de-

veloped by Sermanet et al. [171] named OverFeat. OverFeat performed object de-

tection by casting DCNN classifier into a fully convolutional object detector. Object

detection can be viewed as a ”multi-region classification” problem, and thus Over-

Feat extended the original classifier into detector by viewing the last FC layers as

1x1 convolutional layers to allow arbitrary input. The classification network output

a grid of predictions on each region of the input to indicate the presence of an objec-

t. After identifying the objects, bounding box regressors were learned to refine the

predicted regions based on the same DCNN features of classifier. In order to detect

multi-scale objects, the input image was resized into multiple scales which were fed

into the network. Finally, the predictions across all the scales were merged together.

OverFeat showed significant speed strength compared with RCNN by sharing the

computation of overlapping regions using convolutional layers, and only a single

pass forward through the network was required. However, the training of classifiers

and regressors were separated without being jointly optimized.

Later, Redmon et al. [157] developed a real-time detector called YOLO (You

Only Look Once). YOLO considered object detection as a regression problem and

spatially divided the whole image into fixed number of grid cells (e.g. using a 7× 7

grid). Each cell was considered as a proposal to detect the presence of one or more

objects. In the original implementation, each cell was considered to contain the cen-

ter of (upto) two objects. For each cell, a prediction was made which comprised the

following information: whether that location had an object, the bounding box coor-

dinates and size (width and height), and the class of the object. The whole frame-

work was a single network and it omitted proposal generation step which could be

optimized in an end-to-end manner. Based on a carefully designed lightweight ar-

chitecture, YOLO could make prediction at 45 FPS, and reach 155 FPS with a more

simplified backbone. However, YOLO faced some challenges: (i) it could detect

upto only two objects at a given location, which made it difficult to detect small

objects and crowded objects [157]. (ii) only the last feature map was used for pre-
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diction, which was not suitable for predicting objects at multiple scales and aspect

ratios.

In 2016, Liu et al. proposed another one-stage detector Single-Shot Mulibox

Detector (SSD) [123] which addressed the limitations of YOLO. SSD also divided

images into grid cells, but in each grid cell, a set of anchors with multiple scales and

aspect-ratios were generated to discretize the output space of bounding boxes (un-

like predicting from fixed grid cells adopted in YOLO). Each anchor was refined by

4-value offsets learned by the regressors and was assigned (C+1) categorical prob-

abilities by the classifiers. In addition, SSD predicted objects on multiple feature

maps, and each of these feature maps was responsible for detecting a certain scale of

objects according to its receptive fields. In order to detect large objects and increase

receptive fields, several extra convolutional feature maps were added to the original

backbone architecture. The whole network was optimized with a weighted sum of

localization loss and classification loss over all prediction maps via an end-to-end

training scheme. The final prediction was made by merging all detection results

from different feature maps. In order to avoid huge number of negative proposals

dominating training gradients, hard negative mining was used to train the detector.

Intensive data augmentation was also applied to improve detection accuracy. SSD

achieved comparable detection accuracy with Faster R-CNN but enjoyed the ability

to do real-time inference.

Without proposal generation to filter easy negative samples, the class imbal-

ance between foreground and background is a severe problem in one-stage detector.

Lin et al. [119] proposed a one-stage detector RetinaNet which addressed class

imbalance problem in a more flexible manner. RetinaNet used focal loss which sup-

pressed the gradients of easy negative samples instead of simply discarding them.

Further, they used feature pyramid networks to detect multi-scale objects at different

levels of feature maps. Their proposed focal loss outperformed naive hard negative

mining strategy by large margins.

Redmon et al. proposed an improved YOLO version, YOLOv2 [159] which
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significantly improved detection performance but still maintained real-time infer-

ence speed. YOLOv2 adopted a more powerful deep convolutional backbone ar-

chitecture which was pre-trained on higher resolution images from ImageNet (from

224× 224 to 448× 448), and thus the weights learned were more sensitive to cap-

turing fine-grained information. In addition, inspired by the anchor strategy used in

SSD, YOLOv2 defined better anchor priors by k-means clustering from the training

data (instead of setting manually). This helped in reducing optimizing difficulties

in localization. Finally integrating with Batch Normalization layers [76] and multi-

scale training techniques, YOLOv2 achieved state-of-the-art detection results at that

time.

The previous approaches required designing anchor boxes manually to train a

detector. Later a series of anchor-free object detectors were developed, where the

goal was to predict keypoints of the bounding box, instead of trying to fit an object

to an anchor. Law and Deng proposed a novel anchor-free framework Corner-

Net [98] which detected objects as a pair of corners. On each position of the feature

map, class heatmaps, pair embeddings and corner offsets were predicted. Class

heatmaps calculated the probabilities of being corners, and corner offsets were used

to regress the corner location. And the pair embeddings served to group a pair of

corners which belong to the same objects. Without relying on manually designed

anchors to match objects, CornerNet obtained significant improvement on MSCO-

CO datasets. Later there were several other variants of keypoint detection based

one-stage detectors [243, 29].

Figures 2.4 gives an overview of different detection frameworks for several rep-

resentative one-stage detectors.

2.3.3 Backbone Architecture

R-CNN [48] showed adopting convolutional weights from models pre-trained on

large scale image classification problem could provide richer semantic information
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Figure 2.4: Overview of different one-stage detection frameworks for generic object
detection. Red rectangles denotes the outputs that define the objective functions.

to train detectors and enhanced the detection performance. During the later years,

this approach had become the default strategy for most object detectors. In this

section, we will first briefly introduce the basic concept of deep convolutional neural

networks and then review some architectures which are widely used for detection.

Basic Architecture of A CNN

Deep convolutional neural network (DCNN) is a typical deep neural network and

has proven extremely effective in visual understanding [100, 96]. Deep convolution-

al neural networks are commonly composed of a sequence of convolutional layers,

pooling layers, nonlinear activation layers and fully connected layers (FC layers).

Convolutional layer takes an image input and convolves over it by n × n kernels

to generate a feature map. The generated feature map can be regarded as a multi-

channel image and each channel represents different information about the image.

Each pixel in the feature map (named neuron) is connected to a small portion of

adjacent neurons from the previous map, which is called the receptive field. After

generating feature maps, a non-linear activation layer is applied. Pooling layers are

used to summarize the signals within the receptive fields, to enlarge receptive fields

as well as reduce computation cost, .

With the combination of a sequence of convolutional layers, pooling layers and

non-linear activation layers, the deep convolutional neural network is built. The
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whole network can be optimized via a defined loss function by gradient-based op-

timization method (stochastic gradient descent [164], Adam [90], etc.). A typical

convolutional neural network is AlexNet [96], which contains five convolutional

layers, three max-pooling layers and three fully connected layers. Each convolu-

tional layer is followed by a ReLU [137] non-linear activation layer.

CNN Backbone for Object Detection

In this section, we will review some architectures which are widely used in object

detection tasks with state-of-the-art results, such as VGG16 [162, 47], ResNet [62,

24], ResNeXt [119] and Hourglass [98].

VGG16 [181] was developed based on AlexNet. VGG16 is composed of five

groups of convolutional layers and three FC layers. There are two convolutional

layers in the first two groups and three convolutional layers in the next three groups.

Between each group, a Max Pooling layer is applied to decrease spatial dimension.

VGG16 showed that increasing depth of networks by stacking convolutional layers

could increase the model’s expression capability, and led to a better performance.

However, increasing model depth to 20 layers by simply stacking convolutional

layers led to optimization challenges with SGD. The performance declined signifi-

cantly and was inferior to shallower models, even during the training stages. Based

on this observation, He et al. [62] proposed ResNet which reduced optimization dif-

ficulties by introducing shortcut connections. Here, a layer could skip the nonlinear

transformation and directly pass the values to the next layer as is (thus giving us an

implicit identity layer). This is given as:

xl+1 = xl + fl+1(xl, θ) (2.6)

where xl is the input feature in l-th layer and fl+1 denotes operations on input xl

such as convolution, normalization or non-linear activation. fl+1(xl, θ) is the resid-

ual function to xl, so the feature map of any deep layer can be viewed as the sum
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of the activation of shallow layer and the residual function. Shortcut connection

creates a highway which directly propagates the gradients from deep layers to shal-

low units and thus, significantly reduces training difficulty. With residual blocks

effectively training networks, the model depth could be increased (e.g. from 16 to

152), allowing us to train very high capacity models. Later, He et al. [63] proposed

a pre-activation variant of ResNet, named ResNet-v2. Their experiments showed

appropriate ordering of the Batch Normalization [76] could further perform bet-

ter than original ResNet. This simple but effective modification of ResNet made it

possible to successfully train a network with more than 1000 layers, and still en-

joyed improved performance due to the increase in depth. Huang et al. argued that

although ResNet reduced the training difficulty via shortcut connection, it did not

fully utilize features from previous layers. The original features in shallow layers

were missing in element-wise operation and thus could not be directly used later.

They proposed DenseNet [73], which retained the shallow layer features, and im-

proved information flow, by concatenating the input with the residual output instead

of element-wise addition:

xl+1 = xl ◦ fl+1(xl, θ) (2.7)

where ◦ denotes concatenation. Chen [16] et al. argued that in DenseNet, the

majority of new exploited features from shallow layers were duplicated and incurred

high computation cost. Integrating the advantages of both ResNet and DenseNet,

they propose a Dual Path Network (DPN) which divides xl channels into two parts:

xdl and xrl . xdl was used for dense connection computation and xrl was used for

element-wise summation, with unshared residual learning branch fdl+1 and f rl+1. The

final result was the concatenated output of the two branches:

xl+1 = (xrl + f rl+1(x
r
l , θ

r)) ◦ (xdl ◦ fdl+1(x
d
l , θ

d)) (2.8)
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Based on ResNet, Xie et al. [215] proposed ResNeXt which considerably re-

duced computation and memory cost while maintaining comparable classification

accuracy. ResNeXt adopted group convolution layers [96] which sparsely connects

feature map channels to reduce computation cost. By increasing group number to

keep computation cost consistent to the original ResNet, ResNeXt captures richer

semantic feature representation from the training data and thus improves backbone

accuracy. Later, Howard et al. [70] set the coordinates equal to number of channels

of each feature map and developed MobileNet. MobileNet significantly reduced

computation cost as well as number of parameters without significant loss in clas-

sification accuracy. This model was specifically designed for usage on a mobile

platform.

In addition to increasing model depth, some efforts explored benefits from in-

creasing model width to improve the learning capacity. Szegedy et al. proposed

GoogleNet with an inception module [192] which applied different scale convolu-

tion kernels (1 × 1, 3 × 3 and 5 × 5) on the same feature map in a given layer.

This way it captured multi-scale features and summarized these features together

as an output feature map. Better versions of this model were developed later with

different design of choice of convolution kernels [193], and introducing residual

blocks [191].

The network structures introduced above were all designed for image classifi-

cation. Typically these models trained on ImageNet are adopted as initialization

of the model used for object detection. However, directly applying this pre-trained

model from classification to detection is sub-optimal due to a potential conflict be-

tween classification and detection tasks. Specifically, (i) classification requires large

receptive fields and wants to maintain spatial invariance. Thus multiple downsam-

pling operation (such as pooling layer) are applied to decrease feature map resolu-

tion. The feature maps generated are low-resolution and spatially invariant and have

large receptive fields. However, in detection, high-resolution spatial information is

required to correctly localize objects; and (ii) classification makes predictions on a
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single feature map, while detection requires feature maps with multiple representa-

tions to detect objects at multiple scales. To bridge the difficulties between the two

tasks, Li et al. introduced DetNet [113] which was designed specifically for detec-

tion. DetNet kept high resolution feature maps for prediction with dilated convolu-

tions to increase receptive fields. In addition, DetNet detected objects on multi-scale

feature maps, which provided richer information. DetNet was pre-trained on large

scale classification dataset while the network structure was designed for detection.

Hourglass Network [139] is another architecture, which was not designed

specifically for image classification. Hourglass Network first appeared in human

pose recognition task [139], and was a fully convolutional structure with a sequence

of hourglass modules. Hourglass module first downsampled the input image via a

sequence of convolutional layer or pooling layer, and upsampled the feature map via

deconvolutional operation. To avoid information loss in downsampling stage, skip

connection were used between downsampling and upsampling features. Hourglass

module could capture both local and global information and thus was very suitable

for object detection. Currently Hourglass Network is widely used in state-of-the-art

detection frameworks [98, 243, 29].

2.3.4 Proposal Generation

Proposal generation plays a very important role in the object detection framework.

A proposal generator generates a set of rectangle bounding boxes, which are po-

tentially objects. These proposals are then used for classification and localization

refinement. We categorize proposal generation methods into four categories: tra-

ditional computer vision methods, anchor-based supervised learning methods, key-

point based methods and other methods. Notably, both one-stage detectors and

two-stage detectors generate proposals, the main difference is two-stage detectors

generates a sparse set of proposals with only foreground or background information,

while one-stage detectors consider each region in the image as a potential propos-
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al, and accordingly estimates the class and bounding box coordinates of potential

objects at each location.

Traditional Computer Vision Methods

These methods generate proposals in images using traditional computer vision

methods based on low-level cues, such as edges, corners, color, etc. These tech-

niques can be categorized into three principles: (i) computing the ’objectness score’

of a candidate box; (ii) merging super-pixels from original images; (iii) generating

multiple foreground and background segments;

Objectness score based methods predict an objectness score of each candidate

box measuring how likely it may contain an object. Arbelaez et al. [1] assigned

objectness score to proposals by classification based on visual cues such as color

contrast, edge density and saliency. Rahtu et al.[153] revisited the idea of Arbe-

laez et al. [1] and introduced a more efficient cascaded learning method to rank the

objectness score of candidate proposals.

Superpixels merging is based on merging superpixels generated from segmen-

tation results. Selective Search [199] was a proposal generation algorithm based

on merging super-pixels. It computed the multiple hierarchical segments generated

by segmentation method [34], which were merged according to their visual factors

(color, areas, etc.), and finally bounding boxes were placed on the merged segments.

Manen et al. [134] proposed a similar idea to merge superpixels. The difference was

that the weight of the merging function was learned and the merging process was

randomized. Selective Search is widely used in many detection frameworks due to

its efficiency and high recall compared to other traditional methods.

Seed segmentation starts with multiple seed regions, and for each seed, fore-

ground and background segments are generated. To avoid building up hierarchical

segmentation, CPMC [11] generated a set of overlapping segments initialized with

diverse seeds. Each proposal segment was the solution of a binary (foreground or

background) segmentation problem. Enreds and Hoiem [30] combined the idea of
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Selective Search [199] and CPMC [11]. It started with super-pixels and merged

them with new designed features. These merged segments were used as seeds to

generate larger segments, which was similar to CPMC. However, producing high

quality segmentation masks is very time-consuming and it’s not applicable to large

scale datasets.

The primary advantage of these traditional computer vision methods is that they

are very simple and can generate proposals with high recall (e.g. on medium scale

datasets such as Pascal VOC). However, these methods are mainly based on low

level visual cues such as color or edges. They cannot be jointly optimized with

the whole detection pipeline. Thus they are unable to exploit the power of large

scale datasets to improve representation learning. On challenging datasets such as

MSCOCO [120], traditional computer vision methods struggled to generate high

quality proposals due to these limitations.

Anchor-based Methods

One large family of supervised proposal generators is anchor-based methods. They

generate proposals based on pre-defined anchors. Ren et al. proposed Region Pro-

posal Network (RPN) [162] to generate proposals in a supervised way based on

deep convolutional feature maps. The network slid over the entire feature map us-

ing 3 × 3 convolution filters. For each position, k anchors (or initial estimates of

bounding boxes) of varying size and aspect ratios were considered. These sizes and

ratios allowed for matching objects at different scales in the entire image. Based on

the ground truth bonding boxes, the object locations were matched with the most

appropriate anchors to obtain the supervision signal for the anchor estimation. A

256−dimensional feature vector was extracted from each anchor and was fed into t-

wo sibling branches - classification layer and regression layer. Classification branch

was responsible for modeling objectness score while regression branch encoded

four real-values to refine location of the bounding box from the original anchor

estimation. Based on the ground truth, each anchor was predicted to either be an
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object, or just background by the classification branch (See Fig. 2.5). Later, SS-

D [123] adopted a similar idea of anchors in RPN by using multi-scale anchors to

match objects. The main difference was that SSD assigned categorical probabilities

to each anchor proposal, while RPN first evaluated whether the anchor proposal was

foreground or background and performed the categorical classification in the next

stage.

Despite promising performance, the anchor priors are manually designed with

multiple scales and aspect ratios in a heuristic manner. These design choices may

not be optimal, and different datasets would require different anchor design strate-

gies. Many efforts have been made to improve the design choice of anchors. Zhang

et al. proposed Single Shot Scale-invariant Face Detector (S3FD) [237] based on

SSD with carefully designed anchors to match the objects. According to the ef-

fective receptive field [132] of different feature maps, different anchor priors were

designed. Zhu et al. [248] introduced an anchor design method for matching small

objects by enlarging input image size and reducing anchor strides. Xie et al. pro-

posed Dimension-Decomposition Region Proposal Network (DeRPN) [102] which

decomposed the dimension of anchor boxes based on RPN. DeRPN used an anchor

string mechanism to independently match objects width and height. This helped

match objects with large scale variance and reduced the searching space.

Ghodrati et al. developed DeepProposals [44] which predicted proposals on the

low-resolution deeper layer feature map. These were then projected back onto the

high-resolution shallow layer feature maps, where they are further refined. Red-

mon et al. [159] designed anchor priors by learning priors from the training data

using k-means clustering. Later, Zhang et al. introduced Single-Shot Refinement

Neural Network (RefineDet) [236] which refined the manually defined anchors in

two steps. In the first step, RefineDet learned a set of localization offsets based on

the original hand-designed anchors and these anchors were refined by the learned

offsets. In the second stage, a new set of localization offsets were learned based

on the refined anchors from the first step for further refinement. This cascaded
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optimization framework significantly improved the anchor quality and final predic-

tion accuracy in a data-driven manner. Cai et al. proposed Cascade R-CNN [10]

which adopted a similar idea as RefineDet by refining proposals in a cascaded way.

Yang et al. [224] modeled anchors as functions implemented by neural networks

which was computed from customized anchors. Their method MetaAnchor showed

comprehensive improvement compared to other manually defined methods but the

customized anchors were still designed manually.

Feature Map For Prediction
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Figure 2.5: Diagram of RPN [162]. Each position of the feature map connects with
a sliding windows, followed with two sibling branches.

Keypoints-based Methods

Another proposal generation approach is based on keypoint detection, which can

be divided into two families: corner-based methods and center-based methods.

Corner-based methods predict bounding boxes by merging pairs of corners learned

from the feature map. Denet [197] reformulated the object detection problem in a

probabilistic way. For each point on the feature map, Denet modeled the distribu-

tion of being one of the 4 corner types of objects (top-left, top-right, bottom-left,
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bottom-right), and applied a naive bayesian classifiers over each corner of the ob-

jects to estimate the confidence score of a bounding box. This corner-based al-

gorithm eliminated the design of anchors and became a more effective method to

produce high quality proposals. Later based on Denet, Law and Deng proposed

CornerNet [98] which directly modeled categorical information on corners. Cor-

nerNet modeled information of top-left and bottom-right corners with novel feature

embedding methods and corner pooling layer to correctly match keypoints belong-

ing to the same objects, obtaining state-of-the-art results on public benchmarks. For

center-based methods, the probability of being the center of the objects is predicted

on each position of the feature map, and the height and width are directly regressed

without any anchor priors. Zhu et al. [247] presented a feature-selection-anchor-

free (FSAF) framework which could be plugged into one-stage detectors with FPN

structure. In FSAF, an online feature selection block is applied to train multi-level

center-based branches attached in each level of the feature pyramid. During training,

FSAF dynamically assigned each object to the most suitable feature level to train

the center-based branch. Similar to FSAF, Zhou et al. proposed a new center-based

framework [243] based on a single Hourglass network [98] without FPN structure.

Furthermore, they applied center-based method into higher-level problems such as

3D-detection and human pose recognition, and all achieved state-of-the-art result-

s. Duan et al. [29] proposed CenterNet, which combined the idea of center-based

methods and corner-based methods. CenterNet first predicted bounding boxes by

pairs of corners, and then predicted center probabilities of the initial prediction to

reject easy negatives. CenterNet obtained significant improvements compared with

baselines. These anchor-free methods form a promising research direction in the

future.

Other Methods

There are some other proposal generation algorithms which are not based on key-

points or anchors but also offer competitive performances. Lu et al. proposed
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AZnet [131] which automatically focused on regions of high interest. AZnet adopt-

ed a search strategy that adaptively directed computation resources to sub-regions

which were likely contain objects. For each region, AZnet predicted two values:

zoom indicator and adjacency scores. Zoom indicator determined whether to further

divide this region which may contain smaller objects and adjacency scores denoted

its objectness. The starting point was the entire image and each divided sub-region

is recursively processed in this way until the zoom indicator is too small. AZnet

was better at matching sparse and small objects compared to RPN’s anchor-object

matching approach.

2.3.5 Feature Representation Learning

Feature Representation Learning is a critical component in the whole detection

framework. Target objects lie in complex environments and have large variance in

scale and aspect ratios. There is a need to train a robust and discriminative feature

embedding of objects to obtain a good detection performance. In this section, we

introduce feature representation learning strategies for object detection. Specifical-

ly, we identify three categories: multi-scale feature learning, contextual reasoning,

and deformable feature learning.

Multi-scale Feature Learning

Typical object detection algorithms based on deep convolutional networks such as

Fast R-CNN [47] and Faster R-CNN [162] use only a single layer’s feature map to

detect objects. However, detecting objects across large range of scales and aspect

ratios is quite challenging on a single feature map. Deep convolutional networks

learn hierarchical features in different layers which capture different scale informa-

tion. Specifically, shallow layer features with spatial-rich information have high-

er resolution and smaller receptive fields and thus are more suitable for detecting

small objects, while semantic-rich features in deep layers are more robust to illu-
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mination, translation and have larger receptive fields (but coarse resolutions), and

are more suitable for detecting large objects. When detecting small objects, high

resolution representations are required and the representation of these objects may

not even be available in the deep layer features, making small object detection diffi-

cult. Some techniques such as dilated/atrous convolutions [25, 24] were proposed to

avoid downsampling, and used the high resolution information even in the deeper

layers. At the same time, detecting large objects in shallow layers are also non-

optimal without large enough receptive fields. Thus, handling feature scale issues

has become a fundamental research problem within object detection. There are four

main paradigms addressing multi-scale feature learning problem: Image Pyramid,

Prediction Pyramid, Integrated Features and Feature Pyramid. These are briefly

illustrated in the Fig. 2.6.
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Figure 2.6: Four paradigms for multi-scale feature learning. Top Left: Image Pyra-
mid, which learns multiple detectors from different scale images; Top Right: Pre-
diction Pyramid, which predicts on multiple feature maps; Bottom Left: Integrated
Features, which predicts on single feature map generated from multiple features;
Bottom Right: Feature Pyramid which combines the structure of Prediction Pyra-
mid and Integrated Features.

Image pyramid: An intuitive idea is to resize input images into a number of

different scales (Image Pyramid) and to train multiple detectors, each of which is

responsible for a certain range of scales [182, 72, 220, 126]. During testing, im-

ages are resized to different scales followed by multiple detectors and the detection
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Figure 2.7: General framework for feature combination. Top-down features are
2 times up-sampled and fuse with bottom-up features. The fuse methods can be
element-wise sum, multiplication, concatenation and so on. Convolution and nor-
malization layers can be inserted in to this general framework to enhance semantic
information and reduce memory cost.

results are merged. This can be computationally expensive. Liu et al. [126] first

learned a light-weight scale-aware network to resize images such that all objects

were in a similar scale. This was followed by learning a single scale detector. Singh

et. al. [182] conducted comprehensive experiments on small object detection. They

argued that learning a single scale-robust detector to handle all scale objects was

much more difficult than learning scale-dependent detectors with image pyramid-

s. In their work, they proposed a novel framework Scale Normalization for Image

Pyramids (SNIP) [182] which trained multiple scale-dependent detectors and each

of them was responsible for a certain scale objects.

Integrated features: Another approach is to construct a single feature map by

combining features in multiple layers and making final predictions based on the

new constructed map [180, 5, 95, 205, 88, 167]. By fusing spatially rich shallow

layer features and semantic-rich deep layer features, the new constructed features

contain rich information and thus can detect objects at different scales. These com-

binations are commonly achieved by using skip connections [62]. Feature normal-

ization is required as feature norms of different layers have a high variance. Bell et

al. proposed Inside-Outside Network (ION) [5] which cropped region features from

different layers via ROI Pooling [47], and combined these multi-scale region fea-

tures for the final prediction. Kong et. al. proposed HyperNet [95] which adopted a
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similar idea as IoN. They carefully designed high resolution hyper feature maps by

integrating intermediate and shallow layer features to generate proposals and detect

objects. Deconvolutional layers were used to up-sample deep layer feature maps and

batch normalization layers were used to normalize input blobs in their work. The

constructed hyper feature maps could also implicitly encode contextual informa-

tion from different layers. Inspired by fine-grained classification algorithms which

integrate high-order representation instead of exploiting simple first-order represen-

tations of object proposals, Wang et al. proposed a novel framework Multi-scale

Location-aware Kernel Representation (MLKP) [205] which captured high-order

statistics of proposal features and generated more discriminative feature represen-

tations efficiently. The combined feature representation was more descriptive and

provides both semantic and spatial information for both classification and localiza-

tion.

Prediction pyramid: Liu et al.’s SSD [123] combined coarse and fine features

from multiple layers together. In SSD, predictions were made from multiple lay-

ers, where each layer was responsible for a certain scale of objects. Later, many

efforts [9, 174, 122] followed this principle to detect multi-scale objects. Yang et

al. [220] also exploited appropriate feature maps to generate certain scale of object

proposals and these feature maps were fed into multiple scale-dependent classifiers

to predict objects. In their work, cascaded rejection classifiers were learned to reject

easy background proposals in early stages to accelerate detection speed. Multi-scale

Deep Convolutional Neural Network (MSCNN) [9] applied deconvolutional layers

on multiple feature maps to improve their resolutions, and later these refined fea-

ture maps were used to make predictions. Liu et al. proposed a Receptive Field

Block Net (RFBNet) [122] to enhance the robustness and receptive fields via a re-

ceptive field block (RFB block). RFB block adopted similar ideas as the inception

module [192] which captured features from multiple scale and receptive fields via

multiple branches with different convolution kernels and finally merged them to-

gether.
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Feature pyramid: To combine the advantage of Integrated Features and Predic-

tion Pyramid, Lin et al. proposed Feature Pyramid Network (FPN) [118] which

integrated different scale features with lateral connections in a top-down fashion to

build a set of scale invariant feature maps, and multiple scale-dependent classifiers

were learned on these feature pyramids. Specifically, the deep semantic-rich fea-

tures were used to strengthen the shallow spatially-rich features. These top-down

and lateral features were combined by element-wise summation or concatenation,

with small convolutions reducing the dimensions. FPN showed significant improve-

ment in object detection, as well as other applications, and achieved state-of-the art

results in learning multi-scale features. Many variants of FPN were later developed

[160, 78, 160, 242, 38, 236, 212, 104, 92, 240, 114, 101, 22], with modifications to

the feature pyramid block (see Fig. 2.7). Kong et al. [94] and Zhang et. al. [236]

built scale invariant feature maps with lateral connections. Different from FPN

which generated region proposals followed by categorical classifiers, their meth-

ods omitted proposal generation and thus were more efficient than original FPN.

Ren et al. [160] and Jeong et al. [78] developed a novel structure which gradual-

ly and selectively encoded contextual information between different layer features.

Inspired by super resolution tasks [117, 176], Zhou et al. [242] developed high res-

olution feature maps using a novel transform block which explicitly explored the

inter-scale consistency nature across multiple detection scales.

Region Feature Encoding

For two-stage detectors, region feature encoding is a critical step to extract features

from proposals into fixed length feature vectors. In R-CNN, Girshick et al. [48]

cropped region proposals from the whole image and resized the cropped regions

into fixed sized patches (224 × 224) via bilinear interpolation, followed by a deep

convolution feature extractor. Their method encoded high resolution region features

but the computation was expensive.

Later Girshick et al. [47] and Ren [162] proposed ROI Pooling layer to encode
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region features. ROI Pooling divided each region into n × n cells (e.g. 7 × 7

by default) and only the neuron with the maximum signal would go ahead in the

feedforward stage. This is similar to max-pooling, but across (potentially) different

sized regions. ROI Pooling extracted features from the down-sampled feature map

and as a result struggled to handle small objects. Dai [23] proposed ROI Warping

layer which encoded region features via bilinear interpolation. Due to the down-

sampling operation in DCNN, there can be a misalignment of the object position

in the original image and the downsampled feature maps, which RoI Pooling and

RoI Warping layers are not able to handle. Instead of quantizing grids border as

ROI Warping and ROI Pooling do, He et al. [60] proposed ROI Align layer which

addressed the quantization issue by bilinear interpolation at fractionally sampled

positions within each grid. Based on ROI Align, Jiang et al. [80] presented Precise

ROI Pooing (PrROI Pooling), which avoided any quantization of coordinates and

had a continuous gradient on bounding box coordinates.

In order to enhance spatial information of the downsampled region features, Dai

et al. [24] proposed Position Sensitive ROI Pooing (PSROI Pooling) which kept

relative spatial information of downsampled features. Each channel of generated

region feature map only corresponded to a subset channels of input region according

to its relative spatial position. Based on PSROI Pooling, Zhai et al. [230] presented

feature selective networks to learn robust region features by exploiting disparities

among sub-region and aspect ratios. The proposed network encoded sub-region

and aspect ratio information which were selectively pooled to refine initial region

features by a light-weight head.

Later, more algorithms were proposed to well encode region features from d-

ifferent viewpoints. Zhu et al. proposed CoupleNet [254] which extracted region

features by combining outputs generated from both ROI Pooling layer and PSROI

Pooling layer. ROI Pooling layer extracted global region information but struggled

for objects with high occlusion while PSROI Pooling layer focused more on local

information. CoupleNet enhanced features generated from ROI Pooling and PSROI
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Pooling by element-wise summation and generated more powerful features. Later

Dai et al. proposed Deformable ROI Pooling [25] which generalized aligned RoI

pooling by learning an offset for each grid and adding it to the grid center. The sub-

grid start with a regular ROI Pooling layer to extract initial region features and the

extracted features were used to regress offset by an auxiliary network. Deformable

ROI Pooling can automatically model the image content without being constrained

by fixed receptive fields.

Contextual Reasoning

Contextual information plays an important role in object detection. Objects of-

ten tend to appear in specific environments and sometimes also coexist with oth-

er objects. For each example, birds commonly fly in the sky. Effectively us-

ing contextual information can help improve detection performance, especially

for detecting objects with insufficient cues (small object, occlusion etc.) Learn-

ing the relationship between objects with their surrounding context can improve

detector’s ability to understand the scenario. For traditional object detection al-

gorithms, there have been several efforts exploring context [40], but for objec-

t detection based on deep learning, context has not been extensively explored.

This is because convolutional networks implicitly already capture contextual in-

formation from hierarchical feature representations. However, some recent effort-

s [62, 144, 21, 253, 60, 23, 60, 15, 45, 9] still try to exploit contextual information.

Some works [19] have even shown that in some cases context information may even

harm the detection performance. In this section we review contextual reasoning for

object detection from two aspects: global context and region context.

Global context reasoning refers to learning from the context in the whole image.

Unlike traditional detectors which attempt to classify specific regions in the image

as objects, the idea here is to use the contextual information (i.e., information from

the rest of the image) to classify a particular region of interest. For example, detect-

ing a baseball ball from an image can be challenging for a traditional detector (as
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it may be confused with balls from other sports); but if the contextual information

from the rest of the image is used (e.g. baseball field, players, bat), it becomes easier

to identify the baseball ball object.

Some representative efforts include ION [5], DeepId [144] and improved ver-

sion of Faster R-CNN [62]. In ION, Bell et al. used recurrent neural network to en-

code contextual information across the whole image from four directions. Ouyang

et al. [144] learned a categorical score for each image which is used as contextu-

al features concatenated with the object detection results. He et al. [62] extracted

feature embedding of the entire image and concatenate it with region features to im-

prove detection results. In addition, some methods [253, 60, 23, 241, 239, 178, 103]

exploit global contextual information via semantic segmentation. Due to precise

pixel-level annotation, segmentation feature maps capture strong spatial informa-

tion. He et al. [60] and Dai et al. [23] learn unified instance segmentation framework

and optimize the detector with pixel-level supervision. They jointly optimized de-

tection and segmentation objectives as a multi-task optimization. Though segmen-

tation can significantly improve detection performance, obtaining the pixel-level

annotation is very expensive. Zhao et al. [241] optimized detectors with pseudo

segmentation annotation and showed promising results. Zhang et al.’s work Detec-

tion with Enriched Semantics (DES) [239], introduced contextual information by

learning a segmentation mask without segemtation annotations. It also jointly op-

timized object detection and segmentation objectives and enriched original feature

map with a more discriminative feature map.

Region context reasoning encodes contextual information surrounding regions

and learns interactions between the objects with their surrounding area. Directly

modeling different locations and categories objects relations with the contextual is

very challenging. Chen et al. proposed Spatial Memory Network (SMN) [15] which

introduced a spatial memory based module. The spatial memory module captured

instance-level contexts by assembling object instances back into a pseudo ”image”

representations which were later used for object relations reasoning. Liu et al. pro-
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posed Structure Inference Net (SIN) [127] which formulated object detection as a

graph inference problem by considering scene contextual information and object

relationships. In SIN, each object was treated as a graph node and the relationship

between different objects were regarded as graph edges. Hu et al. [71] proposed a

lightweight framework relation network which formulated the interaction between

different objects between their appearance and image locations. The new proposed

framework did not need additional annotation and showed improvements in object

detection performance. Based on Hu et al., Gu et al. [53] proposed a fully learn-

able object detector which proposed a general viewpoint that unified existing region

feature extraction methods. Their proposed method removed heuristic choices in

ROI pooling methods and automatically select the most significant parts, includ-

ing contexts beyond proposals. Another method to encode contextual information

is to implicitly encode region features by adding image features surrounding re-

gion proposals and a large number of approaches have been proposed based on this

idea [45, 9, 217, 18, 229, 108]. In addition to encode features from region pro-

posals, Gidaris et al. [45] extracted features from a number of different sub-regions

of the original object proposals (border regions, central regions, contextual regions

etc.) and concatenated these features with the original region features. Similar to

their method, [9] extracted local contexts by enlarging the proposal window size

and concatenating these features with the original ones. Zeng et al. [229] proposed

Gated Bi-Directional CNN (GBDNet) which extracted features from multi-scale

subregions. Notably, GBDNet learned a gated function to control the transmission

of different region information because not all contextual information is helpful for

detection.

Deformable Feature Learning

A good detector should be robust to nonrigid deformation of objects. Before the

deep learning era, Deformable Part based Models (DPMs) [32] had been success-

fully used for object detection. DPMs represented objects by multiple component
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parts using a deformable coding method, making the detector robust to nonrigid ob-

ject transformation. In order to enable detectors based on deep learning to model de-

formations of object parts, many researchers have developed detection frameworks

to explicitly model object parts [25, 144, 216, 49]. DeepIDNet [144] developed a

deformable-aware pooling layer to encode the deformation information across dif-

ferent object categories. Dai et al. [25] and Zhu et al. [216] designed deformable

convolutional layers which automatically learned the auxiliary position offsets to

augment information sampled in regular sampling locations of the feature map.

2.4 Learning Strategy

In contrast to image classification, object detection requires optimizing both local-

ization and classification tasks, which makes it more difficult to train robust de-

tectors. In addition, there are several issues that need to be addressed, such as

imbalance sampling, localization, acceleration etc. Thus there is a need to devel-

op innovative learning strategies to train effective and efficient detectors. In this

section, we review some of the learning strategies for object detection.

2.4.1 Training Stage

In this section, we review the learning strategies for training object detectors.

Specifically we discuss, data augmentation, imbalance sampling, cascade learning,

localization refinement and some other learning strategies.

Data Augmentation.

Data augmentation is important for nearly all deep learning methods as they are

often data-hungry and more training data leads to better results. In object detection,

in order to increase training data as well as generate training patches with multiple

visual properties, Horizontal flips of training images is used in training Faster R-

CNN detector [47]. A more intensive data augmentation strategy is used in one-
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stage detectors including rotation, random crops, expanding and color jittering [123,

9, 183]. This data augmentation strategy has shown significant improvement in

detection accuracy.

Imbalance Sampling

In object detection, imbalance of negative and positive samples is a critical issue.

That is, most of the regions of interest estimated as proposals are in fact just back-

ground images. Very few of them are positive instances (or objects). This results in

problem of imbalance while training detectors. Specifically, two issues arise, which

need to be addressed: class imbalance and difficulty imbalance. The class imbal-

ance issue is that most candidate proposals belong to the background and only a

few of proposals contain objects. This results in the background proposals domi-

nating the gradients during training. The difficulty imbalance is closely related to

the first issue, where due to the class imbalance, it becomes much easier to clas-

sify most of the background proposals easily, while the objects become harder to

classify. A variety of strategies have been developed to tackle the class imbalance

issue. Two-stage detectors such as R-CNN and Fast R-CNN will first reject ma-

jority of negative samples and keep 2000 proposals for further classification. In

Fast R-CNN [47], negative samples were randomly sampled from these 2k propos-

als and the ratio of positive and negative was fixed as 1:3 in each mini-batch, to

further reduce the adverse effects of class imbalance. Random sample can address

class imbalance issue but are not able to fully utilize information from negative pro-

posals. Some negative proposals may contain rich context information about the

images, and some hard proposals can help to improve detection accuracy. To ad-

dress this, Liu et al. [123] proposed hard negative sampling strategy which fixed the

foreground and background ratio but sampled most difficult negative proposals for

updating the model. Specifically, negative proposals with higher classification loss

were selected for training.

To address difficulty imbalance, most sampling strategies are based on carefully
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designed loss functions. For obejct detection, a multi-class classifier is learned over

C+1 categories (C target categories plus one background category). Assume the

region is labeled with ground truth class u, and p is the output discrete probability

distribution over C+1 classes (p = {p0, ..., pC}). The loss function is given by:

Lcls(p, u) = − log pu (2.9)

Lin et al. proposed a novel focal loss[119] which suppressed signals from easy

samples. Instead of discarding all easy samples, they assigned an importance weight

to each sample w.r.t its loss value as:

LFL = −α(1− pu)γ log(pu) (2.10)

where α and γ were parameters to control the importance weight. The gradient sig-

nals of easy samples got suppressed which led the training process to focus more

on hard proposals. Li et al. [8] adopt a similar idea from focal loss and propose a

novel gradient harmonizing mechanism (GHM). The new proposed GHM not only

suppressed easy proposals but also avoided negative impact of outliers. Shrivastava

et al. [179] proposed an online hard example mining strategy which was based on

a similar principle as Liu et al.’s SSD [123] to automatically select hard examples

for training. Different from Liu et al., online hard negative mining only considered

difficulty information but ignored categorical information, which meant the ratio of

foreground and background was not fixed in each mini-batch. They argued that dif-

ficult samples played a more important role than class imbalance in object detection

task.

Localization Refinement

An object detector must provide a tight localization prediction (bbox or mask) for

each object. To do this, many efforts refine the preliminary proposal prediction to
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improve the localization. Precise localization is challenging because predictions are

commonly focused on the most discriminative part of the objects, and not neces-

sarily the region containing the object. In some scenarios, the detection algorithms

are required to make high quality predictions (high IoU threshold) See Fig. 2.8 for

an illustration of how a detector may fail in a high IoU threshold regime. A gen-

eral approach for localization refinement is to generate high quality proposals (See

Sec 2.3.4). In this section, we will review some other methods for localization re-

finement. In R-CNN framework, the L-2 auxiliary bounding box regressors were

learned to refine localizations, and in Fast R-CNN, the smooth L1 regressors were

learned via an end-to-end training scheme as:

Lreg(t
c, v) =

∑
i∈{x,y,w,h}

SmoothL1(tci − vi) (2.11)

SmoothL1(x) =

 0.5x2 if |x| < 1

|x| − 0.5 otherwise
(2.12)

where the predicted offset is given by tc = (tcx, t
c
y, t

c
w, t

c
h) for each target class, and

v denotes ground truth of object bounding boxes(v = (vx, vy, vw, vh)). x, y, w, h

denote bounding box center, width and height respectively.

Beyond the default localization refinement, some methods learn auxiliary mod-

els to further refine localizations. Gidaris et al. [45] introduced an iterative bounding

box regression method, where an R-CNN was applied to refine learned predictions.

Here the predictions were refined multiple times. Gidaris et al. [46] proposed Loc-

Net which modeled the distribution of each bounding box and refined the learned

predictions. Both these approaches required a separate component in the detection

pipeline, and prevent joint optimization.

Some other efforts [228, 130] focus on designing a unified framework with

modified objective functions. In MultiPath Network, Zagoruyko et al. [228] devel-
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X

Predict objects with low IoU metric (e.g. IoU = 0.5).

Predict objects with high IoU metric (e.g. IoU = 0.7)

ground truth ‘cat’ objects

‘cat’ detector predictions

IoU=0.52

Figure 2.8: Example of failure case of detection in high IoU threshold. Purple box
is ground truth and yellow box is prediction. In low IoU requirement scenario,
this prediction is correct while in high IoU threshold, it’s a false positive due to
insufficient overlap with objects. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

oped an ensemble of classifiers which were optimized with an integral loss targeting

various quality metrics. Each classifier was optimized for a specific IoU threshold

and the final prediction results were merged from these classifiers. Tychsen et al.

proposed Fitness-NMS [198] which learned novel fitness score function of IoU be-

tween proposals and objects. They argued that existing detectors aimed to find

qualified predictions instead of best predictions and thus highly quality and low

quality proposals received equal importance. Fitness-IoU assigned higher impor-

tance to highly overlapped proposals. They also derived a bounding box regression

loss based on a set of IoU upper bounds to maximum the IoU of predictions with

objects. Inspired by CornerNet [98] and DeNet [197], Lu et al. [130] proposed a

Grid R-CNN which replaced linear bounding box regressor with the principle of

locating corner keypoints corner-based mechanism.

Cascade Learning

Cascade learning is a coarse-to-fine learning strategy which collects information

from the output of the given classifiers to build stronger classifiers in a cascaded

manner. Cascade learning strategy was first used by Viola and Jones [202] to train
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the robust face detectors. In their models, a lightweight detector first rejects the

majority easy negatives and feeds hard proposals to train detectors in next stage.

For deep learning based detection algorithms, Yang et al. [219] proposed CRAFT

(Cascade Region-proposal-network And FasT-rcnn) which learned RPN and region

classifiers with a cascaded learning strategy. CRAFTS first learned a standard RPN

followed by a two-class Fast RCNN which rejected the majority easy negatives. The

remaining samples were used to build the cascade region classifiers which consisted

of two Fast RCNNs. Yang et al. [220] introduced layer-wise cascade classifiers for

different scale objects in different layers. Multiple classifiers were placed on dif-

ferent feature maps and classifiers on shallower layers would reject easy negatives.

The remaining samples would be fed into deeper layers for classification. RefineDe-

t [236] and Cascade R-CNN [10] utilized cascade learning methods in refining ob-

ject locations. They built multi-stage bounding box regressors and bounding box

predictions were refined in each stage trained with different quality metrics. Cheng

et al. [19] observed the failure cases of Faster RCNN, and noticed that even though

the localization of objects was good, there were several classification errors. They

attributed this to sub-optimal feature representation due to sharing of features and

joint multi-task optimization, for classification and regression; and they also argued

that the large receptive field of Faster RCNN induce too much noise in the detection

process. They found that vanilla RCNN was robust to these issues. Thus, they built

a cascade detection system based on Faster RCNN and RCNN to complement each

other. Specifically, A set of initial predictions were obtained from a well trained

Faster RCNN, and these predictions were used to train RCNN to refine the results.

Others

There are some other learning strategies which offer interesting directions, but have

not yet been extensively explored. We split these approaches into four categories:

adversarial learning, training from scratch and knowledge distillation.

Adversarial learning. Adversarial learning has shown significant advances in

54



generative models. The most famous work applying adversarial learning is gener-

ative adversarial network (GAN) [52] where a generator is competing with a dis-

criminator. The generator tries to model data distribution by generating fake images

using a noise vector input and use these fake images to confuse the discrimina-

tor, while the discriminator competes with the generator to identify the real images

from fake images. GAN and its variants [250, 152, 7] have shown effectiveness in

many domains and have also found applications in object detection. Li et al. [106]

proposed a new framework Perceptual GAN for small object detection. The learn-

able generator learned high-resolution feature representations of small objects via

an adversarial scheme. Specifically, its generator learned to transfer low-resolution

small region features into high-resolution features and competed with the discrim-

inator which identified real high-resolution features. Finally the generator learned

to generate high quality features for small objects. Wang et al. [207] proposed A-

Fast-R-CNN which was trained by generated adversarial examples. They argued

the difficult samples were on long tail so they introduced two novel blocks which

automatically generated features with occlusion and deformation. Specifically, a

learned mask was generated on region features followed by region classifiers. In

this case, the detectors could receive more adversarial examples and thus become

more robust.

Training from scratch. Modern object detectors heavily rely on pre-trained clas-

sification models on ImageNet, however, the bias of loss functions and data distri-

bution between classification and detection can have an adversarial impact on the

performance. Finetuning on detection task can relieve this issue, but cannot fully

get rid of the bias. Besides, transferring a classification model for detection in a new

domain can lead to more challenges (from RGB to MRI data etc.). Due to these rea-

sons, there is a need to train detectors from scratch, instead of relying on pretrained

models. The main difficulty of training detectors from scratch is the training data

of object detection is often insufficient and may lead to overfitting. Different from

image classification, object detection requires bounding box level annotations and
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thus, annotating a large scale detection dataset requires much more effort and time

(ImageNet has 1000 categories for image classification while only 200 of them have

detection annotations).

There are some works [174, 81, 251] exploring training object detectors from

scratch. Shen et al. [174] first proposed a novel framework DSOD (Deeply Super-

vised Object Detectors) to train detectors from scratch. They argued deep super-

vision with a densely connected network structure could significantly reduce opti-

mization difficulties. Based on DSOD, Shen et al. [175] proposed a gated recurrent

feature pyramid which dynamically adjusted supervision intensities of intermediate

layers for objects with different scales. They defined a recurrent feature pyramid

structure to squeeze both spatial and semantic information into a single prediction

layer, which further reduced parameter numbers leading to faster convergence. In

addition, the gate-control structure on feature pyramids adaptively adjusted the su-

pervision at different scales based on the size of objects. Their method was more

powerful than original DSOD. However, later He et al. [81] validated the difficulty

of training detectors from scratch on MSCOCO and found that the vanilla detectors

could obtain a competitive performance with at least 10K annotated images. Their

findings proved no specific structure was required for training from scratch which

contradicted the previous work.

Knowledge distillation. Knowledge distillation is a training strategy which dis-

tills the knowledge in an ensemble of models into a single model via teacher-student

training scheme. This learning strategy was first used in image classification [66].

In object detection, some works [109, 19] also investigate this training scheme to

improve detection performance. Li et al. [109] proposed a light weight detector

whose optimization was carefully guided by a heavy but powerful detector. This

light detector could achieve comparable detection accuracy by distilling knowledge

from the heavy one, meanwhile having faster inference speed. Cheng et al. [19]

proposed a Faster R-CNN based detector which was optimized via teacher-student

training scheme. An R-CNN model is used as teacher network to guide the training
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process. Their framework showed improvement in detection accuracy compared

with traditional single model optimization strategy.

2.4.2 Testing Stage

Object detection algorithms make a dense set of predictions and thus these predic-

tions cannot be directly used for evaluation due to heavy duplication. In addition,

some other learning strategies are required to further improve the detection accu-

racy. These strategies improve the quality of prediction or accelerate the inference

speed. In this section, we introduce these strategies in testing stage including dupli-

cate removal, model acceleration and other effective techniques.

Duplicate Removal

Non maximum suppression (NMS) is an integral part of object detection to remove

duplicate false positive predictions (See Figure 2.9). Object detection algorithms

make a dense set of predictions with several duplicate predictions. For one-stage

detection algorithms which generate a dense set of candidate proposals such as SS-

D [123] or DSSD (Deconvolutional Single Shot Detector) [38], the proposals sur-

rounding the same object may have similar confidence scores, leading to false posi-

tives. For two-stage detection algorithms which generates a sparse set of proposals,

the bounding box regressors will pull these proposals close to the same object and

thus lead to the same problem. The duplicate predictions are regarded as false pos-

itives and will receive penalties in evaluation, so NMS is needed to remove these

duplicate predictions. Specifically, for each category, the prediction boxes are sort-

ed according to the confidence score and the box with highest score is selected. This

box is denoted as M . Then IoU of other boxes with M is calculated, and if the IoU

value is larger than a predefined threshold Ωtest, these boxes will be removed. This

process is repeated for all remaining predictions. More formally, the confidence

57



score of box B which overlaps with M larger than Ωtest will be set to zero:

ScoreB =

ScoreB IoU(B,M) < Ωtest

0 IoU(B,M) ≥ Ωtest

(2.13)

However, if an object just lies within Ωtest of M , NMS will result in a missing pre-

diction, and this scenario is very common in clustered object detection. Navaneeth

et al. [6] introduced a new algorithm Soft-NMS to address this issue. Instead of

directly eliminating the prediction B, Soft-NMS decayed the confidence score of

B as a continuous function F (F can be linear function or guassian function) of its

overlaps with M . This is given by:

ScoreB =

 ScoreB IoU(B,M) < Ωtest

F (IoU(B,M)) IoU(B,M) ≥ Ωtest

(2.14)

Soft-NMS avoided eliminating prediction of clustered objects and showed improve-

ment in many common benchmarks. Hosong et al [68] introduced a network archi-

tecture designed to perform NMS based on confidence scores and bounding boxes,

which was optimized separately from detector training in a supervised way. They

argued the reason for duplicate predictions was that the detector deliberately en-

couraged multiple high score detections per object instead of rewarding one high

score. Based on this, they designed the network following two motivations: (i) a

loss penalizing double detections to push detectors to predict exactly one precise

detection per object; (ii) joint processing of detections nearby to give the detector

information whether an object is detected more than once. The new proposed model

did not discard detections but instead reformulated NMS as a re-scoring task that

sought to decrease the score of detections that cover objects that already have been

detected.
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Figure 2.9: Duplicate predictions are eliminated by NMS operation. The most-
confident box is kept, and all other boxes surrounding it will be removed.

Model Acceleration

Application of object detection for real world application requires the algorithms to

function in an efficient manner. Thus, evaluating detectors on efficiency metrics is

important. Although current state-of-the-art algorithms [74, 62] can achieve very

strong results on public datasets, their inference speeds make it difficult to apply

them into real applications. In this section we review several works on accelerating

detectors. Two-stage detectors are usually slower than one-stage detectors because

they have two stages - one proposal generation and one region classification, which

makes them computationally more time consuming than one-stage detectors which

directly use one network for both proposal generation and region classification. R-

FCN [24] built spatially-sensitive feature maps and extracted features with position

sensitive ROI Pooling to share computation costs. However, the number of chan-

nels of spatially-sensitive feature maps significantly increased with the number of

categories. Li et al. [112] proposed a new framework Light Head R-CNN which

significantly reduced the number of channels in the final feature map (from 1024 to

16) instead of sharing all computation. Thus, though computation was not shared

across regions, but the cost could be neglected.

From the aspect of backbone architecture, a major computation cost in ob-

ject detection is feature extraction [162]. A simple idea to accelerate detection

59



speed is to replace the detection backbone with a more efficient backbone, e.g.,

MobileNet [70, 169] was an efficient CNN model with depth-wise convolution

layers which was also adopted into many works such as [211] and [111]. P-

VANet [88] was proposed as a new network structure with CReLu [172] layer

to reduce non-linear computation and accelerated inference speed. Another ap-

proach is to optimize models off-line, such as model compression and quantization

[89, 64, 51, 121, 213, 55, 56] on the learned models. Finally, NVIDIA Corpora-

tion1 released an acceleration toolkit TensorRT2 which optimized the computation

of learned models for deployment and thus significantly sped up the inference.

Others

Other learning strategies in testing stage mainly comprise the transformation of in-

put image to improve the detection accuracy. Image pyramids [62, 236] are a widely

used technique to improve detection results, which build a hierarchical image set at

different scales and make predictions on all of these images. The final detection

results are merged from the predictions of each image. Zhang et al. [237, 236] used

a more extensive image pyramid structure to handle different scale objects. They

resized the testing image to different scales and each scale was responsible for a cer-

tain scale range of objects. Horizontal Flipping [60, 236] was also used in the testing

stage and also showed improvement. These learning strategies largely improved the

capability of detector to handle different scale objects and thus were widely used in

public detection competitions. However, they also increase computation cost and

thus were not suitable for real world applications.

1https://www.nvidia.com/en-us/
2https://developer.nvidia.com/tensorrt

60

https://www.nvidia.com/en-us/
https://developer.nvidia.com/tensorrt


2.5 Applications

Object detection is a fundamental computer vision task and there are many re-

al world applications based on this task. Different from generic object detection,

these real world applications commonly have their own specific properties and thus

carefully-designed detection algorithms are required. In this section, we will intro-

duce several real world applications: face detection and few-shot detection.

2.5.1 Face Detection

Face detection is a classical computer vision problem to detect human faces in the

images, which is often the first step towards many real-world applications with hu-

man beings, such as face verification, face alignment and face recognition. There

are some critical differences between face detection and generic detection: (i) the

range of scale for objects in face detection is much larger than objects in generic de-

tection. Moreover occlusion and blurred cases are more common in face detection;

(ii) Face objects contain strong structural information, and there is only one target

category in face detection. Considering these properties of face detection, directly

applying generic detection algorithms is not an optimal solution as there could be

some priors that can exploited to improve face detection.

In early stages of research before the deep learning era, face detection [203,

143, 154, 166] was mainly based on sliding windows, and dense image grids were

encoded by hand-crafted features followed by training classifiers to find and locate

objects. Notably, Viola and Jones [203] proposed a pioneering cascaded classifiers

using AdaBoost with Haar features for face detection and obtained excellent perfor-

mance with high real time prediction speed. After the progresses of deep learning

in image classification, face detectors based on deep learning significantly outper-

formed traditional face detectors [187, 125, 195, 20, 107].

Current face detection algorithms based on deep learning are mainly extend-

ed from generic detection frameworks such as Fast R-CNN and SSD. These algo-
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rithms focus more on learning robust feature representations. In order to handle

extreme scale variance, multi-scale feature learning methods discussed before have

been widely used in face detection. Sun et al. [187] proposed a Fast R-CNN based

framework which integrated multi-scale features for prediction and converted the

resulting detection bounding boxes into ellipses as the regions of human faces are

more elliptical than rectangular. Zhang et al. [237] proposed one-stage S3FD which

found faces on different feature maps to detect faces at a large range of scales. They

made predictions on larger feature maps to capture small-scale face information.

Notably, a set of anchors were carefully designed according to empirical receptive

fields and thus provided a better match to the faces. Based on S3FD, Zhang et al.

[232] proposed a novel network structure to capture multi-scale features in different

stages. The new proposed feature agglomerate structure integrated features at dif-

ferent scales in a hierarchical way. Moreover, a hierarchical loss was proposed to

reduce the training difficulties. Single Stage Headless Face Detector (SSH) [138]

was another one-stage face detector which combined different scale features for

prediction. Hu et al. [72] gave a detailed analysis of small face detection and pro-

posed a light weight face detector consisting of multiple RPNs, each of which was

responsible for a certain range of scales. Their method could effectively handle face

scale variance but it was slow for real world usage. Unlike this method, Hao et

al. [58] proposed a Scale Aware Face network which addresses scale issues with-

out incurring significant computation costs. They learned a scale aware network

which modeled the scale distribution of faces in a given image and guided zoom-in

or zoom-out operations to make sure that the faces were in desirable scale. The re-

sized image was fed into a single scale light weight face detector. Wang et al. [204]

followed RetinaNet [119] and utilized more dense anchors to handle faces in a large

range of scales. Moreover, they proposed an attention function to account for con-

text information, and to highlight the discriminative features. Zhang et al. [233]

proposed a deep cascaded multi-task face detector with cascaded structure (MTC-

NN). MTCNN had three stages of carefully designed CNN models to predict faces
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in a coarse-to-fine style. Further, they also proposed a new online hard negative

mining strategy to improve the result. Samangouei et al. [168] proposed a Face

MegNet which allowed information flow of small faces without any skip connec-

tions by placing a set of deconvolution layers before RPN and ROI Pooling to build

up finer face representations.

In addition to multi-scale feature learning, some frameworks were focused on

contextual information. Face objects have strong physical relationships with the

surrounding contexts (commonly appearing with human bodies) and thus encod-

ing contextual information became an effective way to improve detection accuracy.

Zhang et al. [231] proposed FDNet based on ResNet with larger deformable con-

volutional kernels to capture image context. Zhu et al. [249] proposed a Contextual

Multi-Scale Region-based Convolution Neural Network (CMS-RCNN) in which

multi-scale information was grouped both in region proposal and ROI detection to

deal with faces at various range of scale. In addition, contextual information around

faces is also considered in training detectors. Notably, Tang et al. [195] proposed

a state-of-the-art context assisted single shot face detector, named PyramidBox to

handle the hard face detection problem. Observing the importance of the contex-

t, they improved the utilization of contextual information in the following three

aspects: (i) first, a novel context anchor was designed to supervise high-level con-

textual feature learning by a semi-supervised method, dubbed as PyramidAnchors;

(ii) the Low-level Feature Pyramid Network was developed to combine adequate

high-level context semantic features and low-level facial features together, which

also allowed the PyramidBox to predict faces at all scales in a single shot; and

(iii) they introduced a context sensitive structure to increase the capacity of predic-

tion network to improve the final accuracy of output. In addition, they used the

method of data-anchor-sampling to augment the training samples across different s-

cales, which increased the diversity of training data for smaller faces. Yu et al.[226]

introduced a context pyramid maxout mechanism to explore image contexts and

devised an efficient anchor based cascade framework for face detection which op-
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timized anchor-based detector in cascaded manner. Zhang et al. [234] proposed a

two-stream contextual CNN to adaptively capture body part information. In addi-

tion, they proposed to filter easy non-face regions in the shallow layers and leave

difficult samples to deeper layers.

Beyond efforts on designing scale-robust or context-assistant detectors, Wang

et al. [204] developed a framework from the perspective of loss function design.

Based on vanilla Faster R-CNN framework, they replaced original softmax loss with

a center loss which encouraged detectors to reduce the large intra-class variance in

face detection. They explored multiple technologies in improving Faster R-CNN

such as fixed-ratio online hard negative mining, multi-scale training and multi-scale

testing, which made vanilla Faster R-CNN adaptable to face detection. Later, Wang

et al. [209] proposed Face R-FCN which was based on vanilla R-FCN. Face R-

FCN distinguished the contribution of different facial parts and introduced a novel

position-sensitive average pooling to re-weight the response on final score maps.

This method achieved state-of-the-art results on many public benchmarks such as

FDDB [77] and WIDER FACE [222].

2.5.2 Few-shot Detection

Few-shot detection means training a detector with only a few objects annotated.

Deep learning based detection algorithms requires a huge amount of annotated train-

ing data to finetune an immense number of parameters. Without sufficient training

data, the detectors cannot guarantee satisfactory results. And in this case, algo-

rithms for few-shot detection are required to address this problem. Before introduc-

ing few-shot detection algorithms, in this section, we summarize the existing work

about meta learning for classification, which is beyond the area of detection but it is

the basic of this work.

Few-shot learning has been widely explored in image classification. One of

the promising methods are mainly based on meta learning. [155] optimized the
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base-model via an LSTM-based meta-learner which simulates traditional SGD op-

timization method. [36] proposed MAML which learns a good feature initialization

which can adapt to a new task in only one gradient step update. Based on MAM-

L, [115] proposed Meta-SGD which learns a set of learnable parameters to control

gradient step of different tasks. Learning initialization is potentially a very general

idea for few-shot learning however, the training process can be unstable [3] espe-

cially for complex problems such as detection. [201] proposed Matching Networks

based on a non-parametric principle by learning a differentiable K-Nearest Neigh-

bour model, and [184] proposed Prototypical Networks using the similar principle.

[161] extended this idea to semi-supervised learning by self-learning from the un-

labeled data. [190] proposed a relation network to automatically define the optimal

distance metric. These metric-learning based methods are easy to train and effective

for few-shot classification. However, directly adapting these techniques for detec-

tion is very challenging as just replacing the object classification branch of a detec-

tor with a meta-learner is not sufficient, and training the RPN under a meta-learning

paradigm is non-trivial.

In contrast to classification, few-shot detection has received less attention. [28]

addressed few-shot detection using large-scale unlabeled data. Their model is based

on a semi-supervised method which extracts knowledge from unlabeled dataset to

enrich training dataset by self-paced learning and multi-modal learning. However,

their method may be misled by the incorrect predictions from initial model and also

requires re-training the model for every new task. [13] proposed a Low-shot Trans-

fer Detector (LSTD) using regularization to transfer knowledge from source domain

to target domain by minimizing the gap between the two domains. Recently, there

have been some concurrent efforts in applying meta-learning for object detection.

[170] proposed RepMet as a meta-learning based few-shot detection which replaces

the fully connected classification layer of a standard detector with modified pro-

totypical network. However, its suffers from two critical limitations in that RPN

and bounding box regression are not tailored for few-shot challenges, and it often
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fails in distinguishing object classes of interest from background (including object

classes not of interest). [84] proposed Meta-YOLO by applying meta-learning with

YOLO. They optimize the few-shot detector by re-weighting the channels of global

features with support images. [210] proposed MetaDet as a meta-learning frame-

work for few-shot detection. In MetaDet, they disentangle the learning process of

class-agnostic parts and class-specific parts, and learn a meta model to predict class-

specific parameters from few-shot data.

2.5.3 Others

There are some other real applications with object detection techniques, such as

logo detection and video object detection.

Logo detection is an important research topic in e-commerce systems. Com-

pared to generic detection, logo instance is much smaller with strong non-rigid

transformation. Further, there are few logo detection baselines available. To ad-

dress this issue, Su et al. [185] adopted the learning principle of webly data learning

which automatically mined information from noisy web images and learns mod-

els with limited annotated data. Su et al. [186] described an image synthesising

method to successfully learn a detector with limited logo instances. Hoi et al. [67]

collected a large scale logo dataset from an e-commerce website and conducted a

comprehensive analysis on the problem logo detection.

Existing detection algorithms are mainly designed for still images and are sub-

optimal for directly applying in videos for object detection. To detect objects in

videos, there are two major differences from generic detection: temporal and con-

textual information. The location and appearance of objects in video should be

temporally consistent between adjacent frames. Moreover, a video consists of hun-

dreds of frames and thus contains far richer contextual information compared to a

single still image. Han et al. [57] proposed a Seq-NMS which associates detection

results of still images into sequences. Boxes of the same sequence are re-scored
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to the average score across frames, and other boxes along the sequence are sup-

pressed by NMS. Kang et al. proposed Tubelets with Convolutional Neural Net-

works (T-CNN) [85] which was extended from Faster RCNN and incorporated the

temporal and contextual information from tubelets (box sequence over time). T-

CNN propagated the detection results to the adjacent frames by optical flow, and

generated tubelets by applying tracking algorithms from high-confidence bounding

boxes. The boxes along the tubelets were re-scored based on tubelets classification.

There are also many other real-world applications based on object detection such

as vehicle detection [245, 42, 133], traffic-sign detection [255, 150] and skeleton

detection [87, 173].

2.6 Detection Benchmarks

In this section we will show some common benchmarks of generic object detection

and face detection. We will first present some widely used datasets for each task

and then introduce the evaluation metrics.

Pascal VOC MSCOCO Open Images LVIS

Horse

Person

TV

Chair

Chair

Figure 2.10: Some examples of Pascal VOC, MSCOCO, Open Images and LVIS.

2.6.1 Generic Detection Benchmarks

Pascal VOC2007 [31] is a mid scale dataset for object detection with 20 categories.

There are three image splits in VOC2007: training, validation and test with 2501,

2510 and 5011 images respectively.

Pascal VOC2012 [31] is a mid scale dataset for object detection which shares

the same 20 categories with Pascal VOC2007. There are three image splits in
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VOC2012: training, validation and test with 5717, 5823 and 10,991 images re-

spectively. The annotation information of VOC2012 test set is not available.

MSCOCO [120] is a large scale dataset for with 80 categories. There are three im-

age splits in MSCOCO: training, validation and test with 118,287, 5000 and 40,670

images respectively. The annotation information of MSCOCO test set is not avail-

able.

Open Images [97] contains 1.9M images with 15M objects of 600 categories. The

500 most frequent categories are used to evaluate detection benchmarks, and more

than 70% of these categories have over 1000 training samples.

LVIS [54] is a new collected benchmark with 164,000 images and 1000+ categories.

It is a new dataset without any existing results so we leave the details of LVIS in

future work section (Section 2.7).

ImageNet [27] is also a important dataset with 200 categories. However, the scale

of ImageNet is huge and the object scale range is similar to VOC datasets, so it is

not a commonly used benchmarks for detection algorithms.

Evaluation metrics: The details of evaluation metrics are shown in Tab. 2.1, both

detection accuracy and inference speed are used to evaluate detection algorithms.

For detection accuracy, mean Average Precision (mAP) is used as evaluation metric

for all these challenges. The mAP is the mean value of AP, which is calculated

separately for each class based on recall and precision. Assume the detector returns

a set of predictions, we sample top γ predictions by confidence in decreasing or-

der, which is denoted as Dγ . Next we calculate the number of true positive (TPγ)

and false positive (FPγ) from sampled Dγ by the metric introduced in Section 2.2.

Based on TPγ and FPγ , recall (Rγ) and precision (Pγ) are easy to obtain. AP is the

region area under the curve of precision and recall, which is also easy to compute by

varying the value of parameter γ. Finally mAP is computed by averaging the value

of AP across all classes. For VOC2012, VOC2007 and ImageNet, IoU threshold

of mAP is set to 0.5, and for MSCOCO, more comprehensive evaluation metrics

are applied. There are six evaluation scores which demonstrates different capability
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Alias Meaning Definition and description
FPS Frame per second The number of images processed per second.

Ω IoU threshold The IoU threshold to evaluate localization.

Dγ All Predictions
Top γ predictions returned by the detectors
by confidence in decreasing order.

TPγ True Positive Correct predictions from sampled predictions Dγ .

FPγ False Positive False predictions from sampled predictions Dγ .

Pγ Precision The fraction of TPγ out of Dγ .

Rγ Recall The fraction of TPγ out of all positive samples.

AP Average Precision Region area under curve of Rγ and Pγ by varying the value of parameter γ.

mAP mean AP Average score of AP across all classes.

TPR True Positive Rate The fraction of positive rate over false positives.

FPPI FP Per Image The fraction of false positive for each image.

MR
log-average
missing rate Average miss rate over different FPPI rates evenly spaced in log-space

Generic Object Detection

mAP mean
Average
Precision

VOC2007 mAP at 0.50 IoU threshold over all 20 classes.
VOC2012 mAP at 0.50 IoU threshold over all 20 classes.
OpenImages mAP at 0.50 IoU threshold over 500 most frequent classes.

MSCOCO

• APcoco: mAP averaged over ten Ω: {0.5 : 0.05 : 0.95};
• AP50: mAP at 0.50 IoU threshold;
• AP75: mAP at 0.75 IoU threshold;
• APS : APcoco for small objects of area smaller than 322;
• APM : APcoco for objects of area between 322 and 962;
• APL: APcoco for large objects of area bigger than 962;

Face Detection

mAP
mean

Average
Precision

Pascal Face mAP at 0.50 IoU threshold.
AFW mAP at 0.50 IoU threshold.

WIDER FACE
• mAPeasy: mAP for easy level faces;
• mAPmid: mAP for mid level faces;
• mAPhard: mAP for hard level faces;

TPR
True

Positive
Rate

FDDB
• TPRdis with 1k FP at 0.50 IoU threshold, with bbox level.
• TPRcont with 1k FP at 0.50 IoU threshold, with eclipse level.

Table 2.1: Summary of common evaluation metrics for various detection tasks in-
cluding generic object detection, face detection and pedestrian detection.

of detection algorithms, including performance on different IoU thresholds and on

different scale objects. Some examples of listed datasets (Pascal VOC, MSCOCO,

Open Images and LVIS) are shown in Fig. 2.10.
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2.6.2 Face Detection Benchmarks

In this section, we introduce several widely used face detection datasets (WIDER

FACE, FDDB and Pascal Face) and the commonly used evaluation metrics.

WIDER FACE [222]. WIDER FACE has totally 32,203 images with about 400k

faces for a large range of scales. It has three subsets: 40% for training, 10% for

validation, and 50% for test. The annotations of training and validation sets are

online available. According to the difficulty of detection tasks, it has three splits:

Easy, Medium and Hard.

FDDB [77]. The Face Detection Data set and Benchmark (FDDB) is a well-known

benchmark with 5171 faces in 2845 images. Commonly face detectors will first be

trained on a large scale dataset (WIDERFACE etc. ) and tested on FDDB.

PASCAL FACE [31]. This dataset was collected from PASCAL person layout test

set, with 1335 labeled faces in 851 images. Similar to FDDB, it’s commonly used

as test set only.

Evaluation metrics. As Tab. 2.1 shown, the evaluation metric for WIDER FACE and

PASCAL FACE is mean average precision (mAP) with IoU threshold as 0.5, and

for WIDER FACE the results of each difficulty level will be reported. For FDDB,

true positive rate (TPR) at 1k false positives are used for evaluation. There are two

annotation types to evaluate FDDB dataset: bounding box level and eclipse level.

2.7 Concluding Remarks

In this section, we give a comprehensive understanding of recent advances in deep

learning techniques for object detection tasks. The main contents are divided into

three major categories: object detector components, machine learning strategies,

real-world applications and benchmark evaluations. We have reviewed a large body

of representative articles in recent literature, and presented the contributions on this

important topic in a structured and systematic manner. We hope this section can
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give readers a comprehensive understanding of object detection with deep learning.
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Part I

Scale-invariant Detection
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Chapter 3

Feature Agglomeration Networks

with Application to Face Detection

3.1 Introduction

In real-world scenarios, the scale variance of objects is significantly larger than the

variance in existing benchmarks for generic object detection. Applying generic de-

tection frameworks into face detection directly fails to guarantee satisfactory results.

In this dissertation, we select face detection as our benchmark to evaluate algorithms

for scale-invariant detection. Face detection is a real world computer vision problem

to detect human face in the wild, and is often the first key step towards face related

applications, such as face alignment, face verification, face recognition, face track-

ing and facial expression analysis, etc. Despite being studied extensively, detecting

faces in the wild remains an open research problem due to various challenges with

real-world faces, such as varied scales of faces.

In general, many previous state-of-the-art face detectors inherited a lot of suc-

cessful techniques from generic object detection, especially for the family of region-

based CNN (R-CNN) methods and their variants [162, 47, 5]. Among the family

of R-CNN based face detectors, there are two major categories of detection frame-

works: (i) two-stage detectors (a.k.a. “proposal-based”), such as Fast R-CNN [47],
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Figure 3.1: Example of face detection with the proposed method. In the above
image, the proposed method can find 858 faces out of 1000 facial images present.
The detection confidence scores are also given by the color bar as shown on the
right. Best viewed in color.

Faster R-CNN [162], etc; and (ii) single-stage detectors (a.k.a. “proposal-free”)

, such as Region Proposal Networks (RPN) [162], Single-Shot Multibox Detector

(SSD) [123], etc. The single-stage detection framework enjoys much higher infer-

ence efficiency, and thus has attracted increasing attention recently due to the high

demand of real-time face detectors in real applications.

Despite enjoying significant computational advantages, single-stage detectors

are not always effective in detecting faces of different scales and their performance

can drop dramatically when handling small faces. In order to build a robust de-

tector that can detect faces with a large range of scales, there are two major routes

for improvement. One way is to train multi-shot single-scale detectors by using

the idea of image pyramid to train multiple separate single-scale detectors each of

which is tuned for one specific scale (e.g., the HR detector in [72] trained multiple

scale-specific RPN detectors). However, such approach with the image pyramid is

computationally expensive since it has to pass a very deep network multiple times

during inference. Another way is to train a single-shot multi-scale detector by ex-
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ploiting multi-scale representations in the feature hierarchy of a deep convolutional

network, requiring only a single pass to the network during inference. For exam-

ple, the Single-shot multi-scale Face Detector (S3FD) in [237] follows the second

approach by extending SSD [123] for face detection.

Despite achieving promising performance, S3FD shares the similar drawback

of SSD-style detection frameworks, where each of multi-scale feature maps is used

alone for prediction and thus a high-resolution semantically weak feature map may

fail to perform accurate predictions. Inspired by the recent success of Feature Pyra-

mid Networks (FPN) [118] for generic object detection, we propose a novel de-

tection framework of “Feature Agglomeration Networks” (FAN) to overcome the

drawback of the single stage face detector “S3FD” by attempting to combine low-

resolution semantically strong features with high-resolution semantically weak fea-

tures. In particular, FAN aims to create a feature pyramid with rich semantics at

all scales to boost the prediction performance of high-resolution feature maps using

rich contextual cues from low-resolution semantically strong features.

However, unlike the existing FPN for generic object detection that creates fea-

ture pyramid using the skip connection module, we propose a novel “Agglomera-

tive Connection” module to create a new feature pyramid for FAN. Moreover, we

introduce a new Hierarchical Loss to train the FAN model effectively in an end-to-

end approach. We conduct extensive experiments on several public face detection

benchmarks, in which our results show that FAN is more effective than a naive

application of FPN [118] for face detection (though FPN has yet to be explored

for face detection), and the proposed Hierarchical Loss is also critical to train the

proposed FAN model.

As a summary, the main contributions of this work include the following

• We propose a novel framework of Feature Agglomeration Networks (FAN)

for single stage face detection, which creates a new effective feature pyramid

with rich semantics at all scales by introducing a new hierarchical agglomera-
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tive connection module to agglomerate multi-scale features via a hierarchical

agglomerative manner in which effective receptive field of each feature map

can be easily controlled through hierarchical design;

• We introduce an effective Hierarchical Loss based training scheme to train

the proposed FAN model in an end-to-end manner, which enables us to learn

discriminative features of the feature pyramid effectively;

• We conducted comprehensive experiments on several public Face Detection

benchmarks to evaluate the effectiveness of the proposed FAN framework, in

which promising results show that our FAN detector not only achieves the

state-of-the-art performances but also runs efficiently with real-time speed on

GPU.

3.2 Feature Agglomeration Networks

In this section, we present the proposed Feature Agglomeration Networks (FAN)

framework for face detection.

3.2.1 General Architecture

Our goal is to create an effective feature hierarchy with rich semantics at all levels to

achieve robust multi-feature detection. To this end, we propose a novel hierarchical

feature agglomeration structure which agglomerates adjacent features sequentially

to construct a Feature Agglomeration Network (FAN) for detection. Figure 3.2

shows an example of the proposed FAN with 3-level feature hierarchies.

The proposed FAN framework is general-purpose and applicable to any types

of detectors and CNN architectures. In this work, without loss of generality, we

consider the widely used VGG16 model as the backbone CNN architecture and

SSD as the single stage detector. Suppose detection is performed on n layers of

feature maps (ranging from index 1 to n), then the network structure in m-level
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Figure 3.2: The network architecture of the proposed “Feature Agglomeration Net-
works” (FAN). Here demonstrates an example of three-level FAN architecture using
the VGG-16 variant as the backbone CNN network.

FAN (m ≤ n) can be mathematically defined as follows:

φkl = Fl(φkl−1) k = 1 (3.1)

φkl = Al(φk−1l , φk−1l+1 ) k = 2, ..,m (3.2)

where φkl denotes the feature maps in the l-th layer and the k-th hierarchy. Specif-

ically, for k = 1, i.e., the first-level hierarchy, φkl is the original feature maps in

vanilla SSD, and Fl(·) is the non-linear function to transform the feature maps from

l-th layer to (l+ 1)-th layer, which consists of Convolution, ReLU and Pooling lay-

ers, etc. For k > 1, Eq.(3.2) denotes that φkl is generated through an agglomeration

function Al to agglomerate two adjacent-layer feature maps in the same hierarchy

φk−1l , φk−1l+1 . This is called an “Agglomerative Connection” building block as shown

in Figure 3.3, denoted as A-block for short.
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Agglomerative Connection block

Specifically, each A-block consists of two input feature maps, a shallower φk−1l

and a deeper φk−1l+1 . We first use a 1 × 1 convolution to change the channel of the

shallower feature φk−1l to a fixed number N (e.g., 256). Then the dimensionality

of the deeper feature φk−1l+1 is reduced via a 1 × 1 convolution to 1
8

of N (e.g., 32)

followed by a 2× bilinear upsampling in order to achieve the same size as φk−1l .

The final agglomerative feature φkl is obtained by the concatenation of these two

features.

The main difference between our Agglomerative Connection block and com-

monly used skip connection block as FPN is that we firstly apply dimension re-

duction (1 × 1 Convolution) on deeper feature maps, then Concatenation instead

of Summation is used to merge two features. Since summation requires two fea-

tures with the same channel numbers, our design enjoy the merits of controlling the

proportion of contextual info from deeper layers.

1x1 conv

2x up1x1 conv

Concat

A

Figure 3.3: The Agglomerative Connection block (A-block).

The final detection exploits the m-th hierarchy of feature maps, e.g., if m = 3,

the detection layers of features are {conv3 3(3), conv4 3(3), conv5 3(3), conv fc7(3),

conv6 2(2), conv7 2(1)}, and the detection result denotes as

Result = D(φml , φ
m
l+1, ..., φ

m
l+n−1) (3.3)

where D denotes the final detection process including bounding box regression and
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class prediction followed by Non-Maximum Suppression to obtain the final detec-

tion results. To make the notation consistent, we use superscript m to denote all

the feature maps in the m-th level hierarchy. However, conv7 2(3) and conv7 2(2) is

actually identical to conv7 2(1), and conv6 2(3) is identical to conv6 2(2), etc.

It is worth noting that the proposed network degenerates to vanilla SSD detector

if the agglomeration operation Eq.(3.2) is excluded and the first hierarchy is used

for detection, i.e., m = 1 in Eq.(3.3). The insight behind hierarchical agglomera-

tive design is that in vanilla SSD, shallower features which are important to detect

small faces are semantically weak in feature representation. TheA-block hierarchi-

cally aggregates semantics information from deeper layers to form a stronger set of

hierarchical multi-feature maps. The ratio of deeper feature and shallower feature

in one A-block is set to 1
8

which ensures that the shallower feature dominates the

composition and the deeper (semantically stronger) feature generally plays a role

of providing extra contextual cues. Besides, we note that the receptive field largely

impacts the performance of detecting small faces. As shown in [72], too large re-

ceptive field can hurt the performance and so as if it is too small. The superiority of

our design is that the agglomerative connection only incorporates semantics from a

deeper layer feature, and thus we can easily control the receptive field of each fea-

ture map through our hierarchical design. This is in contrast to FPN [118] where a

feature map incorporates information from all the deeper layers. We found our new

design had the attributes to achieve stable and effective training.

3.2.2 Detailed Configurations

In this section, we discuss more details about the proposed FAN framework, which

can be designed in a flexible way. In practice, assuming that detection is per-

formed on n feature maps of a CNN model (specifically n=6 in VGG-16 as used

in our experiment), we can design a FAN structure with m-level hierarchies where

m ≤ 6. Figure 3.2 showed a 3-level hierarchy FAN structure. The detection lay-

79



ers of feature maps {conv3 3(3), conv4 3(3), conv5 3(3), conv fc7(3), conv6 2(2),

conv7 2(1)} have strides of {4, 8, 16, 32, 64, 128}, respectively. We follow the set-

tings of [237], each of the six detection feature maps is associated with a specific

scale anchor {16, 32, 64, 128, 256, 512} to detect corresponding scale faces. The

aspect ratio of each anchor is 1:1 since the size of a face is roughly 1:1.

For anchor-based detectors, we need to match each anchor as a positive or neg-

ative sample according to the ground truth bounding boxes. We adopt the following

matching strategy: (i) for each face, the anchor with best jaccard overlap is matched;

and (ii) each anchor is matched to the face that has jaccard overlap larger than 0.35.

Max-out background label for the lowest feature map conv3 3(3) is also adopted

[237]. Specifically, for each anchor of conv3 3(3), M = 3 scores are predicted and

then the highest score is chosen as the final background score.

3.2.3 Hierarchical Loss

In order to train the proposed FAN model effectively, we propose a new loss func-

tion called the hierarchical loss defined on the proposed FAN structure. The key idea

is to define a loss function that accounts for all the hierarchies of feature maps, and

meanwhile allows to train the entire network effectively in an end-to-end approach.

To this end, we propose the hierarchical loss as follows

HL(φml , ..., φ
m
l+n−1) =

m∑
i=1

ωiL(φil, ..., φ
i
l+n−1) (3.4)

where ωi is a weight parameter for the loss of the i-th hierarchy. L(φil, ..., φ
i
l+n−1)

accounts for the loss on the i-th hierarchy, which is defined as follows

L(φil, ..., φ
i
l+n−1)=

1

Ni

Ni∑
j=1

(
λLcls(yj, y

∗
j ) + Lloc(pj,p

∗
j)
)

(3.5)

where yj denotes if the corresponding anchor is a face or not, y∗j ∈ {0, 1} is the

ground truth label, pj = [px, py, pw, ph]j denotes the 4 coordinates of a predicted
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bounding box, p∗j denotes the ground-truth box, Ni denotes the total number of

matched bounding boxes, and λ is a parameter to tradeoff between classification

loss and localization loss. In particular, the classification loss is based on a standard

softmax loss, i.e.,

Lcls(yj, y
∗
j ) = y∗j log(yj) + (1− y∗j ) log(1− yj) (3.6)

and the localization of bounding box is based on a standard regression loss proposed

in [47] defined as follows

Lloc(pj,p
∗
j) =

∑
k∈{x,y,w,h}

smoothL1(pj − p∗j)k (3.7)

where

smoothL1(x) =


0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(3.8)

Using the proposed hierarchical loss, we can train the FAN detector end-to-end.

Specifically, during training, all the losses are simultaneously computed, and the

gradients are back propagated to each hierarchy of feature maps respectively.

Remarks. In contrast to the standard loss, the proposed hierarchical loss enjoys

some key advantages. On one hand, the use of hierarchical loss plays a crucial role

in training the FAN model robustly and effectively. This is because, in contract to

the network of vanilla SSD, FAN has more newly added parameters for optimiza-

tion, which is not easy to be directly trained with the existing loss in vanilla SSD

training. With multiple hierarchies, hierarchical loss gradually increases the power

of feature maps representation, and thus allows us to supervise the training process

hierarchically to obtain more robust features in which lower level losses can also be

seen as a kind of regularization to guide better training. On the other hand, com-

pared with the standard single loss, after the model has been trained, the use of

hierarchical loss does not incur extra computation cost during inference.
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3.2.4 Training

Next we introduce more details of our training method.

Training data and data augmentation. Our model was trained on 12, 880 im-

ages of the WIDER FACE training set [222]. We use several data augmentation

strategies as follows. First of all, we follow a similar color distortion strategy [123]

to preprocess training images, e.g., brightness, contrast, hue, saturation, etc. Ran-

dom crop is adopted to generate training images [237]. Specifically, to keep the face

aspect ratio which is important due to our anchor scale design, instead of directly

resizing the whole image to a squared patch (e.g., we use 640 × 640 as input size

for training), we first crop a squared patch from original image whose scale ranges

from 0.3 to 1 of the short size of original image. The overlapped part of the face box

is discarded if and only if its center is out of the sampled patch. After random crop-

ping, the final patch is resized to 640×640 and horizontally flipped with probability

of 0.5.

Hard negative mining. After the anchor matching, most of the anchors will be

assigned as negative samples, which will result in a significant imbalance between

positive and negative samples. Instead of using all negative samples for training, we

use an online hard negative mining strategy [123] during training. In particular, all

negative anchors are sorted by their classification loss values, and then the top ones

are selected as negative samples to ensure the ratio between negative and positive

anchors is at most 3 : 1.

Other implementation details. In our experiments, we choose λ = 3 in E-

q.(3.5) and the weight parameter ωi in Eq.(3.4) as uniform for simplicity. The train-

ing starts from fine-tuning VGG16 backbone network using SGD optimizer with

momentum of 0.9, weight decay of 0.0005, and a total batch size of 12 on two G-

PUs. The newly added layers are initialized with “xavier”, the initial learning rate

is 10−3 and becomes 10 times smaller at iteration 80k and 100k. The training ended

at 120k iterations. Our implementation is based on Caffe [79].
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3.3 Experiments

In this section, we conduct extensive experiments and ablation studies to evaluate

the effectiveness of the proposed FAN framework in two folds. First, we examine

the impact of several key components including the proposed hierarchical agglom-

eration connection module, the layer-wise hierarchical loss, and other techniques

used in our solution. Second, we compare the proposed FAN face detector with

the state-of-the-art face detectors on several popular face detection benchmarks and

finally evaluate the inference speed of the proposed face detector.

3.3.1 Model Analysis.

Dataset. We conduct model analysis on the WIDER FACE dataset [222], which

has 32,203 images with about 400k faces for a large range of scales. It has three

subsets: 40% for training, 10% for validation, and 50% for test. The annotations

of training and validation sets are online available. According to the difficulty of

detection tasks, it has three splits: Easy, Medium and Hard. The evaluation metric

is mean average precision (mAP) with Interception-of-Union (IoU) threshold as 0.5.

We train FAN on the training set of WIDER FACE, and evaluate it on the validation

set. For WIDER FACE evaluation, if without multi-scale inference in Table 5.2 and

Table 3.2, the results are obtained by single scale testing in which the shorter size

of image is resized to 768 while keeping image aspect ratio.

S3FD FAN (ours)
1-Level Agglomeration

√ √

2-Level Agglomeration
√ √

3-Level Agglomeration
√ √ √

Hierarchical Loss?
√ √ √

Multi-scale inference?
√ √

WIDER FACE mAP (Easy) 92.9 93.7 93.8 93.0 93.8 94.0 94.8
WIDER FACE mAP (Medium) 91.8 92.5 92.6 91.9 92.7 92.9 93.8
WIDER FACE mAP (Hard) 83.4 85.9 85.8 85.3 86.0 86.4 87.6

Table 3.1: Ablation studies of FAN. All settings are trained on the training set of
WIDER FACE and then tested on the validation set.
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Baseline. We adopt the closely related detector S3FD [237] as the baseline to

validate the effectiveness of our technique. S3FD achieved the previous state-of-

the-art results on several well-known face detection benchmarks. It inherited the

standard SSD framework with carefully designed scale-aware anchors according to

effective receptive fields. We follow the same experimental setup in [237].

Hierarchical Agglomerative Connection. We first validate the contribution of

Agglomerative Connection module with different hierarchical levels. When hierar-

chical level equals to 1, FAN degenerates to Vanilla S3FD. In Table 5.2, FAN with

2-level Agglomerative Connection outperforms baseline with a large margin in all

three difficulty levels. More specifically, we notice the performance of 2-level FAN

with single-scale inference is even comparable to S3FD with multi-scale inference,

which validates the effectiveness of the agglomerative connection module. As in-

creasing the hierarchical level from 2 to 3, the results become slightly worse than

before, but still outperforms the baseline consistently. We argue this is because the

complexity of FAN increases as the hierarchical level becomes deeper, traditional

learning scheme suffers from the training. As the hierarchies increasing, i.e., m = 4

or higher, the improvement gradually become saturated. Next we will show that Hi-

erarchical Loss is necessary in effectively training FAN with high hierarchical-level

Agglomerative Connection.

Hierarchical Loss. We optimize 2-level FAN and 3-level FAN with Hierarchi-

cal Loss. In Table 5.2, the performance of 3-level FAN with Hierarchical Loss gains

significant improvement compared with its single loss setting in all difficulty level-

s (+1.0% in Easy, +1.0% in Medium and +1.1% in Hard), while 2-level FAN with

Hierarchical Loss also gains slight improvement. We argue this is because optimiza-

tion for 2-level FAN is not very difficult so that traditional optimization methods can

still handle. In Hierarchical Loss optimization scheme, 3-level FAN outperforms 2-

level FAN consistently, which indicates high level Agglomerative Connection is

crucial to improve detection accuracy with Hierarchical Loss optimization method.
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Robust Feature Learning. We compare agglomerative connection with skip

connection which was widely used in building feature pyramids. We build “S3FD

w/ FPN” based on S3FD with skip-connection in top-down structure as FPN does

[118]. In Table 3.2, compared with vanilla S3FD, “S3FD w/ FPN” gains improve-

ment in Hard level, which validates the efficacy of feature pyramid for improving

shallow features. Our FAN outperforms “S3FD w/ FPN” with large margin, which

indicates the superiority of our agglomerative connection over the skip connection.

Moreover, to further validate the robust features learned by FAN, we remove all

the Agglomerative Connection Module in 3-level FAN trained with the Hierarchical

Loss, which shares the same network structure as the Vanilla S3FD. We use this

model (“S3FD w/ HL ”) to make inference as S3FD does. The results in Table 3.2

show this “truncated” model achieves a high detection accuracy and outperforms

both Vanilla S3FD and “S3FD w/ FPN”. This proves that the proposed structure of

FAN enables us to learn robust and discriminative features.

Loss Easy Medium Hard
Vanilla S3FD 92.9 91.8 83.4
S3FD w/ FPN 92.9 91.8 84.7
S3FD w/ HL 93.4 92.4 85.2
FAN 94.0 92.9 86.4

Table 3.2: Evaluation of our FAN with agglomerative connection and hierarchical
loss (HL) for learning discriminative features in contrast to vanilla S3FD and a
simple FPN with skip connection.

Multi-scale Inference. Multi-scale testing is a widely used technique in object

detection, which can further boost the detection accuracy especially for small ob-

jects. In Table 5.2, both vanilla S3FD and FAN gain improvements of detection

accuracy. We conduct multi-scale method during inference with fixing the aspect

ratio of images.

Comparisons with the State-of-the-Art. We use a 3-level FAN network trained

by the Hierarchical Loss as our final face detector to compare with various state-of-

the-art detectors on the WIDER FACE datasets. Figure 3.4 and Figure 3.5 show the

precision-recall curves and Table 3.3 summarizes the overall results on the WIDER
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Figure 3.4: Evaluation of VGG-based methods on the validation set of WIDER
FACE
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Figure 3.5: Evaluation of various state-of-the-art methods on the validation set of
WIDER FACE

Algorithms Backbone Easy Med Hard
ACF-WIDER [140] - 65.9 54.1 27.3
LDCF+ [140] - 79.0 76.9 52.2
ScaleFace [223] ResNet50 86.8 86.7 77.2
HR [72] ResNet101 92.5 91.0 80.6
Face R-FCN [209] ResNet101 94.7 93.5 87.4
CMS-RCNN [249] VGG16 89.9 87.4 62.4
SSD-face [237] VGG16 92.1 89.5 71.6
RPN-face [237] VGG16 91.0 88.2 73.7
Face-RCNN [204] VGG19 93.7 92.1 83.1
SSH [138] VGG16 93.1 92.1 84.5
S3FD[237] VGG16 93.7 92.5 85.9
FAN(ours) VGG16 94.8 93.8 87.6

Table 3.3: Evaluation (mAP) on the validation set of WIDER FACE.

Face validation set.

FAN outperforms all VGG-based detectors with large margin, especially in Hard

difficulty level. Compared with ResNet-based detectors which utilize much stronger

backbone architecture, FAN still reaches the state-of-the-art results, while enjoying

a clear advantage of high-inference speed. WIDER FACE is a very challenging face
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benchmark and the results strongly prove the effectiveness of FAN in handling high

scale variances, especially for small faces.
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Figure 3.6: Evaluation on FDDB face detection benchmarks.
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Figure 3.7: Evaluation on PASCAL FACE detection benchmarks.

3.3.2 Evaluation on Other Public Face Benchmarks

FDDB. The Face Detection Data set and Benchmark (FDDB)[77] is a well-known

benchmark with 5,171 faces in 2,845 images. We compare our FAN detector trained

on the WIDER FACE training set with other published results on FDDB. Figure 3.6
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shows the evaluation results, in which our FAN detector achieves the state-of-the-art

performance on both discrete and continuous ROC curves.

PASCAL FACE. This dataset was collected from PASCAL person layout test

set [31], with 1,335 labeled faces in 851 images. Figure 3.7 shows the evaluation

results of the precision-recall curves. Among all the existing methods, the proposed

FAN achieved the best mAP (98.78%), which outperforms the previous state-of-

the-art detectors S3FD (98.45%) and SSH (98.27%)1[138], and significantly beats

the other submitted methods [252, 221, 135, 82, 12].

3.3.3 Inference Time

Our FAN detector is a single-stage detector and thus enjoys high inference speed.

FAN runs 32 FPS in GTX 1080ti and CuDNN v5.1 with a VGA-resolution input

image. The majority of the time cost is spent on the VGG16 backbone network,

while the Agglomerative Connection module is computationally efficient and has

little extra cost.

3.4 Discussion

This work proposed a novel framework of “Feature Agglomeration Networks”

(FAN) for building single stage face detectors. The proposed FAN based face de-

tector not only achieves the state-of-the-art performance in various common face

detection benchmarks, but also runs very fast and enjoys real-time inference speed

on GPU. FAN introduces two key novel components: (i) the proposed feature “Ag-

glomerative Connection” module agglomerates multi-scale features and contextu-

al information by hierarchical structure, which effectively handles scale variance

in face detection; and (ii) the proposed Hierarchical Loss allows to train the FAN

model robustly in an end-to-end manner. Our future direction is to extend and apply

the Feature Agglomeration Networks (FAN) framework for more computer vision

1We cannot plot their curve as their result file is not available.
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tasks, including generic object detection or specialized object detection tasks in oth-

er domains, such as pedestrian detection, car detection, etc.
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Part II

High-quality Detection
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Chapter 4

Bidirectional Pyramid Networks for

High-quality Object Detection

4.1 Introduction

Most existing object detectors are designed for achieving localization with rela-

tively low-quality precision (e.g. Intersection over Union (IoU) threshold of 0.5

is considered good enough). When the goal is to achieve higher quality localiza-

tion precision (IoU>0.5), the detection performance often drops significantly [10].

However, real-world applications such as autopilot, requires detectors with high lo-

calization ability, where the goal is to achieve higher quality localization precision

(IoU=0.7 etc.). Most existing frameworks match objects by a set of pre-defined an-

chors, and sample positive anchor candidates based on whether their IoU with the

objects larger than the threshold (0.5 by default). In this case, the ill-designed an-

chors significantly hurt the detector performance in high-quality evaluation metric.

A naive solution to address this issue is to increase the IoU threshold when select-

ing positive samples (e.g., from 0.5 to 0.7) during training, such that the detector

is trained on only high-quality examples. Unfortunately, such a strategy will lead

to very few (positive) training samples, and will consequently lead to overfitting,

especially for single-shot SSD-like detectors. In addition, most object detectors aim
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to use the strength of deep features for object localization. This can have adverse

effects as deep features (while being semantically rich) lack detailed information

about the spatial location of the objects.

In this work, we aim to develop a novel high-quality single-shot detector. We

follow the family of single-stage SSD-like detectors, and design an approach that

makes it amenable for high-quality detection. We identify two critical drawbacks of

SSD-like detectors for learning high-quality detectors: first, the single-shot feature

representations may not be discriminative and robust enough for precise localiza-

tion; and second, the singe-stage detection scheme relies on the predefined anchors

which are very rigid and often inaccurate. To overcome these drawbacks for high-

quality object detection tasks, in this chapter, we propose a novel single-shot detec-

tion framework named “Bidirectional Pyramid Networks” (BPN). Specifically, BPN

uses a novel Bidirectional Pyramid Structure, that boosts the vanilla feature pyra-

mid [118] by reinforcing it with a Reverse Feature Pyramid to fuse both deep and

shallow features to learn more effective and robust representations. Unlike Feature

Pyramid Network (FPN) which aims to enhance the shallow features with seman-

tically rich deep features, the Reverse FPN aims to enhance the deep features with

spatially rich shallow features, thereby improving the representation for better local-

ization. BPN is also augmented with a novel Anchor Refinement scheme that learns

to gradually improve the quality of predefined anchors which are often inaccurate at

the beginning. Specifically, we train the bounding box regressors at different levels

of qualtiy (IoU thresholds), and in an incremental manner, feed the bounding box

predictions of a specific quality into the predictions of the next higher quality. We

conducted extensive experiments on PASCAL VOC and MSCOCO showed that the

proposed method achieved the state-of-the-art results for high-quality object detec-

tion while still maintaining the advantage of computational efficiency of single shot

detectors.
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4.2 Single-Shot Detector for High-Quality Detection

To train a detector, predefined anchors are often used. These anchors are generated

densely or sparsely across the image, and the goal is to predict the class of object and

the appropriate corrections to the original anchor localization. Each anchor is as-

signed to some object class label (including background) according to the anchor’s

Jaccard overlap score with ground-truth objects, a.k.a. “Intersection over Union”

(IoU). When an anchor matches with the object for a given threshold, it is termed

as a positive anchor. These positive anchors serve as ground truth for training. For

objects that do not meet this threshold with any anchor, the best anchor is assigned

as a positive anchor during the training stage. Our aim is to devise a new single-

shot detector for high-quality object detection tasks by overcoming the drawbacks

of state-of-the-art detectors. We tackle this challenge from both feature representa-

tion and anchor-refining perspectives. Existing single-shot object detectors, feature

representations may not be discriminate and robust enough for precise localization,

as they rely primarily on the deep layer features which while being semantically-

rich, lack spatial information. We propose to strengthen deep layer features with

spatially rich shallow feature to improve the localization performance. Second, for

many state-of-the-art detectors, a group of anchors are often generated/pre-defined

on the feature maps densely or sparsely, followed by location regression and ob-

ject classification prediction. Due to the scale variance of the objects, and several

downsampling steps from the original image, the manually designed anchors will

often not be able to find a good match with the ground truth object locations. This

issue becomes more prominent when we aim to train high-quality detectors with a

high IoU threshold (e.g., 0.7) since the number of positive anchors would decrease

significantly as IoU increases. This would consequently result in poor detection per-

formance due to overfitting. Thus, we propose a novel anchor refinement procedure

to improve the localization prediction.
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Figure 4.1: The proposed framework of Bidirectional Pyramid Networks (BPN)
for single-shot high-quality detection. FP denotes Feature Pyramid building block,
and rFP denotes the Reverse Feature Pyramid building block. Bidirectional Fea-
ture Pyramid block generates more robust and discriminative feature map and the
Anchor Refinement (AR) is utilized for relocating anchors, each level of which is
responsible for a certain quality of detection. Training sample quality improves as
the Anchor Refinement progresses (with higher IoU).

4.2.1 Framework of Bidirectional Pyramid Networks

We propose a novel framework called Bidirectional Pyramid Networks (BPN) to

overcome the above drawbacks of SSD-style detectors, with the aim of develop-

ing a high-quality object detector. To address the weak feature representation issue

of SSD-style detectors, we adapt the structure Feature Pyramid Networks (FPN)

[118] and develop a novel Bidirectional Feature Pyramid structure that significantly

boosts the effectiveness of Feature Pyramid(FP) structure. To address the issue of

anchor quality, the key idea is to devise an effective yet efficient multi-level learn-

ing scheme to refine the quality of the anchors. We have classifiers and regressors

at multiple levels, and for each level we train the classifier and regressor to re-

fine anchors, before training the classifiers and regressors in the next level. Figure

4.1 gives an overview of the proposed single-shot Bidirectional Pyramid Network-

s (BPN) for high-quality object detection, where the backbone network (as shown

in the blue branch of Figure 4.1) can be any CNN network, such as Alexnet [96],
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GoogleNet [192], VGG [181], ResNet [62], etc. For simplicity, we choose VGG-16

and ResNet-101 as backbone networks.

Similar to typical single-shot detectors, at the lowest quality level with the de-

fault IoU=0.5, the proposed BPN detector makes the prediction based on the prede-

fined anchors. Then, the features are further enhanced by the Bidirectional Feature

Pyramid which aggregates features from different depths. It consists of standard

feature pyramids in a bottom-up fashion (the purple branch of Figure 4.1) and re-

verse feature pyramid in a top-down fashion (the green branch of Figure 4.1). These

three-level branches not only aggregate multi-level features to provide robust fea-

ture representations, but also enable multi-quality training. For the joint training

with multiple quality levels, the Anchor Refinement scheme with multi-level learn-

ing optimizes anchors from the previous level/branch and sends them to the next

level/branch.

The above two key components, Bidirectional Feature Pyramid and Anchor Re-

finement, are seamlessly integrated in the proposed framework and can be trained

end-to-end to achieve high-quality detection in a synergic manner. In the following,

we present the detailed functioning of these components.

Deconv4x4/s2

Conv3x3/s1

Conv3x3/s1

Feature Pyramid
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Feature
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(a) Feature Pyramid
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(b) Reverse Feature Pyramid

Figure 4.2: The proposed Bidirectional Feature Pyramid Network Structure
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4.2.2 Bidirectional Feature Pyramid Structure

We denote the index of feature maps for prediction as L, where L ∈ {1, 2, 3, 4}

in our setting, and the levels of quality Q ∈ {1, 2, 3, . . .} with the corresponding

IoU thresholds as IoU(Q) ∈ {0.5, 0.6, 0.7, ...}. The feature map in depth L for

quality Q prediction is denoted as FQ
L , and anchors for training quality Q detector

in depth L are denoted as AQL . Specifically for this work, we choose three types of

detectors with different quality levels: Low, Mid and High with the corresponding

IoU threshold as 0.5, 0.6 and 0.7 respectively (See Figure 4.1 for details).

In order to improve the power of feature representation of SSD-style detectors,

we apply Feature Pyramids (FP) [118], which exploits the inherent multi-scale and

pyramidal hierarchy of deep convolutional networks to construct the representation

of feature pyramids. Specifically, FPN fuses semantically-strong deep layer features

with shallow features which are semantically-weak but spatially-strong. The idea is

to strengthen the features by helping them with stronger semantic information. We

propose to augment this structure via a reverse Feature Pyramid (rFP), where the

deep features are strengthened by the spatially strong shallow features.

Reverse Feature Pyramid has several strengths. First, the deep feature represen-

tations are enhanced to for better localization of large objects in the high-quality

scenario; second, compared to stacked CNN for image classification, rFP reduces

the distance from shallow features to deep features by using much fewer convo-

lution filters and thus more effectively preserves spatial information. Finally, the

lateral connections reuse different shallow layer features to reduce information at-

tenuation from shallow features to deep features. We demonstrate this concept in

Figure 4.2. Specifically, Figure 4.2(a) is the vanilla Feature Pyramid building block

that fuses features in a bottom-up manner with lateral connections. It is worth noting

that there is no strengthening of the deepest feature layer from the Feature Pyramid

(the right diagram of Figure4.1). Thus, we further build the Reverse Feature Pyra-

mid by top-down aggregation (as shown in Figure 4.2 (b)) with lateral connections
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to enhance deep layer features with rich spatial information.

The formulations of Feature Pyramid (FP) and reverse Feature Pyramid (rFP)

can be represented as:

FP : FQ
L = Deconvs2(F

Q
L+1)⊕ Conv(FQ−1

L ) (4.1)

rFP : FQ
L = Convs2(F

Q
L−1)⊕ Conv(FQ−1

L ) (4.2)

where Deconvs2 denotes the deconvolution operation for feature map up-sampling

with stride 2 and Conv denotes convolution operation. ⊕ denotes element-wise

summation. In this work, we use 3 × 3 convolution kernels with 256 channels to

build the Feature Pyramid and Reverse Feature Pyramid in our BPN detector.

4.2.3 Anchor Refinement

In order to both increase the number of positive anchors during training and im-

prove their quality, we propose the Anchor Refinement (“AR”). We denote the an-

chors used at quality Q, depth L as ARQ
L . In particular, AR has two parts: location

regressor RegQL and a categorical classifier ClsQL . At each level of quality, regres-

sors receive the processed anchors from the previous level of quality for further

optimization (A1
L is the set of manually defined anchor):

AQL = RegQ(AQ−1L ;FQ
L ), Q = 2, 3, . . . , L = 1, 2, . . . (4.3)

A set of offsets is learned from the regressors to adjust the location of the predicted

bounding boxes. Different from vanilla SSD, these bounding boxes are conditioned

on the refined anchors and are be used as new anchors in next stage.

Categorical classifiers learn to predict categorical confidence scores and assign

them to these anchors:

CQ
L = ClsQ(FQ

L ), Q = 1, 2, 3 . . . , L = 1, 2, . . . (4.4)
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Thus, the training loss at quality level Q can be written as:

`Q =
1

NQ
∗
∑
L

∑
i

(
`QCls({C

Q
Li
}, {tLi

})

+ λ ∗ `QReg({A
Q
Li
}, {gLi

})
) (4.5)

whereNQ is the positive sample number at quality levelQ, Li is the index of anchor

in depth L feature map within a mini-batch, tLi
is the ground truth class label of

anchor Li, gLi
is the ground truth location and size of anchor Li, λ is the balance

weighting parameter which is simply set to 1 in our settings. LQCls(.) is softmax loss

function over multiple classes confidences and LQReg(.) is the Smooth L1-loss which

is also used in [123]. The total training loss is the summation of losses at all the

quality levels:

`BPN =
∑
Q

`Q (4.6)

4.2.4 Implementation Details

CNN Backbone Architecture: We choose VGG16 [181] and ResNet-101 [62] pre-

trained on ImageNet as the backbone networks in our experiments. For VGG16, we

follow [123] to transform the last two fully-connected layers “fc6” and “fc7” to con-

volutional layers “conv fc6” and “conv fc7” via reducing parameters. To increase

receptive fields and capture large objects, we attached two additional convolution

layers after the VGG16 (denoted as conv6 1 and conv6 2). Due to different scale

norm in different feature maps, we re-scale the norms of the first two feature blocks

to 10 and 8 respectively. For ResNet-101, we added one extra residual block “res6”

at the end of the network.

Data Augmentation: We adopt the augmentation strategies in [123] to make the

detectors robust to objects with the changes in scale and color. Specifically, im-

ages are randomly expanded or cropped with additional photometric distortion to
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generate additional training samples.

Feature Blocks for Prediction: In order to detect objects at different scales, we

use multiple feature maps for prediction. The vanilla convolution feature blocks in

backbone are used for low-quality detection, feature pyramid blocks are used for

mid-quality detection, and the reverse feature pyramid blocks are used for high-

quality detection. We use four feature blocks with stride 8, 16, 32 and 64 pixels

in training each quality detector. In VGG16, conv4 3, conv5 3, conv fc7, conv6 2

and their corresponding feature pyramid blocks FP3, FP4, FP5 and FP6, and reverse

feature pyramid blocks rFP3, rFP4, rFP5 and rFP6 are used, while in ResNet-101,

res3b3, res4b22, res5c, res6 and their corresponding feature pyramid blocks and

reverse feature pyramid blocks are used.

Anchor Design: Originally a group of anchors are pre-designed manually. For each

prediction feature block, one scale-specific set of anchors with three aspect ratios

isssociated. In our approach, we set the scale of anchors as 4 times that of the feature

map stride and set the aspect ratios as 0.5, 1.0 and 2.0 to cover different scales of

objects. We first match each object to the anchor box with the best overlap score,

and then match the anchor boxes to any ground truth with overlap higher than the

quality thresholds.

Optimization: We use “Xavier” method in [50] to randomly initialize the param-

eters in extra added layers in VGG16 and ResNet-101. We set the mini-batch size

as 32 in training and the whole network is optimized via the SGD optimizer (mo-

mentum=0.9, weight decay=0.005, and initial learning rate=0.001). The training

strategy varies a bit for different datasets. For PASCAL VOC dataset, the models

are completely finetuned for 120k iterations and we decrease the learning rate to

10−4 and 10−5 after 80k and 100k iterations, respectively. For MSCOCO, the mod-

els are finetuned for 400k iterations and we decrease the learning rate to 10−4 and

10−5 after 280k and 360k iterations, respectively. All the detectors were trained and

optimized end-to-end.

Sampling Strategy: The ratio of positive and negative anchors are imbalanced after
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the anchor matching step, so proper sampling strategy is necessary to address this

imbalance. We sample a subset of negative anchors to keep the ratio of positive and

negative anchors as 1:3 in training process. To achieve faster convergence, instead

of randomly sampling negative anchors, we sort the negative anchors according to

the loss sufferred by them and select the hardest ones for training. Different IoU

thresholds are used for different quality levels. We use three quality levels (low,

mid and high) for IoU as 0.5, 0.6 and 0.7 respectively.

Inference: During the inference phase, the anchor refinement different quality stage

makes prediction and send the refined anchors to the next quality stage. We take the

predictions from AR in all quality stages to ensure they are suitable for all the low-,

mid- and high-quality detection.

4.3 Experiments

We conduct extensive experiments on two publicly available benchmark datasets:

Pascal VOC and MSCOCO. The evaluation metric for the detector performance is

mean average precision which is widely used in evaluating object detection.

4.3.1 Pascal VOC

We use Pascal VOC2007 trainval set and Pascal VOC2012 trainval set as our train-

ing set, and VOC2007 test set as testing set. There are 16k images for training and

5k images for testing. All models are based on VGG16 architecture as ResNet-101

has limited benefits for this dataset [38]. We train BPN with two resolutions of the

input (320×320 and 512×512) and compare them with the state-of-the-art methods

on low, mid and high-quality detection scenarios (IoU thresholds as 0.5, 0.6 and 0.7

respectively).

We show the comparison of performance of our proposed method BPN320 and

BPN512 against several state of the art two-stage and one-stage baseline detectors

in Table 4.1. BPN320 obtains an accuracy of 80.3%, 75.5% and 66.1% in low, mid
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and high-quality detection scenario respectively, which outperforms many detectors

(e.g., SSD320, Faster RCNN, etc.). BPN512 achieves the state-of-the-art results of

82.2%, 77.6% and 68.3% for three scenarios respectively. Notably, BPN has clear

advantage in high-quality detection scenario(IoU=0.7). BPN is one-stage detector,

and can thus be used for real-time inference. BPN320 can perform inference at

32.4fps while BPN512 at 18.9fps on a Titan XP GPU.

Method Backbone Input size FPS mAP (%)
IoU@0.5 IoU@0.6 IoU@0.7

Two-stage Detectors:
Fast R-CNN [47] VGG-16 ∼ 1000× 600 0.5 70.0 62.4 49.4
Faster R-CNN [162] VGG-16 ∼ 1000× 600 7 73.2 67.7 54.4
OHEM [179] VGG-16 ∼ 1000× 600 7 74.6 68.9 55.9
HyperNet [95] VGG-16 ∼ 1000× 600 0.88 76.3 - -
Faster R-CNN [62] ResNet-101 ∼ 1000× 600 2.4 76.4 69.5 57.3
ION [5] VGG-16 ∼ 1000× 600 1.25 76.5 - -
LocNet [46] VGG-16 ∼ 1000× 600 - 77.5 - 64.5
R-FCN [24] ResNet-101 ∼ 1000× 600 9 80.5 73.2 61.8
R-FCN Cascade [10] ResNet-101 ∼ 1000× 600 7 81.0 75.8 66.7
CoupleNet [254] ResNet-101 ∼ 1000× 600 8.2 81.7 76.6 66.8
One-stage Detectors:
RON384 [94] VGG-16 384× 384 15 75.4 66.8 54.2
SSD300 [123] VGG-16 300× 300 46 77.3 72.3 61.3
DSOD300 [174] DS/64-192-48-1 300× 300 17.4 77.7 73.4 63.6
YOLOv2 [158] Darknet-19 544× 544 40 78.6 69.1 56.5
SSD512 [123] VGG-16 512× 512 19 79.8 74.7 64.0
RefineDet320 [236] VGG-16 320× 320 40.3 80.0 74.2 63.6
RefineDet512 [236] VGG-16 512× 512 24.1 81.8 76.9 66.0
RFBNet300 [122] VGG-16 300× 300 83.0 80.7 75.5 65.5
RFBNet512 [122] VGG-16 512× 512 38.0 82.2 - -
BPN320(ours) VGG-16 320× 320 32.4 80.3 75.5 66.1
BPN512(ours) VGG-16 512× 512 18.9 82.2 77.6 68.3

Table 4.1: Detection results on PASCAL VOC dataset. All the methods were trained
on VOC2007 and VOC2012 trainval sets and tested on VOC2007 test set.

4.3.2 Ablation Study

In this section, we conduct a series of ablation studies to analyze the impact of

different components of BPN. We use VOC2007 and VOC2012 trainval set as

our training set and test on VOC2007 test set. We use mean average precision

on three different IoU thresholds (0.5, 0.6 and 0.7) as our evaluation metric. The

results are shown in Table 4.2.

Bidirectional Feature Pyramid: To validate the effectiveness of the Bidirectional
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Feature Pyramid, we remove all Anchor Refinement components from BPN leaving

only one classifier, and compare this model (called as BPN w / o AR) with vanilla

SSD and SSD+FP. Bidirectional Feature Pyramid is built based on vanilla SSD and

all three models are fine-tuned with IoU threshold as 0.5. In Table 4.2, we can

see that SSD+FP outperforms vanilla SSD because deep semantic features boost

feature representations. Further, BPN w / o AR outperforms SSD+FP in all quality

scenarios, demonstrating its effectiveness.

Levels of AR: We aim to validate if the level of AR is important for training high-

quality detectors. We show the results in Table 4.2. Firstly, a vanilla SSD was

trained with 0.7 IoU threshold. This model (row 2) performs much worse than the

baseline (row 1) trained with 0.5 IoU threshold in all three quality levels, which val-

idates that insufficient positive training samples causes overfitting. Second, we keep

a single level of AR block on SSD+FP (called “SSD+FP+AR”), and train this model

with 0.5 IoU threshold. We can see that the detection results improve significantly

compared with “BPN w/o AR” in low and mid quality scenarios, and is similar in

the high-quality scenario (63.6% vs 63.4% ). We further train “SSD+FP+AR” with

0.7 IoU threshold and this model (row 6) also suffers from overfitting issues but

it is less severe compared to vanilla SSD. This shows that Anchor Refinement can

boost detection performance by refining anchor quality. However, a single level of

AR was not enough to boost the performance of the model. Finally, to the above

model, we add one more level AR blocks and jointly optimize AR with different

quality settings (0.5,0.5,0.7) and (0.5,0.6,0.7), which utilize high quality anchors

for training. These two models (row 7 and row 8) further improve the performance

significantly especially for high-quality scenario (IoU=0.6 and IoU=0.7, etc.). In

summmary, single level of AR is effective in addressing overfitting issues with SS-

D, and multi-level of AR are critical for enhancing the detection performance in

high-quality scenarios.

Proposal Quality Improved by Anchor Refinement: In this section, we validate

the effectiveness of the Anchor Refinement blocks to improve the anchor quality.
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Training IoU mAP@IoU=0.5 mAP@IoU=0.6 mAP@IoU=0.7

SSD (0.5, - , - ) 76.3 71.0 60.4
SSD (0.7, - , - ) 68.4 61.9 50.8

SSD+FP ( - ,0.5, - ) 77.4 72.1 61.6
BPN w / o AR ( - , - ,0.5) 78.1 72.7 63.4
SSD+FP+AR (0.5, 0.5, - ) 80.0 74.2 63.6
SSD+FP+AR (0.5, 0.7, - ) 78.1 73.7 63.1

BPN (0.5, 0.5, 0.7) 80.0 75.1 65.4
BPN (0.5, 0.6, 0.7) 80.3 75.5 66.1

Table 4.2: Detection results on PASCAL VOC dataset. For VOC 2007, all methods
are trained on VOC 2007 and VOC 2012 trainval sets and tested on VOC 2007
test set. Original SSD uses six feature maps for prediction, while we use four
feature maps to be consistent with BPN, so the detection result of SSD here is a
bit lower. “Training IoU” denotes IoU thresholds trained for different stages (“-”
means no classifier in this stage). Bold fonts indicate the best mAP.

In Figure 4.3, we count the number of positive anchors per image for training un-

der different IoU thresholds for SSD, SSD+FP+AR and BPN. For SSD, anchors are

generated manually and only a few anchors matched objects under high IoU thresh-

old metric, which makes it hard to train effective detectors. For SSD+FP+AR, an-

chors have been refined by AR once, and the number of positive anchors increases

significantly under all IoU thresholds. Further in BPN where anchors are refined

by AR twice, more high quality anchors are generated on more robust feature maps.

Notably, after being refined by AR we have sufficient positive training samples even

under high IoU metrics, so that we could conduct gradually increasing training pos-

itive IoU thresholds (0.5, 0.6 and 0.7). These results show that our AR blocks can

gradually improve anchor qualities and generate more positive anchors for training.

4.3.3 MSCOCO

In addition to PASCAL VOC, we also evaluate BPN on MSCOCO [120]. CO-

CO contains 80 classes objects and about 120k images in trainval set. We use

trainval35k set for training and test on test-dev set. Table 4.3 shows the

results on MS COCO test-dev set. BPN320 with VGG-16 achieves 29.6% AP and

when using larger input image size 512, the detection accuracy of BPN512 reaches
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33.1%, which is better than all other VGG16-based methods. Notably, we notice

in high-quality detection metric AP75, BPN is clearly better than other detectors.

As the objects in COCO dataset are of various scales, we also applied multi-scale

testing based on BPN320 and BPN512 to reduce the impact of input size. The im-

proved version BPN320++ and BPN512++ achieve 35.4% and 37.9% AP, which

is the state-of-the-art performance among one-stage detectors. Different from Pas-

cal VOC, using a deeper backbone such as ResNet could further improve detection

accuracy compared to VGG16. Thus we report BPN512 with ResNet-101. Single

BPN512 achieves 37.6% AP and when using multi-scale and flip horizontal infer-

ence, it improves to 42.3% AP, which is the state-of-the-art performance among

one-stage detectors. Notably, BPN512++ achieves 46.3% on AP75, which outper-

forms all other one-stage detectors significantly under high-quality metric.
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Figure 4.3: Average positive anchor number per image by different approaches un-
der different “IoU Threshold” metric.

4.4 Discussion

In this work, we proposed a novel single-stage detector framework Bidirectional

Feature Pyramid Networks (BPN) for high-quality object detection. It comprises

two novel major components: a Bidirectional Feature Pyramid structure for more

effective and robust feature representations and an Anchor Refinement component

to gradually refine the quality of predesigned anchors for more effective training.
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Method Backbone AP AP50 AP75 APS APM APL

two-stage:
Fast R-CNN [47] VGG-16 19.7 35.9 - - - -

Faster R-CNN [162] VGG-16 21.9 42.7 - - - -
OHEM [179] VGG-16 22.6 42.5 22.2 5.0 23.7 37.9

ION [5] VGG-16 23.6 43.2 23.6 6.4 24.1 38.3
OHEM++ [179] VGG-16 25.5 45.9 26.1 7.4 27.7 40.3

R-FCN [24] ResNet-101 29.9 51.9 - 10.8 32.8 45.0
CoupleNet [254] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8

Faster R-CNN by G-RMI [74] Inception-ResNet-v2[191] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN+++ [62] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [118] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
FRCNN w Cascade RCNN [10] VGG16 26.9 44.3 27.8 8.3 28.2 41.1
R-FCN w Cascade RCNN [10] ResNet-50 30.9 49.9 32.6 10.5 33.1 46.9
R-FCN w Cascade RCNN [10] ResNet-101 33.3 52.6 35.2 12.1 36.2 49.3

Regionlets [217] ResNet-101 39.3 59.8 - 21.7 43.7 50.9
Mask-RCNN [60] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

Soft-NMS [6] Aligned-Inception-ResNet 40.9 62.8 - 23.3 43.6 53.3
Fitness NMS [198] ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5

Cascade RCNN w FPN [10] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

one-stage:
YOLOv2 [158] DarkNet-19[158] 21.6 44.0 19.2 5.0 22.4 35.5
SSD300 [123] VGG-16 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ [94] VGG-16 27.4 49.5 27.1 - - -
SSD321 [38] ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [38] ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6
SSD512 [123] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5
SSD513 [38] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [38] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RefineDet320 [236] VGG-16 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet512 [236] VGG-16 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet320 [236] ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4
RefineDet512 [236] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

FoveaBox [93] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6
CenterNet-HG [243] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8
CornerNet511 [98] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

CornerNet511++ [98] Hourglass-104 42.1 57.8 45.3 20.8 44.8 56.7
BPN320 VGG-16 29.6 48.4 32.3 9.6 32.5 44.3
BPN512 VGG-16 33.1 53.1 36.3 15.7 37.0 44.2

BPN320++ VGG-16 35.4 55.3 38.5 19.0 37.9 47.0
BPN512++ VGG-16 37.9 58.0 41.5 21.9 41.1 48.1

BPN512 ResNet-101 37.6 59.1 40.5 18.7 42.2 50.8
BPN512++ ResNet-101 42.3 62.8 46.3 25.7 46.1 53.2

Table 4.3: Detection results on MS COCO test-dev set. Bold fonts indicate the
best performance.

The proposed method achieves state-of-the-art results on Pascal VOC and MSCO-

CO dataset while enjoying real-time inference speed.
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Chapter 5

KPNet: Learning to Optimize

Keypoints for Anchor-free Detectors

5.1 Introduction

In Chapter 4 we have introduced one high-quality detection framework BPN. Like

the mainstream state-of-the-art detectors, BPN is also an anchor based detection

method, which heavily rely on the design and selection of appropriate anchor boxes.

For most existing anchor-based methods, the difficulties of learning high-quality de-

tector is the pre-designed anchors cannot match objects with sufficient IoU, and thus

the learned models produce low-quality results. BPN proposes anchor refinement to

optimize the shape of anchors to better match objects, and has shown improvement.

However, it still requires manually designed anchors for initialization.

Unlike the anchor-based detectors, the anchor-free detectors have emerged re-

cently as a promising direction for object detection that eliminates the need of manu-

ally designing anchor boxes [247, 196, 98, 29]. In literature, a variety of anchor-free

object detectors have been proposed based on different object modeling strategies

and heuristics. For example, CornerNet [98] was proposed for detecting objects by

a pair of corner points. Instead of using two corners, CenterNet [243] was proposed

by modeling an object as one center point of its bounding box. Besides, there are
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also a number of other anchor-free detectors that extend the ideas of either Corners

based or Centerness based or various other different keypoint design strategies to

improve the detection performance.

While anchor-free detectors have been actively explored, we argue that many, if

not all, popular anchor-free detectors can be essentially viewed as a special form of

keypoint based detectors that adopt different forms of designing/selecting keypoints

from a unified keypoint-based detection perspective. Figure 1 (a)-(e) gives an ex-

ample that compares five popular anchor-free detectors from the view of keypoint

based detectors. For example, other than CornerNet and CenterNet, RPDet [225]

uses a fixed set of 9 keypoints sampled from the center, FSAF [247] samples a set of

multiple keypoints from the center region, while FCOS [196] uses many keypoints

by treating every pixel as a keypoint.

(a) CornerNet [98] (b) CenterNet [243] (c) RPDet [225]

(d) FSAF [247] (e) FCOS [196] (f) KPNet (ours)

Figure 5.1: Comparison of different anchor-free object detection methods.

From the view of keypoint based object detection, the popular anchor-free de-

tectors adopt different keypoint design strategies, including some pre-defined key-

points such as CornerNet [98] and CenterNet [243], or a fixed number of keypoints

sampled from a pre-defined layout such as RPDet [225], or sampling keypoints

from a pre-defineed center region such as FSAF [247], or simply sampling many

keypoints by treating all pixels within an object as keypoints such as FCOS [196].
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We argue that the existing heuristic keypoint design and sampling strategies may be

sub-optimal and do not fully exploit the potential of keypoint based detection tech-

niques. Based on the above motivation, in this chapter, we propose a new keypoint

based object detector named “KPNet”, which is able to learn a dynamic set of key-

points automatically without heuristic keypoint designs. Figure 1 (f) illustrates the

idea of the proposed KPNet compared with the other anchor-free detectors. As the

example shown in the figure, the set of keypoints to be selected can be learned and

optimized dynamically from image pixels with different types of objects, which is

able to greatly enhance the power of the keypoint based detectors while eliminating

manual keypoint design effort.

As a summary, the key contributions of this work include:

• We introduce a unified view of keypoint based object detection for under-

standing popular anchor-free object detectors, in which many popular anchor-

free object detectors can be viewed as a special form of keypoint based detec-

tors with different keypoint design strategies;

• We propose a new anchor-free object detector named “KPNet” which elimi-

nates the heuristic keypoint design and is capable of learning a dynamic set

of keypoints automatically from image pixels and performs inference of de-

tection efficiently.

• We conduct experiments to evaluate the performance of our KPNet detec-

tor on the COCO benchmark, in which our promising results show that KP-

Net outperforms all the existing anchor-free detectors, and is able to achieve

highly competitive results better or on par with the state-of-the-art two-stage

anchor-based detectors on COCO test-dev (48.3% AP with DCNv2-ResNeXt-

101 backbone on COCO test-dev under single-model single-scale settings).

Our source code and models will be released publiclly upon acceptance.

The rest of this paper is organized as follows. Section 5.2 reviews two major

categories of related work in deep-learning based object detection: popular anchor-
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based detectors and recent anchor-free detectors. Section 5.3 presents the proposed

KPNet detector in detail. Section 5.4 discusses our experimental results and analy-

sis, and Section 5.5 concludes this chapter.

5.2 Preliminaries

In this section, we briefly review two major groups of related work in the liter-

ature of deep-learning based object detection approaches: the mainstream family

of anchor-based object detection methods and the emerging family of anchor-free

object detection methods.

5.2.1 Anchor-based Object Detection

The methods in this group represent the mainstream detectors widely used in many

real-world applications. They can be broadly categorized into two groups: two-

stage detectors [162, 48, 47] and one-stage detectors [123, 236, 119]. Two-stage

detectors often consist of two stages: (i) region proposal generation, and (ii) re-

gioin proposal classification and regression. For example, one of most popoular

two-stage detectors is Faster R-CNN [162] that uses a Region Proposal Network

(RPN) to generate regions of interests in the first stage and then send the region

proposals down the pipeline for object classification and bounding-box regression.

Faster R-CNN has resulted in many various extensions and improvements in lit-

erature [118, 95, 254, 25, 24]. Single-stage detectors, also known as single-shot

detectors, do not need the proposal generation and simply treat object detection as

a simple classification and regression problem by taking an input image and di-

rectly learning the class probabilities and bounding box coordinates of objects via

convolutional networks. Popular single-stage detectors include YOLO [157], SS-

D [123], and RetinaNet [119]. Typically, single-stage detectors are less accurate

than two-stage detectors, but are much faster and thus more amenable to real-time

inference needs. In general, anchor-based detectors suffer from some critical limi-
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tations, including requiring heuristic design of anchors, poor alignment of anchors

with ground truth objects, and incurring a large number of false positives when

anchors are not carefully designed.

5.2.2 Anchor-free Object Detection

From a unified view of keypoint based detectors, we can categorize the existing

anchor-free object detection methods into three groups according to different key-

point design and selection strategies: 1) Single Center keypoint, 2) Two Corner

keypoints, and 3) Multiple keypoints based detectors. We review some representa-

tive works in each group below.

Single center keypoint: A representative anchor-free detector is Center-

Net [243] that models an object by the center point of its bounding box, and uses

keypoint estimation to find center points and regresses to all other object properties,

such as size, 3D location, orientation, and even pose.

Two corner keypoints: CornerNet [98] models each object by a pair of cor-

ner keypoints, which eliminates the need of anchor boxes and is perhaps the first

anchor-free detector that achieved the state-of-the-art single-stage object detection

accuracy. There was also some extension of CornerNet to improve its efficiency

towards real-time applications such as CornerNet-Lite [99].

Multiple keypoints: There was another version of CenterNet [29], which mod-

els an object by a triplet of keypoints, including one center and two corner keypoints.

ExtremeNet [244] models an object by a set of five keypoints, including one center

and four extreme points ( (top-most, leftmost, bottom-most, right-most) of an ob-

ject based on a standard keypoint estimation network. RPDet [225] represents an

object by a fixed set of 9 keypoints sampled from the center of an object and can be

refined progressively during the training process. In addition, there are also some

approaches that sample many keypoints from the center region of an object, such

as FSAS [247] and FoveaBox [93]. Finally, some approaches such as FCOS [196]

and SAPD [246] treat all the pixels within an object as candidate keypoints during
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training and improve them by some separate post-processing.

Unlike the above keypoint based detectors that either use predefiend keypoints

or sample keypoints from fixed layouts, our approach learns a dynamical set of

keypoints automatically from image pixels.

5.3 KPNet

5.3.1 Overview

We now present the proposed keypoint based detection network (KPNet), a new

anchor-free detector that is capable of learning dynamic keypoints with respect to

different objects automatically. Unlike many popular keypoint based detectors that

use heuristic keypoint design strategies, we argue that the set of keypoints should

not be fixed, and the optimal set of keypoints can vary across different types of

object. Our main he idea for designing the proposed keypoint based object detector

is to minimize the human heuristic design of keypoints and attempt to learn the

optimal set of keypoints automatically from data. To this end, instead of assuming

any predefined corners or center, we assume any pixel/location of an image could be

considered a potential candidate of keypoint, and our goal is to develop an efficient

end-to-end learning scheme to find out a compact set of relevant and high-quality

keypoints.

Figure 1 gives an overview of the architecture of the proposed KPNet. An input

image is passed through a CNN network to produce a set of feature maps. Note that

following the CNN backbone, we also apply the Feature Pyramid Network (FPN)

that can better handle scale variances. Based on the feature maps, a Fully Con-

volutional layer is applied to perform the pixel-wise objectness prediction, which

predicts the objectness likelihood of a pixel with respect to a particular object cat-

egory. The objectness map obtained from the objectness prediction module will be

used as an input to the keypoins prediction module to predict a dynamic set of high-
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quality keypoints. Finally, after the final set of dynamic keypoints are obtained, the

keypoints’s bounding boxes together with their objectness and likelihood scores are

passed to NMS to obtain the final detection result.

Next we will discuss several key modules of the proposed framework, includ-

ing pixel-wise objectness prediction, keypoint prediction, overall detector training,

inferences, and other implementation details.

CNN

Feature Map

Predict bounding 
boxes based on 

top-k points

Image

Predict likelihood 
of keypoint based 

on each box

Objectness Map

Keypoints
Prediction

NMSObjectness
Prediction

Final Result

Figure 5.2: The architecture of our KPNet detector. Following the CNN backbone,
we also apply the Feature Pyramid Network (FPN). The objectness prediction mod-
ule is a pixel-wise prediction to predict the likelihood of a relevant object in the
location of the pixel. The keypoints prediction module takes the pixel-wise object-
ness map from the objectness prediction module as the input and learns to predict a
dynamic set of high-quality keypoints towards the final detection.

5.3.2 Pixel-wise Objectness Prediction

The input to this module is a set of feature maps from a CNN backbone, denoted

by Fi ∈ RH×W×C the feature map at layer i of a CNN with a total of C classes.

We view any pixel/location (x, y) of the feature map as a potential candidate for

keypoints, and the objectness prediction module aims to predict how likely a par-

ticular location of the feature map is relevant to some particular class of objects.

This idea follows the principle of fully convolutional networks (FCN) for semantic

segmentation and has also been used previously in FCOS [196].

Specifically, we predict the objectness of a particular location (x, y) by a real

vector (cx,y,bx,y), where cx,y ∈ (0, 1)C denotes a C-dimensional vector of objec-

t class prediction scores for location (x, y), and bx,y = (l, t, r, b) is a 4D vector
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representing the bounding box to be regressed at (x, y), namely the left, top, right,

bottom distances from the location to the four sides of the bounding box.

5.3.3 Keypoint Prediction

The previous objectness scores provide us some useful clue for removing irrelevant

pixels/locations with low class objectness scores (e.g., if the max class score of

cx,y is lower than a threshold). However, the objectness score may not be strong

enough to choose a small compact set of high-quality keypoints. In this module,

we aim to learn a separate keypoint predictor that is able to predict the quality of

being a representative keypoint for a particular location. Specifically, we denote

by px,y ∈ (0, 1) a keypoint likelihood score that indicates if the location (x, y) is a

qualified keypoint for the class Cj . We defer the discussion for training the keypoint

predictor later.

5.3.4 Detector Training

Training Losses for Objectness Prediction

We train the objectness prediction using both classification loss and bounding box

regression loss. We define Q = (x, y) is the set of candidate locations that fall into

the ground-truth bounding boxes. The classification loss is defined as

Lcls =
1

|Q|
∑
(x,y)

Lfocal(cx,y, c
∗
x,y) (5.1)

where Lfocal is based on the focal loss [119] and c∗x,y ∈ [0, 1]C denotes the ground-

truth class labels at location (x, y). For bounding box regression, we only consider

a location that falls into any ground-truth box, and we define the regression loss as

Lloc =
1

|Q|
∑

(x,y)∈Q

LGIoU(bx,y,b
∗
x,y) (5.2)

113



where LGIoU is based on the GIoU loss [163], b∗x,y is a 4D vector (l, t, r, b) repre-

senting the ground-truth bounding box of class i with respect to the location (x, y).

Training Loss for Keypoint Prediction

Consider a location (x, y) of a feature map, our goal is to train a model to predict

px,y ∈ (0, 1) that if this location is a high-quality representative keypoint. From the

previous objectness prediction module, given (x, y), we can predict both its class

objectness scores cx,yand its potential bounding box bx,y = (l, t, r, b). Instead of

using the original feature map Fi at location (x, y) to predict the keypoint score, we

propose to use the features from the predicted bounding box (extracted by an ROI

encoding method) as the input feature for prediction, namely

px,y = softmax(ROI-encoding(Fi,bx,y)) (5.3)

where we adopt the RoiAlign [60] for ROI-encoding. Now we discuss how to com-

pute the ground-truth label p∗x,y from training data automatically.

Based on the ground-truth bounding box, we can define if a location (x, y) is

qualified as a representative keypoint if its predicted bounding box bx,y has a suffi-

cient overlap with the ground-truth bounding box at the current location (note that

if a location falls into multiple bounding boxes, we simply take the bounding box

with minimal area as the target bounding box). More specifically, we measure the

overalp score by computing the Intersection over Union (IoU) between the predict-

ed box and the ground-truth box, and use it to define the ground-truth labels for

keypoint training. Namely

p∗x,y = I
(
IoU(bx,y,b

∗
x,y), tIoU

)
(5.4)

where tIoU is an IoU threshold (which will be changed adaptively during training,

to be discussed later), and I(a, b) is an indicator function that output 1 when a ≥ b

and 0 otherwise.
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During keypoint prediction training, we only consider the set of locations that

fall into any ground-truth bounding box in the training data. Specifically, we can

then define the training loss for keypoint prediction with respect to an IoU threshold

tIoU as follows:

Lkey(tIoU) =
1

|Q|
∑

(x,y)∈Q

Lce(px,y, p
∗
x,y) (5.5)

where Lce denotes the cross-entropy loss and p∗x,y is defined in (4) for a given

IoU threshold.

Overall Training Loss and Adaptive Keypoint Training

Combining the above training losses for both objectness prediction and keypoint

prediction modules, we can define the overall training loss function as follows:

Loverall = Lkey(tIoU) + λclsLcls + λlocLloc (5.6)

where both λcls and λloc are simply set to 1 during our training.

During training, tIoU is a key parameter used to control the quality of points to

become representative keypoints and will be changed adaptively during our training

process. Specifically, in our current approach, we start with an initial value tIoU =

0.3 and gradually increase this threshold in our training process. When increasing

tIoU, we essentially impose a higher quality constraint on the selection of keypoints,

which will result in a more compact set of high-quality keypoints.

5.3.5 Inference

During the inference stage, the KPNet detector takes an image as an input and passes

it through the CNN network followed by the FPN module to obtain the feature maps.

Based on the resulting feature maps, we then predict the objectness scores cx,y and

bounding box offsets bx,y of each point/location (x, y) on the feature map. After
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that, we select top k points/locations with the highest class objectness scores as the

candidate points to the keypoint prediction module. For each candidate keypoint,

we compute the region features of the boxes using the RoiAlign enchoding method,

and use it to predict the quality scores of being a representative keypoint. Finally,

based on the compact set of keypoints, we combine their quality scores with the

class objectness scores of the keypoint, and pass them to a soft-version of Non-

Maximum Suppression (NMS) to obtain the final detection result.

5.3.6 Implementation Details

Network Backbones

Following the recent state-of-the-art object detectors such as FCOS [196] and Reti-

naNet [119], we adopt the ResNet [62] and ResNeXt [215] CNN network as our

backbone architecture. ResNet and ResNeXt are two fully convolutional networks,

which are composed of a sequence of residual modules and were first used for image

classification. Residual module first encodes the input feature by a sequence of con-

volution and normalization layers, and then aggregates the generated feature map

with the original input features. In order to predict objects with large scale variance,

we also apply the Feature Pyramid Network (FPN) [118] in our approach, which

combines the shallow layer features with deep layer features by the latent connec-

tion. To learn a scale-robust detector, each level of FPN is responsible for a certain

scale of objects, making it very suitable for object detection. Specifically, we use 5

FPN levels to make prediction, with stride 8, 16, 32, 64 and 128 compared with the

original image, and each of the level is responsible for a certain scale of the objects:

(0, 64], (64, 128], (128, 256], (256, 512] and (512, INF]. We adopt ResNet-50 [62],

ResNet-101 [62] and DCN2-ResNeXt-101-64x4 [216] as our backbone architecture

in our experiments.
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Initialization and Optimization

We train the model from weights pre-trained on ImageNet classification task and

other parameters are initialized by the same methods as RetinaNet [119]. The mod-

el is trained with SGD optimization methods with 180k iterations with 16 images

per mini-batch. The initial learning rate is set to 1e-2 and is reduced 10 times at 120k

and 160k iterations. During our training, we adaptively change the IoU threshold

parameter tIoU. Specifically, we first train the model for 60k iterations with an initial

IoU threshold tIoU at 0.3, then increase it to 0.5 for training another 60k iterations,

and finally increase it to 0.7 for another 10 iterations of training. We re-scale the the

input images into 800x1333 pixels before training. We use the same data augmen-

tation strategy presented in [196] when training the model, and for each image, the

top-50 predictions are produced.

5.4 Experiments

5.4.1 Experimental Dataset and Setup

We conducted experiments on MSCOCO dataset, which has 80 categories in three

splits: train (115k images), val (5k images), and test-dev (20k images). Following

common practice, we used the train set to train our model and the val set for ab-

lation studies, and finally report the results on test-dev set for comparison. In our

experiments, only bounding box level annotations are used. We consider four types

of backbones: ResNet-50 [62], ResNet-101 [62] and ResNeXt-101-DCNv2[216].

For efficiency, ResNet-50 and ResNet-101 is used in our ablation study.

5.4.2 Experimental Results

Table 5.1 shows the results on the COCO val set by comparing our method with oth-

er popular anchor-free detectors mostly with ResNet-101 (for CornerNet and Cen-

terNet we add results on Hourglass-104 since they are designed based on Hourglass
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backbones). For comparison purposes, we also include two anchor-based detectors,

including the popular RetinaNet[119] and the state-of-the-art ATSS [235] .

Object Detectors Anchor-free Backbone AP AP50 AP75 APS APM APL
RetinaNet[119] Anchor-based R-101 39.1 59.1 42.3 21.8 42.7 50.2
ATSS [235] Anchor-based R-101 43.6 62.1 47.4 26.1 47.0 53.6
CornerNet[98] two corners R-101 30.2 44.1 32.0 13.3 33.3 42.7
CornerNet[98] two corners HG-104 40.5 56.5 43.1 19.4 42.7 53.9
CenterNet[243] one center R-101 34.6 53.0 36.9 - - -
CenterNet[243] one center HG-104 42.1 61.1 45.9 24.1 45.5 52.8
FSAF[247] multiple keypoints R-101 40.9 61.5 44.0 24.0 44.2 51.3
FoveaBox[93] multiple keypoints R-101 40.6 60.1 43.5 23.3 45.2 54.5
FCOS [196] all pixels/locations R-101 41.5 60.7 45.0 24.4 44.8 51.6
RPDet [225] multiple keypoints R-101 41.0 62.9 44.3 23.6 44.1 51.7
KPNet (ours) multiple keypoints R-101 44.0 62.5 46.9 26.6 47.3 53.6

Table 5.1: Performance evaluation of popular keypoint based detectors and two
anchor-baesd detectors. The models are trained on MSCOCO train with 115k im-
ages, and validated on MSCOCO val set with 5k images. “R-101” denotes ResNet-
101 backbone and “HG-104” denotes Hourglass-104 backbone.

From the results, we can see that all anchor-free/keypoint-based methods out-

perform RetinaNet which uses predefined anchors and IoU matching methods. This

confirms the advantage of keypoint-based detection methods over heuristic anchor-

based designs. However, the existing anchor-free detectors are worse than ATSS,

which is a recent state-of-the-art anchor-based method by borrowing and adapting

some advanced strategies from anchor-free methods. By examining the results of

our KPNet, we found that it outperforms all the existing keypoint-based detectors.

This is mainly because all these methods are based on either manual keypoint design

and fixed keypoint sampling strategy. By contrast, our method is capable of learning

dynamical set of keypoints automatically to significantly boost the performance of

keypiont-based detectors. Finally, our method is also better than the state-of-the-art

anchor-based ATSS, but eliminates the need of manually designed anchors.

5.4.3 Ablation Study

This ablation study aims to examine if our KPNet with automated keypoint learn-

ing is able to outperform a variety of keypoint design strategies using predefined

layouts. Table 5.2 shows the results of our ablation study and Table 3 illustrates

118



#Keypoints Backbone AP AP50 AP75

FASF R-50 35.9 55.0 37.9
FCOS R-50 37.8 55.6 40.7
1-C R-50 34.1 52.8 38.8
4-C R-50 37.9 56.0 41.0
9-C R-50 38.6 57.4 41.4
17-C R-50 38.5 57.3 41.4
8-S R-50 35.3 54.1 37.8
16-S R-50 35.0 53.8 37.6
1-C+8-S R-50 37.2 55.0 39.6
4-C+8-S R-50 38.5 56.9 41.3
9-C+16-S R-50 39.3 57.5 42.1
9-C+8-S R-50 39.5 57.7 42.2
KPNet (ours) R-50 40.5 58.8 42.9

Table 5.2: Ablation study on different keypoint sampling strategies. ”S” denotes
keypoints from surrounding regions and ”C” denotes keypoints from central region.
Models are trained on COCO train2017 and tested on COCO val2017 with ResNet-
50.

some example configurations (these baselines follow the similar pipeline of FCOS).

From the results in Table 5.2, we can see that our KPNet with the dynamic keypoint

auto-learning strategy outperforms all kinds of fixed keypoint designs strategies.

5.4.4 Comparison with State-of-the-art Detectors

We now compare our KPNet with other state-of-the-art detectors on COCO test-

dev set. Unlike the previous experiments, we train our models on two backbones

ResNet-101 and ResNeXt-101-DCNv2. Table 5.3 shows the results on COCO test-

dev under the single-model single-scale settings. Our KPNet outperforms all the

the one-stage detectors in literature by a substantial margin (except ATSS), also

outperform a variety of two-stage/multi-stage detectors, and achieves the best re-

sults among all the keypoint based detectors. This promising result validates our

hypothesis of automatically learned keypoints is essential to capture more discrimi-

native information of objects for improving the results. Specifically, compared with

other center-based methods such as CenterNet or FSFA, our method not only ex-

tracts the feature from the central region, but also encodes the structure information
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Figure 5.3: Example configurations. Red dots denote keypoints we aim to learn to
predict. ”C” denotes keypoints from central region and ”S” denotes keypoints from
surrounding regions.

from the entire bounding boxes. Compared with other methods using multiple key-

points, our detector has better results due to the optimization of the dynamic set of

keypoints instead of heuristic sampling. Finally, compared with the SOTA anchor-

based ATSS, our method eliminates the need of using anchors and thus avoids the

heuristic anchor design.

5.5 Discussion

In this chapter, we presented a unified view of the popular anchor-free object de-

tectors from the keypoint based detection perspective. We argue that the existing

keypoint based detectors that often use heuristic keypoint designs or fixed keypoint

sampling strategies may not fully exploit the potential of keypoint based detectors.

To overcome the limitation, we proposed KPNet, a new keypoint based detector

which is able to learn a compact set of representative keypoints automatically from

data without manual design. Our new detector shows significant improvement over

existing anchor-based and anchor-free methods, especially in high-quality settings,
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Method Backbone FPS AP AP50 AP75 APS APM APL
Anchor-based
Multi-stage
FRCN-FPN [118] R-101 9.9 36.2 59.1 39.0 18.2 39.0 48.2
Cascade R-CNN[10] R-101 8.0 42.8 62.1 46.3 23.7 45.5 55.2
Libra R-CNN [145] X-101-64x4d 5.6 43.0 64.0 47.0 25.3 45.6 54.6
TridentNet [110] R-101-DCN 1.3 46.8 67.6 51.5 28.0 51.2 60.5
FreeAnchor [238] X-101-32x8d 5.4 44.8 64.3 48.4 27.0 47.9 56.0
Fitness-NMS [198] R-101 5.0 41.8 60.9 44.9 21.5 45.0 57.5
Single-stage
RefineDet[236] R-101 - 36.4 57.5 39.5 16.6 39.9 51.4
RetinaNet [119] R-101 8.0 39.1 59.1 42.3 21.8 42.7 50.2
AB+FSAF [247] R-101 7.1 40.9 61.5 44.0 24.0 44.2 51.3
AB+FSAF [247] X-101-64x4d 4.2 42.9 63.8 46.3 26.6 46.2 52.7
M2Det [240] VGG-16 11.8 41.0 59.7 45.0 22.1 46.5 53.8
ATSS [235] X-101-64x4d-DCNv2 7.1 47.7 66.5 51.9 29.7 50.8 59.4
Anchor-free
GA-FRCN [206] R-50 9.4 39.8 59.2 43.5 21.8 42.6 50.7
GA-RetinaNet [206] R-50 10.8 37.1 56.9 40.0 20.1 40.1 48.0
CornerNet [98] HG-104 3.1 40.5 56.5 43.1 19.4 42.7 53.9
ExtremeNet [244] HG-104 2.8 40.2 55.5 43.2 20.4 43.2 53.1
FoveaBox [93] R-101 11.2 40.6 60.1 43.5 23.3 45.2 54.5
FoveaBox [93] X-101 - 42.1 61.9 45.2 24.9 46.8 55.6
FCOS [196] R-101 9.3 41.5 60.7 45.0 24.4 44.8 51.6
FCOS w/ imprv[196] X-101-64x4d 5.4 44.7 64.1 48.4 27.6 47.5 55.6
CenterNet [243] HG-104 7.8 42.1 61.1 45.9 24.1 45.5 52.8
CenterNet [29] HG-104 3.3 44.9 62.4 48.1 25.6 47.4 57.4
RPDet [225] R-101-DCN 8.0 45.0 66.1 49.0 26.6 48.6 57.5
SAPD [246] X-101-64x4d-DCN 4.5 47.4 67.4 51.1 28.1 50.3 61.5
KPNet (ours) R-101 8.3 44.0 62.5 46.9 26.6 47.3 53.6
KPNet (ours) X-101-64x4d-DCNv2 5.9 48.3 67.1 52.3 30.0 51.7 59.5

Table 5.3: Comparison of KPNet with other state-of-the-art two-stage or one-stage
detectors (single-model and single-scale results). All models were trained on CO-
CO train set and tested on test-dev.
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and has obtained the state-of-the-art on the MS COCO test-dev set (under single-

model single-scale settings).
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Part III

Few-shot Detection
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Chapter 6

Meta Learning for Few-shot Object

Detection

6.1 Introduction

Following the success of deep learning for image classification [86, 96], re-

cent years have witnessed remarkable progress in object detection with deep

learning. A series of detection algorithms based on DCNNs have been pro-

posed which achieve state-of-the-art results on public detection benchmark datasets

[45, 48, 162, 118, 119, 123, 158]. However, all these methods are data hungry, and

require large amounts of annotated data to learn an immense number of parameters.

For object detection, annotating the data is very expensive (far more than image

classification), as it requires not only identifying the categorical labels for every

object in the image, but also providing accurate localization information through

bounding box coordinates. Moreover, in real-world applications, such as medical

research, it’s often impossible to even collect sufficient data to annotate. This war-

rants a need for effective detectors that can generalize well from small amounts of

annotated data. We refer to this real-world problem of learning detectors from lim-

ited labeled data as few-shot detection. For example, in one-shot detection, only

one image is available with objects of interest annotated, and a detector needs to
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Figure 6.1: Few-shot object detection in the meta-learning setting. From the meta-
train dataset, a Kway-Nshot support set and a query set are sampled to create a
task. The meta detector makes predictions on the query set by using the knowledge
from the support set, and updates the detector based on the loss on the query set. In
this example, despite many objects (“person”, “dog”, “truck”, etc), the meta-train
sample task aims to just detect “person”. At test time, a single annotated image
from a novel class (e.g., “bear”) is available for the detector to learn a model that
can generalize.

train on just this image and generalize. When presented with such small amounts

of annotated data, traditional detectors tend to suffer from overfitting. Inspired by

the fact that humans can learn a new concept from limited training data, we aim to

develop a new few-shot detection method.

Recent years have seen active efforts for few-shot learning [201, 36, 184]. Many

of them follow the principle of meta learning, where a set of tasks in a few-shot set-

ting is simulated from a large corpus of annotated data, and the model is optimized

to perform well over these few shot tasks. This trains the model to learn how to

solve few-shot tasks. However, most existing efforts of meta learning are mainly

focused on classification. Adapting few-shot classification algorithms directly for

few-shot detection (e.g. by replacing the region classification branch of detector
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with a meta-learner) is non-trivial because of two major concerns: i). Detection

algorithms not only require classifying objects but also need to correctly localize

objects in cluttered backgrounds by using a Region Proposal Network (RPN) and

bounding box (bbox) regressors. It is thus also desirable that both RPN and bbox

regressors should also be capable enough to adapt to few-shot settings. ii). For a

given task with one (or few) annotated image(s), the annotated image may contain

objects from several classes. But only a few objects of interest are annotated. The

goal of the few-shot detector is to detect only these objects of interest. Unfortu-

nately, a naively trained meta-detector’s RPN would detect all objects (even objects

from classes not of interest) and try to classify them as one of the classes of interest

rather than background images (See Figure 6.1 for an example).

We aim to address these challenges in few-shot object detection by proposing

a novel method using the meta-learning paradigm. In particular, we propose Meta-

RCNN, an end to end trainable meta object detector, which follows the episodic

learning paradigm of meta-learning [201], where multiple few-shot tasks are sim-

ulated based on a give meta-train dataset. Specifically, for a given task, we first

construct a class prototype for each of the annotated object categories in the sup-

port set. Using these prototypes, a class-specific feature map of the entire image is

constructed, i.e., we obtain a feature map of the entire image for each of the class

prototypes. These feature maps are tailored to detect only objects of the class of the

prototype, by giving higher attention to appropriate regions in the image containing

that object. A weight-shared RPN follows the class-aware feature map to generate

proposals. For each generated proposal, we concatenate the feature of its corre-

sponding prototype to further enhance its representation ability. This is followed by

a binary classifier and a bbox regressor.

Meta-RCNN learns a few-shot detector where the whole framework can be

trained via meta-learning in an end-to-end manner. In contrast to the naive adap-

tation of meta-learning for classification into an object detection framework, Meta-

RCNN learns the few-shot classifier, the RPN, and the bbox regressor in the meta-
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learning setting, thus making all three components suitable for handling few-shot

scenarios. Moreover, Meta-RCNN learns a class-specific feature map for a given

class prototype enabling easier distinction between classes of interest and back-

grounds (where other objects in the image from classes not of interest are consid-

ered as backgrounds). We demonstrate the effectiveness of Meta-RCNN on the

popular few-shot detection benchmarks: Pascal VOC, and show that Meta-RCNN

significantly improves the detection result in few shot settings.
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Figure 6.2: The Meta-RCNN workflow. A set of prototypes of different categories
are extracted from the support set. For each class, conditioned on these prototypes, a
class-specific feature map from query set is generated by applying the class attention
module to the feature map of the entire image. The new class-specific feature map
is tailored to detecting objects of that specific class (class ’person’ in the workflow,
etc.). An weight-shared RPN is applied in the class-specific feature map, followed
with an binary region classification layer and bounding box regressor. The whole
network is optimized via meta learning and can be trained end-to-end.

6.2 Preliminaries

6.2.1 Problem Setting

We now present the formal problem setting of few-shot detection in this Chapter.

Consider two datasets L and S, where L is a large-scale annotated dataset with Lc

categories and S is a dataset with only a few annotated images with Sc categories.

There is no category overlap between two datasets: Lc∩Sc = φ. Our goal is to learn

a robust detector from the annotated data in L and S to detect unlabeled images in

S.
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The proposed Meta-RCNN aims to learn a general detection framework which

can be quickly adapted to detection tasks with only a few labeled samples. We fol-

low the standard training scheme of meta learning, which splits the whole learning

stage into two parts: meta-training and meta-testing, and the model is optimized

over multiple few-shot tasks simulated from the meta-training data. Specifically,

during meta-training, few-shot detection tasks are sampled from L, and each task

contains a support set and a query set. For the i-th task, K ways (or categories)

and N images per category are randomly selected from Lc to build support set:

TL,s
i . Similarly, Q images per category are randomly selected to build query set TL,q

i .

Support set TL,s
i and query set TL,q

i construct a complete task extracted from L (See

Figure 6.1):

TLi =
{

TL,s
i ,T

L,q
i

}
(6.1)

where both the support set and query set are used to train the meta-model. The

meta-model optimizes the base-model with respect to the support set and makes

predictions on query set. Finally the loss suffered on the query set is used to update

the model. In the meta-testing stage, similar to meta-training stage, a set of few-shot

tasks are sampled from S:

TSi =
{

TS,s
i ,T

S,q
i

}
(6.2)

where TS,s
i is support set and TS,q

i is query set. The model makes predictions on the

query set, and these results are averaged across several few-shot tasks to evaluate

the expected performance of the few-shot detector over a variety of novel few-shot

detection tasks.
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6.2.2 Overview of Faster RCNN

Meta-RCNN is based on two-stage region based object detection algorithms. In this

work, we use the popular Faster RCNN algorithm [162] as our base model. Faster

RCNN consists of two components, an RPN (Region Proposal Network) for pro-

posal generation and Fast RCNN for region classification. RPN generates a sparse

set of proposals which are classified into different categories by the region classi-

fiers. Specifically, RPN extracts a feature vector from each region by scanning the

whole image using sliding windows. This is followed by a binary classifier (objects

vs backgrounds) and a bounding box regressor, where easy negatives are filtered.

For each proposal, a fixed-length feature vector is extracted by using ROI Pooling

layers. This vector is then fed into a sequence of dense connected layers branching

into two outputs. One output is responsible for representing softmax probability

over K + 1 classes(K target classes and one background class), and the other one

encodes four real-values for refining bounding box position. We denoted u and v

as the category and bounding box label respectively, p as the predicted probability

distribution over C classes, and tu as the predicted bounding box prediction of class

u, and λ as the trade-off parameter. Lcls represents softmax loss and Lloc repre-

sents SmoothL1 loss function. The entire network can be optimized end-to-end by

minimizing loss L(p, u, tu, v):

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v), (6.3)

However, two-stage detectors require a lot of training samples to obtain a good per-

formance. In the next section, we present the proposed Meta-RCNN which builds

over Faster RCNN and is specifically designed to address few-shot detection.
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6.3 Meta-RCNN

6.3.1 Overview

We now present our proposed method Meta-RCNN for few-shot detection (See Fig-

ure 6.2 for an overview). Meta-RCNN is trained with multiple few-shot tasks sim-

ulated from the meta-train dataset. For each episode, a few object categories of

interest are assumed to be annotated (Support set). During meta-training, a proto-

type is computed for each object category. For each of these category prototypes,

a class-specific feature map is generated by using a class-attention module which

combines the prototype information with the feature map of the entire image. This

feature map only highlights the signals of the class of interest, and suppresses in-

formation from other classes. An weight-shared RPN is applied into these feature

maps followed with a binary region classifier and bbox regressor to make prediction.

Based on the loss on the query set, the model is updated.

Meta-RCNN is general paradigm to train few-shot detector via by meta-

learning. For each task, irrelevant categories and background can be filtered by

attention module, and the final generated feature map learns a general representa-

tion for the given few-shot detection task. Compared with [170] and [218], Meta-

RCNN is more general and the whole framework can be optimized including RPN

and bbox regressors, making all the components few-shot capable. Next, we present

the details of the model.

6.3.2 Meta-Training

During Meta-Training, multiple Kway-Nshot tasks are simulated from the annotat-

ed dataset L. To fit memory size, in Meta-Training stage we train the model using

5way-1shot tasks, and only 5 query images (1 query image per class), which results

in only a total of 10 images for each task. For each task TLi , images of support

set TL,si are fed into Faster RCNN to generate region features. For each of the ob-
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ject categories of interest (those assumed to be annotated in the support image), a

prototype Pc is generated based on the corresponding region features:

Pc =
1

Nc

Nc∑
i

ric (6.4)

where Pc denotes prototype of class c, and ric denotes i-th region features of all an-

notated objects from class c. Based on these generated prototypes, images of query

set TL,qi are fed into the same Faster RCNN model and we obtain the image feature

map before RPN and ROI Pooling. For each category, a class-specific feature map

is learned based on the input query image and its corresponding prototype. We use

a learnable class attention module here to highlight the signals of target class and

suppress signals of other categories. The class attention module is based on basic

channel-wise multiplication. The prototype Pc is encoded by a FC layer φ, which is

later combined with feature map f by element-wise multiplication: Fc = f �φ(Pc)

For each category c, one new feature map Fc is generated which aims to high-

light the objects of class c. Based on the new feature map Fc, a weight-shared RPN

is followed to produce region proposals. In order to recover the information lost in

attention module, we finally combine the new generated feature map with original

feature map by element-wise summation, and crop region features based on the new

generated map. To further enhance the representation of region proposals, we attach

the prototype with the region feature r: Rc = r � φ(Pc)

Finally, a binary region classifier and a bbox regressors are optimized w.r.t the

label info from query set TL,qi :

L(TL,qi ;TL,si , θ) = Lloc + Lcls + LRPN (6.5)

where θ represents the parameters of Meta-RCNN.
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DATASET Train #Img #cls Test #Img #cls
FSOD-VOC VOC2007trainval ∼ 4.9k 10 VOC2007test ∼ 2.2k 10
FSOD-IMAGENET ImageNet-LOC ∼ 53k 100 ImageNet-LOC ∼ 117k 214

Table 6.1: Two Few-Shot Object Detection (FSOD) benchmark testbeds for perfor-
mance evaluation

Method Backbone 5way-1shot 5way-3shot 5way-5shot
vanilla FRCN [162] VGG16 14.78% ± 1.02% 20.34% ± 1.26% 26.89% ± 1.23%
LSTD [13] VGG16 17.66% ± 1.65% 22.37% ± 0.81% 29.00% ± 1.28%
FRCN-PN VGG16 12.71% ± 0.70% 13.91% ± 0.70% 14.33% ± 0.61%
FRCN-PN (Finetuned.) VGG16 16.48% ± 1.04% 21.51% ± 0.98% 26.01% ± 1.03%
Meta-RCNN (ours) VGG16 19.22% ± 1.01% 24.45% ± 1.20% 31.11% ± 0.88%

Table 6.2: mAP Performance Evaluation on the FSOD-VOC BENCHMARK

6.3.3 Meta-Testing

During meta-testing, we sample few-shot detection tasks from S. The annotations

of support set are available and we make predictions on the query set to evaluate

the performance of Meta-RCNN. For each task T Si , prototypes are generated from

support set T S,qi , which are later used to generate new class-specific feature maps

of images from query set T S,qi . In this stage, we need to finetune the model based

on the labeled images of support set. The finetuning operation addresses the learn-

ing limitation of non-parametric method when more labeled images are provided.

Finally, we evaluate the output from the query set as traditional detection problem:

p, u = MetaRCNN(T S,qi ;T S,si , θ) (6.6)

where p is class probability vector and u is location set of bounding boxes.

6.4 Experiments

6.4.1 Datasets and Implementation Details

Datasets: We construct two benchmark testbeds to facilitate the performance

evaluation of few-shot object detection (FSOD) in meta-learning settings: (i)

FSOD-VOC based on Pascal VOC2007 and (ii) FSOD-ImageNet based on the

animal subset of ImageNet-LOC dataset. Table 6.1 gives a summary of the datasets.

Pascal VOC2007 has 20 categories with 5k images in trainval set and 5k images in
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test set. A subset of 10 categories are randomly selected from VOC2007 trainval

set for Meta-Training and the remaining 10-category subset of VOC2007 test set

is used for Meta-Testing. Images without target object categories are excluded

in Meta-Testing. For FSOD-ImageNet benchmark, we use the subset of first 100

animal classes of ImageNet in Meta-Training stage and the subset of remaining

214 animal species in ImageNet-LOC in Meta-Testing stage. The model used in

FSOD-VOC benchmark is pre-trained on ImageNet, while in FSOD-ImageNet

benchmark, the model is pre-trained on MSCOCO dataset with 115k images in 80

categories.

Task Generation: For each benchmark, Meta-RCNN is evaluated on multi-

ple tasks with different Kway-Nshot few-shot settings (N annotated images per

category). For FSOD-VOC benchmark, we have 3 few-shot settings to evaluate

Meta-RCNN: 5way-1shot, 5way-3shot and 5way-5shot. In detection, a single

image has more than one object, and proposal generation will automatically

increase the number of training samples, so the real number of training samples is

about 5 times larger than N . On FSOD-ImageNet benchmark, we mainly follow

[13] and [170] with two settings: 50way-1shot and 50way-5shot.

Meta-model Parameter Setting: In Meta-Training stage, we totally finetune

the model for 20 epochs and 10 epochs in FSOD-VOC benchmark and FSOD-

ImageNet benchmark respectively. There are 5 images per class in query set to

update the model weights. The initial learning rate is set to 1e-3 and is reduced to

1e-4 every 5 epochs. We set the batch size as 5 during query update.

Basic Detection Parameter Settings: The parameter settings for Meta-RCNN are

identical to vanilla Faster RCNN. Proposals overlap with objects higher than 0.5

are considered positive and less than 0.3 are negative. During Meta-Training the

top 128 most confident proposals are selected for training, and 300 proposals with
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highest confidence score are selected during evaluation. We build our Meta-RCNN

based on Faster RCNN with VGG16 [181] and ResNet101 [62] model which is

pretrained on ImageNet.

Model Evaluation: We evaluate Meta-RCNN based on multiple tasks of

few-shot settings, which follows the evaluation metric of standard meta learning

settings. Specifically, in the evaluation stage, 200 Kshot-Nshot tasks are sampled

from dataset S and images in the query set will be evaluated. The mean Average

Precision (mAP) over the selected K categories is used as the performance

evaluation score.

6.4.2 Results on FSOD-VOC Benchmark

We evaluate our Meta-RCNN on FSOD-VOC benchmark where a subset of 10 Pas-

cal VOC categories are selected for Meta-Training and another 10 categories are

used for Meta-Testing. For a fair comparison, these two subsets are split as simi-

lar as possible. For example, we keep animal categories on both sides since they

share similar semantics information (see appendix for details). We implement three

baselines on FSOD-VOC to compare with the proposed Meta-RCNN.

• vanilla FRCN [162]: the vanilla Faster RCNN which is the most popular ob-

ject detection algorithm with competitive performance on many benchmarks.

The vanilla FRCN is not designed for few-shot detection problem, but we try

to include this baseline by fine-tuning the detector on the few-shot training

data.

• LSTD [13] is a few-shot detection algorithm based on Faster RCNN. LSTD

uses categorical regularization to transfer knowledge from L to S.

• FRCN-PN is a simple baseline for few-shot object detection using meta learn-

ing, which combines Faster RCNN and Prototype Networks [184]. Specifi-
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cally, it replaces the final FC layer of Faster RCNN by the non-parametric

prototypical networks.

All the above baselines including the proposed Meta-RCNN are based on VG-

G16 backbone [181]. For regular FRCN and LSTD, we first train a global Faster

RCNN during Meta-Training, and then the pretrained detectors are adapted to dif-

ferent tasks during Meta-Testing. During Meta-Testing, Meta-RCNN and vanilla

FRCN are finetuned over 4 epochs while LSTD requires longer finetuning peri-

od (10 epochs). For FRCN-PN, prototypes of different categories are extracted as

Meta-RCNN, and metric distances are learned to assign correct labels to each pro-

posal. For fair comparison, we also add one baseline of finetuning FRCN-PN in

meta-testing stage, where the images of support set are also used as query images.

Table 6.2 shows the results on three settings.

From Table 6.2, the performances of all four methods improve with training

shot increasing. Notably, FRCN-PN obtains less improvement when shot increases

because the non-parametric property of PN layer limits its learning capacity from

increased training samples. Benefit from the finetuning operation as well as FC

layer in final classification and regression, Meta-RCNN can still maintain consistent

improvement when trained with more samples. Furthermore, it’s interesting that

vanilla FRCN outperforms FRCN-PN even in very few-shot cases (5way-1shot) if

FRCN-PN is not finetuned, where non-parametric property does not help PN obtain

better performance. We argue this is because few-shot detection is generally more

challenging than few-shot classification, as we discussed in introduction section.

FRCN-PN cannot learn a representative prototype of background classes and the

whole framework cannot be optimized by meta learning style (e.g., RPN and bbox

regressors). The failure of FRCN-PN indicates naively attach components from

few-shot classification framework cannot solve few-shot detection problem. Finally,

our Meta-RCNN achieves better results than all the baselines.
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Ablation study of RPN: Here, we analyze the performance of RPN to validate

our concerns of negative impact of irrelevant categories. We use vanilla FRCN

and FRCN-PN as our baselines. The models are optimized in the same manner as

before, but during Meta-Testing phase, we evaluate the recall performance on each

task instead of mAP performance.

As observed from Table 6.3, the vanilla FRCN outperforms FRCN-PN signifi-

cantly. This is because objects of irrelevant categories in the same image hurt the

training process of RPN. And our Meta-RCNN outperforms these two baselines sig-

nificantly. Meta-RCNN learns a general feature map for all Kway-Nshot detection

tasks and optimize RPN by meta learning, which proves more effective in few-shot

settings. Notably, the results are surprising since the recall of RPN in few-shot

scenario is significantly lower (> 90% with enough training data on VOC dataset).

Model Backbone 5w-1s 5w-3s 5w-5s
vanilla FRCN VGG16 24.9% 26.5% 28.4%
FRCN-PN VGG16 24.7% 24.9% 26.1%
Meta-RCNN (ours) VGG16 26.1% 27.9% 33.7%

Table 6.3: Recall evaluation of Meta-RCNN on FSOD-VOC BENCHMARK test set.
For brevity, “5way-1shot” is abbreviated as ”5w-1s”.

6.4.3 Results on FSOD-ImageNet Benchmark

On FSOD-ImageNet benchmark, we adapt weights of detector pretrained on M-

SCOCO trainval set, and then optimize Meta-RCNN based on this starting point.

The Meta-RCNN is evaluated on animal subset of ImageNet-LOC. Animal subset

of ImageNet-LOC only contains single animal category per image, so there are no

irrelevant classes during training and it’s simpler than the situation we discussed. In

addition to FRCN and LSTD, we also include another latest baseline RepMet [170],

which replaces FC classification layers in FRCN with more careful design of PN

layers (learning multiple prototypes per class etc.), as well as much stronger back-

bone (DCN [25] and FPN [118]). Table 6.4.3 shows the results, in which our Meta-

RCNN outperforms the other methods significantly.
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Model Backbone 50w-1s 50w-5s
vanilla FRCN [162] VGG16 16.5% 34.3%
LSTD [13] VGG16 19.2% 37.4%
RepMet [170] DCN+FPN 24.1% 39.6%
Meta-RCNN (ours) ResNet101 25.3% 40.6%

Table 6.4: mAP performance evaluation on FSOD-IMAGENET BENCHMARK.
Here “50way-1shot” is abbreviated as ”50w-1s”.

6.4.4 Results on Traditional VOC Bencmark

Here we compare our model on VOC dataset in the same manner (1 task) as several

baselines in literature, instead of multiple episodic tasks. We follow the experiment

settings as [84]. We first train on a large annotated dataset, and then finetune on a

single few-shot dataset. We use VOC2007 trainval and VOC2012 trainval for train-

ing, and VOC2007 test set for testing. During training, we use 15 categories for

large annotated dataset and 5 categories for few-shot dataset. Note that number of

shots here denotes number of objects instead of number of images, for fair compar-

ison. We report the results in Table 6.4.4, in which our Meta-RCNN surpasses all

the competitors on the same benchmark.

Model 1s 2s 3s 5s 10s
YOLO-joint 0.0 0.0 1.8 1.8 1.8
YOLO-ft 3.2 6.5 6.4 7.5 12.3
YOLO-ft-full 6.6 10.7 12.5 24.8 38.6
LSTD [13] 8.2 11.0 12.4 29.1 38.5
MetaYolo [84] 14.8 15.5 26.7 33.9 47.2
MetaDet-YOLO [210] 17.1 19.1 28.9 35.0 48.8
MetaDet-FRCN [210] 18.9 20.6 30.2 36.8 49.6
Meta-RCNN (ours) 19.1 23.6 32.5 39.9 50.5

Table 6.5: mAP performance on PASCAL VOC BENCHMARK. All the models are
evaluated with 5 ways on VOC2007 test set. For brevity, ”1-shot” is abbreviated as
”1s”.

6.5 Discussion

We investigated the problem of few-shot object detection and proposed a meta-

learning based few-shot object detection named Meta-RCNN. The proposed train-
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ing strategies make Meta-RCNN robust and more suitable in few-shot detection s-

cenarios. Specifically it adapts the Faster RCNN method and enables meta-learning

of the object classifier, the RPN and the bounding box regressor. The RPN is

meta-trained through a novel class-specific attention module. We conduct exten-

sive experiments and obtain promising results. In future work, we plan to extend

our framework by exploring more recent meta-learning techniques and evaluating

diverse detectors.
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Chapter 7

MCD: Meta Contrastive Learning

for Few-shot Object Detection

7.1 Introduction

In Chapter 6 we have introduced Meta-RCNN, a few-shot detector which is opti-

mized following the principle of meta-learning. The weight-shared binary classifier

in Meta-RCNN makes it robust to few-shot detection and it has achieved achieved

promising results with only a few training data annotated. However, the binary clas-

sifier potentially makes it weak in feature representation learning, and the ratio of

positive and negative samples is extremely imbalanced. In this Chapter, we further

explore the limitations of Meta-RCNN and propose a new framework, Meta Con-

strastive Detector (MCD). The new proposed MCD overcomes the listed limitations,

and shows significant improvement.

Inspired by the success of meta-learning on image classification, in addition to

Meta-RCNN, other meta-learning based detection frameworks have also been pro-

posed [218, 84, 170] for few-shot detection. The meta-learning or learning to learn

principle guides the detector on how to quickly adapt to do well on a new few-shot

detection task. Despite promising performances, existing approaches for few-shot

detection primarily aim to use a pre-trained model and train under a meta-learning
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framework. As a result, their primary goal is to learn how to adapt quickly to a

new task, and they do not focus on learning an effective representation. In order to

learn both the detector and an effective representation, we propose a novel frame-

work called Meta-Contrastive Detector (MCD), where a detector is trained using a

contrastive loss in a meta-learning framework. This enables learning both an effec-

tive few-shot detector and a discriminative representation in a synergic manner. We

also develop a strategy for sampling hard negative examples during training, which

further increases the effectiveness of the meta-contrastive learning framework.

MCD is an end-to-end trainable meta detector which is optimized under the

episodic learning paradigm. During training, multiple few-shot tasks are gener-

ated from the annotated meta-training dataset. Each task comprises a support set

(simulating few-shot annotated training data) and a query set (simulating the test

data). For a given task, prototypes for all the categories in support set are generat-

ed by the meta-model. The prototype of each category is combined with a query

image through an attention mechanism to generate a class-specific feature map for

that particular category. This feature map aims to highlight the regions in the query

image where the objects of the specific category maybe found. A weight-shared RP-

N [162] is attached to each class-specific feature map to generate proposals, where

each proposal is followed by an ROI pooling layer and FC layers. This is followed

by three parallel branches: classification branch, localization branch and contrastive

loss branch. The classification branch is a binary classifier which predicts whether a

given proposal from a class-specific feature map is an object of that particular class

or not. If the classifier makes the correct prediction, it is called a positive prediction,

and if it makes an error, it is called a negative prediction. The localization branch

predicts the bounding box coordinates of the detected object. Classification and re-

gression losses are used to learn these branches. The third branch uses a contrastive

loss principle to aid representation learning. In particular, the contrastive loss helps

to learn an embedding that minimizes the distance between positive examples, and

maximizes the distance of positive examples from negative examples. This leads to
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Figure 7.1: Examples of Positive, Type-A Negative and Type-B Negative samples
in a meta-contrastive learning setting. Given support for class ”horse”, and a query
image, several region proposals are generated. If the region proposal is a ”Horse”,
it is considered as Positive; if it is an object of another class (e.g. ”cow”), it is
considered as a Type-A Negative; if it is a background region, it is considered as
a Type-B Negative. The number of Type-B negatives is much larger than Type-A
negatives. Type-A negatives are often harder and offer stronger learning signals.

more discriminative representation, which gives a more robust few-shot detector.

During the training of the Meta-Contrastive Detector (and in general Meta-

Learning for few-shot learning), category specific binary classifier gives the classi-

fication predictions. Existing approaches treat all negatives with equal importance.

However, this should not be the case, as different types of negatives provide differ-

ent levels of learning signals to train the model. For a given class specific feature

map for classC1, we identify two types of negatives that can occur: i) Type A: where

an object belonging to another class C2, where C1 6= C2 is misclassified as C1 ; and

ii) Type B: where a background region in the image is classified as belonging to

class C1. See Figure 7.1 for Positive, Type-A Negative and Type-B Negative exam-

ples. Type-A negative is much harder than Type-B, as often two classes may share

some similarities (e.g., horse and cow may have many common visual features),

and thus Type-A negatives offer a much stronger learning signal than Type-B nega-

tives. However, the number of Type-B negatives is extremely large during training.

If both types of negatives are treated equally, the large number of Type-B negatives

will dominate the training process, thus may lead to undesired poor performance. To
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address such imbalance issue, we propose to uniformly sample Type-A and Type-B

negatives for training. In particular, this improves the utility of the contrastive loss

function.

Combining the Meta-Contrastive framework with an effective sampling strategy,

MCD achieves state-of-the-art results on Pascal VOC [31] and MSCOCO [120] in

few-shot settings. The Contrastive learning branch is only used during training

and thus there is no additional cost during inference. Further, the new proposed

sampling strategy samples hard negatives without any extra computation.

7.2 Meta-Contrastive Detector for Few-shot Detec-

tion

7.2.1 Problem Setting

To train MCD, we have two training stages: meta-training and meta-testing. As-

sume we have a total of C categories which are split into two sets: Ctrain and Ctest,

(Ctrain
⋂
Ctest = ∅). Ctrain is used for meta-training with large annotated data,

while Ctest is used for meta-testing with only a few objects annotated. In each

episode, the model is trained with a support image sc from support set Ts and a

query image qc from query set Tq which contains objects belong to category c. The

detector is required to detect all objects in query images belong to the support cat-

egory. If the support image contains K categories with N object samples per class,

we denote this task as Kway-Nshots task (N denotes the number of the objects).

The goal of the meta-learning based detector is to get the highest object detection

accuracy on a novel few-shot test tasks (tasks drawn from the meta-test dataset).
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7.2.2 Overview of Existing Methods and Their Limitations

Our model is based on Faster RCNN [162], a state-of-the-art two-stage detection

algorithm. Here we briefly review the structure of Faster RCNN. Faster RCNN

consists of two components: region proposal network (RPN) to generate proposals

and Fast RCNN for region classification. RPN aims to generate a sparse set of pro-

posals to filter easy negatives. RPN extracts fixed-length features on each position

of the feature map by scanning the whole image with sliding windows. The extract-

ed features are then fed into two sibling branches: binary classification branch for

objectness prediction and regression branch to refine the bounding box coordinates.

After proposal generation, a fixed-length region feature is extracted from each pro-

posal by region feature encoding method (ROI Pooling, etc.), which is followed by a

C+1 region classifiers (C+1 denotes theC category plus 1 background class) and a

bounding box regressors. The whole framework can be optimized in an end-to-end

manner.

Although Faster RCNN and its variants have obtained state-of-the-art results,

it still requires a lot of training samples. Yan et al. [218] proposed Meta-RCNN

which is based on Faster RCNN and follows the principle of meta-learning. In

their model, a set of prototypes of support categories are extracted from support

set by the meta-model. Then a set of class-specific region features is generated by

combining query features with prototypes. These class-specific region features are

then fed into a binary classifier for classification. While learning to quickly adapt,

this approach does not aim to learn a discriminative representation. Moreover, it

does not distinguish between the different types of negatives during training, which

results in hard negatives not contributing sufficiently to the training.

7.2.3 Meta-Contrastive Detector

We now present our proposed framework MCD for few-shot detection. The pipeline

is shown in Figure 7.2. In meta-training stage, the whole model is trained with mul-

143



Support Set: person

Pooling

Query image:  person

ROI 
Pooling

CNN
A

FC

CNN

Objects

Person 
prototype

RPN

Class-specific 
Feature Map

Support Set: cow

PoolingCNN

Objects

Cow 
prototype

ROI 
PoolingA

FC

Class-specific 
Feature Map

Contrastive 
Learning

Negative
Sampler

RPN

A

FC

A
FC

Triplet 
Sampler

Classification

localization

+
positive

anchor

negative

Classification

localization

Figure 7.2: The pipeline of Meta-Contrastive Detector. Prototypes of all categories
are extracted and a set of class-specific feature maps are produced by combining the
features of query image and prototypes via an attention mechanism (shown as “A”-
operation). This is followed by a weight-shared RPN to generate proposals. The
negative sampler is applied to sample training samples, which are extracted from
the original query feature map and are encoded with the prototypes. The regions
are fed into the binary classifier and loc regressor. Contrastive loss is used in the
contrastive learning branch to improve the representation, and triplet sampler is
applied here to sample hard triplets.

tiple few-shot tasks generated from meta-training dataset. For each Kway-Nshot

task, N objects per class are annotated and a single query image is fed into the

network. The prototype of each category is extracted by the meta-model from the

support set. The query feature map and the category prototype are merged via an

attention mechanism to generate a class-specific feature map. An RPN is applied

into the new generated feature maps to generate proposals. Proposals are generated

for positive samples, Type-A negatives and Type-B negatives. We apply our nega-

tive sampling strategy to randomly choose a Type-A negative (a proposal containing

an object of another class) and a Type-B negative, to maintain uniform distribution

over the number of Type-A negative and Type-B negative samples. Then we encode

the region features of the selected proposals by ROI Pooling from original query

image. These region features are then encoded with their corresponding prototype

and are fed into three sibling branches: binary classification branch, localization

branch, and contrastive loss branch. We use triplet margin loss in our contrastive
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learning module with the proposed hard samples mining.

In our proposed MCD, we adopt the similar detection structure as original Meta-

RCNN but with several critical modifications: (1) We learn a contrastive learning

branch for representation learning, aided by hard sample mining; (2) We apply a

negative-type aware sampling strategy to select training samples; (3) We apply RPN

after learning class-specific feature maps to meta-optimize the whole model. Our

contrastive learning branch and negative-type aware sampling strategy are only used

during training and thus there is no computation cost in inference stage. Next, we

will introduce the details of our method.

7.2.4 Meta-training

During meta-training, Kway-Nshot tasks are generated from the subset of category

Ctrain to form support set Ts. Follow the similar principle of Yan et al. [218],

we crop objects of support categories from meta-training dataset with 16 pixels

contexts, and then resize the selected images into 320x320 with an additional binary

mask denoting the location of the target objects. For each category, a prototype Pt

is generated based on the corresponding region features:

Pt =
1

N

N∑
i

rit (7.1)

where N is the number of examples (shots) and rit is the global pooling feature of

ith image in the support set belong to class t. Then we randomly sample one query

image Iq with category q from query set Tq, and feed Iq into the network to obtain

feature map Fq before RPN. For each prototype Pt, a class-specific feature map

FCt is generated by an attention module from Fq. The attention module (as shown

as “A”-operation in Fig. 2) we use here is an element-wise multiplication between
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prototype and query feature:

FCt = Fq � Pt (7.2)

This is followed by an RPN to generate a proposal setRt. Specifically, we select

the top 128 proposals from each class-specific feature map, which results in a total

of 128 ∗K proposals for all K categories. We then sample top 128 proposals from

this set.

Negative Sampling Strategy.

To balance the ratio of training samples, we adopt a negative-type aware sampling

strategy to select proposals. Let C1 denote the class of class-specific feature map.

For each region r ∈ R, the region r is: (1). Positive, if r is an object of classC1; (2).

Type-A Negative, if r is an object of another class C2 where C2 6= C1; (3). Type-

B Negative, r is a background patch. Here we sample all positive samples, and

for the negative samples, we randomly select from the two negative types. More

specifically, if the number of positives is Np, then we select 128 − Np negatives

which are uniformly sampled from Type-A and Type-B negatives. Type-A negatives

tends to be harder than Type-B, and thus offer a stronger learning signal. Random

sampling would have been dominated by Type-B negatives as they significantly

outnumber them Type-A negatives, but in our approach, Type-A negatives are able

to significantly contribute to the learning. In addition, compared with online hard

example mining, we do not need an extra feed forward the whole batch samples into

the network, and are thus computationally more efficient.

Contrastive Learning.

The features of selected training samples are extracted by ROI Pooling from the

original query map, which are then encoded by the prototypes via an element-wise
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Name Contrastive loss function
Blank LCL = 0
Margin loss LCL = y ∗ |p− n|+ (1− y) ∗max(0,m− |p− n|)
Repulsion loss [208] LCL = −ln(1− |p− n|)
Triplet Margin loss LCL = max(0, |p− a| − |n− a|+m)

Table 7.1: List of contrastive losses: (1) Blank; (2) Margin loss; (3) Repulsion;
(4) Triplet Margin loss, where m is the margin of contrastive loss, p, a, n denote
relevance scores of positive, anchor and negative respectively, and y denotes label
of training samples.

multiplication attention module:

RCt = rt � f(Pt;φ) (7.3)

where rt ∈ Rt, denotes the region feature which is generated by RPN on FCt,

f(Pt;φ) denotes nonlinear transformation of prototype Pt, and RCt is the encoded

region features of rt. The encoded region features are fed into three sibling branch-

es: a binary classification branch, a localization branch and a contrastive learning

branch. The target of contrastive loss is to learn a distance-based embedding by

contrasting positive and negative examples, especially hard negatives. Here, we

list the 4 selections of contrastive learning loss in Table 7.1. From Table 7.3: (1).

Blank: we don’t consider any contrastive loss in this settings; (2) Margin loss: we

change the triplet loss into basic margin loss; (3) Repulsion loss: we use repulsion

loss [208] for our model, replacing the IoU value with relevance score, which has

been proved effective in pedestrian detection tasks; (4) Triplet margin loss: the loss

function used in our detector finally.

In our experiments, we show that the triplet margin contrastive loss performs

best. In particular, a triplet marign contrastive loss has three inputs: (a, p, n), where

a denotes the embedding of the anchor, p denotes the emebedding of positive sample

of the same category as a and n is the embedding of the negative sample. The

parameter m is the margin and we set it to 0.3. The probability of region in vanilla

detection branch is used as relevance score to compute this loss. During training,

triplet selection also has an important impact on final accuracy. In MCD, we sample
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the hard samples as triplet. More specifically, each positive sample a is selected as

anchor, and we compute the distances of all other proposals to it. The region with

maximum distance and the same category with a are selected as p, and the region

with minimum distance with different category with a is selected as n.

Contrastive learning branch models the region similarity with positives with

most difficult negative samples, and thus leads to a a better representation learn-

ing giving us a robust detector. In our contrastive branch, we add region features

computed by different query and support category (Type-B negative) and thus in-

crease the diversity of negatives. Triplet loss is more reliable and stable than other

metric loss (such as margin loss).

Joint Multi-task Training.

Finally the whole model is optimized in an end-to-end manner by minimizing the

following multi-task objective function:

L(Tq, Ts, θ) = Lcls + Lloc + LRPN + LCL (7.4)

where θ is the parameters of our model, Lcls is the binary classification loss, Lloc is

the bounding box localization loss, LRPN is the loss for learning the RPN, and LCL

is the contrastive loss.

7.2.5 Meta-testing

During meta-testing stage, we sample few-shot tasks from meta-testing dataset

(Ctest). The annotated support set is used to finetune the model, and the query

set is used to evaluate the final performance. The sampling strategy and contrastive

learning branch are only used in finetuning, so there is no extra computation during

inference. To further accelerate the model inference, we first extract the prototypes

of target categories from support set by the finetuned model, and during inference

stage, we input the pre-computed prototype as fixed inputs.
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7.3 Experiments

7.3.1 Datasets and Implementation Details

Datasets: We evaluate our models on two benchmarks in few-shot settings: (i)

Pascal VOC 2007/2012 and (2) MSCOCO. Pascal VOC 2007 and 2012 are two

widely used datasets for object detection with 20 categories. Pascal VOC 2007 has

5k images in trainval set and 5k images in test set, while Pascal VOC 2012 has 16k

images in trainval set. In our experiments, we merge the trainval set of VOC2012

and VOC2007 as our training set, and randomly select 15 categories as Ctrain for

meta-training, and the other 5 categories as Ctest for meta-testing. We use test set of

VOC2007 as our test set. MSCOCO has 80 categories with 115k images in train set

and 5k images in val set. We keep the same 20 categories of VOC dataset as Ctest

and the rest 60 categories as Ctrain for meta-training.

Meta-model setting: In our experiments, we randomly generate multipleKway-

Nshot tasks to train the model. We set K=2, and thus in each training iteration, an

additional category of support set is selected that is different from the category of

query image. The images belong to this set is used to generate more hard examples

(Type-A negative) to train the model. We evaluate different values of N (N =

1, 3, · · · , 10.), and thus each training batch contains 2 ∗N + 1 images.

Basic detection settings: We follow the basic detection settings as Faster RCN-

N. We use ResNet-101 and ResNet-50 as our backbone architectures trained with

ImageNet classification dataset. Proposals overlaps with objects larger than 0.5 are

considered as positive samples, and less than 0.3 are negative samples. For each

image, top 128 proposals with highest confidence score are selected for training,

and top 300 proposals with highest confidence score are used for region classifica-

tion. For Pascal VOC dataset, we finetune the model for 5 epochs in meta-training

stage, and 5 epochs in meta-testing stage. For MSCOCO, we finetune the model

for 3 epochs in meta-training stage and 5 epochs in meta-testing stage. The initial
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learning rate is set to 0.001 and will decays 10 times by every 2 epochs. We crop

the object from the original image with extra 16 pixels contexts to form support set.

And the images are resized into 320x320 before fed into meta-model. For query

image, the shorter size of the image is resized into 600 pixels, with maximum size

as 1000 pixels in training. No additional data augmentation strategy is used except

horizontal flipping.

7.3.2 Results on Pascal VOC Benchmark

In this section, we report the performance of our model on Pascal VOC benchmarks

and compare it with the state-of-the-art methods. The model is trained on ResNet-

101 and tested on the Pascal VOC 2007 test set. We set the shot number N from

1 to 10, and keep the way number K as 2. In Table 7.2, we report the results of

5 novel classes in few-shot settings, and from the table we can see, our method

outperforms all other few-shot detection algorithms with large margin. Specifically,

our results are significantly better than Meta-RCNN in all settings, which proves the

effectiveness of the components of our model.

Model 1-shots 2-shots 3-shots 5-shots 10-shots
YOLO-joint [218] 0.0 0.0 1.8 1.8 1.8
YOLO-ft [218] 3.2 6.5 6.4 7.5 12.3
YOLO-ft-full [218] 6.6 10.7 12.5 24.8 38.6
FRCN+joint [218] 2.7 3.1 4.3 11.8 29.0
LSTD [13] 8.2 11.0 12.4 29.1 38.5
FRCN+ft [218] 11.9 16.4 29.0 36.9 36.9
FRCN+ft-full [218] 13.8 19.6 32.8 41.5 45.6
Meta-Yolo [84] 14.8 15.5 26.7 33.9 47.2
MetaDet-YOLO [210] 17.1 19.1 28.9 35.0 48.8
MetaDet-FRCN [210] 18.9 20.6 30.2 36.8 49.6
Meta-RCNN [218] 19.9 25.5 35.0 45.7 51.5
MCD (Ours) 23.0 29.4 39.1 50.9 55.1

Table 7.2: mAP performance on PASCAL VOC BENCHMARK. All the models are
evaluated with 5 ways on VOC2007 test set.

Contrastive learning: In this part, we aim to explore the effectiveness of con-

trastive learning and the factors which impact the final performances. Here, we set
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7 selections of contrastive loss: 4 selections shown in Table 7.1 and 1 additional

settings of triplet contrastive loss: triplet loss with randomly select triplet samples

(a, p, n). All models are trained with Negative Sampler shown in Figure 7.2. The

results are shown in Table 7.3.

Model 1-shots 2-shots 3-shots 5-shots 10-shots
Blank 21.2 27.2 37.9 47.0 53.5
Margin loss 23.0 29.4 39.1 50.9 55.1
Repulsion loss 22.5 29.1 38.5 49.2 54.8
Triple loss +Rand loss 22.3 27.8 38.4 47.3 53.9
Triple loss +Triplet sampler (Ours) 24.1 30.2 40.6 51.1 55.8

Table 7.3: Ablation study on contrastive learning. mAP performance on PASCAL

VOC BENCHMARK. All the models are evaluated with 5 ways on VOC2007 test
set.

All baselines with contrastive learning outperform the baseline “Blank” without

contrastive loss. We note that “Blank” baseline still achieves better results than

vanilla Meta R-CNN using the same structure mainly due to the effectiveness of the

proposed negative sampler. Compared with Row 2, Row 3 and Row 7, our triplet

loss with triplet hard sampling (Triplet Sampler in Figure 7.2) outperforms pairwise

rank loss design, but triplet loss with random triplet sampling cannot defeat these

two baselines. These results indicate that the triplet loss is more powerful than the

pairwise rank loss, but the triplet sampler has a big impact on the final performance.

Proposal Sampling. In this section, we explore the effectiveness of our pro-

posal sampling strategy of RPN output (Negative Sampler in Figure 7.2). Here we

set 4 different sampling strategies and report the results with contrastive learning

module: (1). All: we keep all the training samples generated by meta-model to train

the model. In our 2way-Nshot setting, this strategy increases 2 times proposals.

(2). Positive: We only keep the class-specific feature maps generated by query fea-

tures and support features which share the same categories. This strategy will not

increase additional proposals, but lose the diversity of negatives. (3). We randomly

sample negative training samples from all negative samples to build up the mini-

batch, which avoids increasing negatives. (4). We only consider top 128 training

sample with highest loss value of confidence score for training, which also avoids
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increasing negatives.

Model 1-shots 2-shots 3-shots 5-shots 10-shots
All 8.4 14.2 18.1 24.6 27.1
Random 16.1 22.5 35.1 43.8 47.9
Positive 21.0 27.1 36.9 46.5 52.4
OHEM 19.9 28.2 38.7 49.9 54.7
Ours 23.0 29.4 39.1 50.9 55.1

Table 7.4: Ablation study on sampling strategy. mAP performance on PASCAL

VOC BENCHMARK. All the models are evaluated with 5 ways on VOC2007 test
set.

From Table 7.4, training detectors with all training samples performs extremely

worse, and it’s even worse than vanilla detectors. This demonstrates that sampling

strategy can further boost the performances of contrastive learning model, and is

necessary when applying meta-learning methods into detection task to address few-

shot detection. Training detectors with random sampling performs unsatisfactory

too, this is because most negative samples are Type-b negative, which is easy to

identify, and the hard samples cannot be mined due to the number of it is relatively

small. Meta-RCNN adopts positive training strategy, and it performs well. Howev-

er, it loses the diversity of hard negatives and thus our training strategy and OHEM

can defeat it. OHEM performs best except our strategy, but in very low shot cases it

even performs worse than Positive training. I argue this is because OHEM samples

training samples by their loss values, and in extremely low-shot settings, the loss

value may not be reliable due to overfitting. Our training strategy samples negatives

from different types and thus guarantees both types of negatives can be exploited

for training, especially for the hard negatives.

Way of training: We examine the impact of the number of ways on final ac-

curacy (See Table. 7.5). In our experiments, we set K as 1, 2, 3, 5, with K − 1

categories of negative support set. For 1-way, no negative category of support is

involved. In our experiment, when K > 1 the performance of the detector can sig-

nificantly outperforms K = 1 detectors, which means the effectiveness of negative

training samples increasing the diversity. However, the performance will become
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saturated if K > 2. How to explore a more effective sampling strategy to mine

more knowledge as K increases remains an open question.
Model 1-shots 2-shots 3-shots 5-shots 10-shots
1-way 19.9 25.5 35.0 45.7 51.5
2-way 23.0 29.4 39.1 50.9 55.1
3-way 22.7 27.9 38.9 50.0 53.5
5-way 22.4 28.1 39.0 49.9 52.9

Table 7.5: Ablation study on the number of ways during training. For each exper-
iments we set number of shot as 5. mAP performance on PASCAL VOC BENCH-
MARK. All the models are evaluated with 5 ways on VOC2007 test set.

Margin value: We examine the impact of margin valuem on final results. Since

we use the probability of object classifier as relevant score, so we set the value of m

from 0 to 1, and we report our results in Table 7.6. From the results table, margin is

necessary to improve the results which pulls negative samples away from positives.

The margin value is not sensitive between 0.3 to 0.5.

Margin 1-shots 2-shots 3-shots 5-shots 10-shots
0.0 20.6 27.7 37.0 46.8 49.3
0.1 22.8 28.7 39.0 49.9 54.3
0.3 23.0 29.4 39.1 50.9 55.1
0.5 22.6 28.5 38.9 48.8 54.1
0.7 18.1 25.4 36.9 46.6 49.9

Table 7.6: Ablation study on margin values. For each experiments we set number
of shot as 5. mAP performance on PASCAL VOC BENCHMARK. All the models
are evaluated with 5 ways on VOC2007 test set.

7.3.3 Results on MSCOCO Benchmark

In this section, we report the few-shot detector benchmark evaluation results on

MSCOCO datasets. We follow the same experimental setup as the previous studies

of applying meta learning for few-shot detection [218]. The model is trained with

ResNet-50, and we resize the shorter size of the image into 800 pixels, with longer

size no more than 1333 pixels. Due to the size of MSCOCO object is very small, we

use the whole image as support set appended by a binary mask. The support image
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is resized into 320x320. Table 7.7 shows the evaluation results. As observed from

Table 7.7, the proposed MCD detector outperforms all the state-of-the-art methods

with substantial margins.

Shot Baselines Backbone AP AP50 AP75 APS APM APL
Meta-Yolo [84] DarkNet-19 5.6 12.3 4.6 0.9 3.5 10.5
FRCN+ft [218] ResNet-50 1.3 4.2 0.4 0.4 0.9 2.1

10 FRCN+ft-full [218] ResNet-50 6.5 13.4 5.9 1.8 5.3 11.3
MetaDet [210] VGG16 7.1 14.6 6.1 1.0 4.1 12.2

Meta R-CNN [218] ResNet-50 8.7 19.1 6.6 2.3 7.7 14.0
MCD (Ours) ResNet-50 9.9 21.6 7.9 2.5 9.4 14.8

Meta-Yolo [84] DarkNet-19 9.1 19.0 7.6 0.8 4.9 16.8
FRCN+ft [218] ResNet-50 1.5 4.8 0.5 0.3 1.8 2.0

30 FRCN+ft-full [218] ResNet-50 11.1 21.6 10.3 2.9 8.8 18.9
MetaDet [210] VGG16 11.3 21.7 8.1 1.1 6.2 17.3

Meta R-CNN [218] ResNet-50 12.4 25.3 10.8 2.8 11.6 19.0
MCD (Ours) ResNet-50 13.1 28.8 12.1 3.1 13.5 19.2

Table 7.7: Low-shot detection performance on COCO val set for 20-way novel
classes. We evaluate the performance for different shot examples of novel classes
under FRCN pipeline with ResNet-50.

7.4 Discussion

We investigate the problem of existing meta-learning based detection frameworks

and proposed a new few-shot detector which follows the principle of meta learning

but address the existing issues. The proposed contrastive learning module effec-

tively identify the hard examples, while the new proposed sampling strategy selects

training samples by mining hard examples from different type of negatives, without

computation cost. We conduct extensive experiments on Pascal VOC and MSCO-

CO and obtain promising results. In the future, we hope to extend our work by

applying more recent proposed meta-learning methods into detection problem.
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Chapter 8

Future Directions

Object detection has been actively investigated and new state-of-the-art results have

been reported almost every few months. However, there are still many open chal-

lenges. In this chapter we discuss several open challenges and future directions.

(i) Scalable proposal generation strategy. As claimed in Sec. 2.3.4, currently most

detectors are anchor-based methods, and there are some critical shortcomings which

limit the detection accuracy. Current anchor priors are mainly manually designed

which is difficult to match multi-scale objects and the matching strategy based on

IoU is also heuristic. Although some methods have been proposed to transform

anchor-based methods into anchor-free methods (e.g. methods based on keypoints),

there are still some limitations (high computation cost etc.) with large space to

improve. From Figure 2.2, developing anchor-free methods becomes a very hot

topic in object detection [98, 247, 244, 196, 29], and thus designing an efficient

and effective proposal generation strategy is potentially a very important research

direction in the future.

(ii) Effective encoding of contextual information. Contexts can contribute or impede

visual object detection results, as objects in the visual world have strong relation-

ships, and contexts are critical to better understand the visual worlds. However,

little effort has been focused on how to correctly use contextual information. How

to incorporate contexts for object detection effectively can be a promising future
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direction.

(iii) Detection based on Auto Machine Learning (AutoML). To design an optimal

backbone architecture for a certain task can significantly improve the results but

also requires huge engineering effort. Thus to learn backbone architecture directly

on the datasets is a very interesting and important research direction. From Figure

2.2, inspired by the pioneering AutoML work on image classification [258, 194],

more relevant work has been proposed to address detection problems via AutoM-

L [17, 43], such as learning FPN structure [43] and learning data augmentation

policies [257], which show significant improvement over the baselines. However,

the required computation resource for AutoML is unaffordable to most researcher-

s (more than 100 GPU cards to train a single model). Thus, developing a low-

computation framework shall have a large impact for object detection. Further, new

structure policies (such as proposal generation and region encoding) of detection

task can be explored in the future.

iv) Emerging benchmarks for object detection. Currently MSCOCO is the most

commonly used detection benchmark testbed. However, MSCOCO has only 80

categories, which is still too small to understand more complicated scenes in real

world. Recently, a new benchmark dataset LVIS [54] has been proposed in or-

der to collect richer categorical information. LVIS contains 164,000 images with

1000+ categories, and there are total of 2.2 million high-quality instance segmen-

tation masks. Further, LVIS simulates the real-world low-shot scenario where a

large number of categories are present but per-category data is sometimes scarce.

LVIS will open a new benchmark for more challenging detection, segmentation and

low-shot learning tasks in near future.

(vi) Backbone architecture for detection task. It has become a common practice to

adopt weights of classification models pretrained on a large scale dataset for de-

tection. However, there still exists conflicts between classification and detection

tasks [113], and thus directly adopting a pretrained network may not result in the

optimal solution. Most state-of-the-art detection algorithms are based on classifica-
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tion backbones, and only a few of them try different selections (such as CornerNet

based on Hourglass Net). Thus, developing a detection-aware backbone architecture

is also an important research direction for the future.

(vii) Other research issues. In addition, there are some other open research issues,

such as large batch learning [147] and incremental learning [177]. Batch size is

a key factor in DCNN training but has not been well studied for detection. For

incremental learning, detection algorithms still suffer from catastrophic forgetting

if adapted to a new task without initial training data. These open and fundamental

research issues also deserve more attention for future work.
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Chapter 9

Dissertation Conclusion

In this dissertation we present the challenges of applying generic detection algo-

rithms into real-world problems, and propose frameworks to address these chal-

lenges. Specifically, we explore three real-world problems: scale-invariant detec-

tion, high-quality detection and few-shot detection, and propose multiple frame-

works which show significant improvement and achieve state-of-the-art results on

these tasks .

For scale-invariant detection, we use face detection as our evaluation bench-

mark and propose a novel framework of “Feature Agglomeration Networks” (FAN)

to build a new single stage face detector. A novel feature agglomeration block

is proposed to aggregate higher-level semantic feature maps of different scales as

contextual cues to augment lower-level feature maps, which is optimized in a hi-

erarchical manner. The proposed FAN detector is evaluated on several public face

detection benchmarks and achieved state-of-the-art results with real time inference

speed.

For high-quality detection, we propose two frameworks: “Bidirectional Pyra-

mid Networks” (BPN) and “KPNet”. BPN consists of two novel components: (i) a

Bidirectional Feature Pyramid structure for more effective and robust feature repre-

sentations; and (ii) a Cascade Anchor Refinement to gradually refine the quality of

pre-designed anchors for more effective training. KPNet is an anchor-free detection
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algorithms which automatically learns to optimize a dynamic set of high-quality

keypoints without heuristic anchor design. In real-world detection problems, do-

main knowledge is required to design anchor shapes. Our proposed BPN is able to

refine the ill-defined anchors, and KPNet selects keypoints making a lot of compo-

nents automatic. Both BPN and KPNet show significant improvement over existing

detection methods on MSCOCO dataset, especially in high quality detection set-

tings.

For few-shot detection, we propose two novel meta-learning based few-shot de-

tectors: “Meta-RCNN” and “Meta Constrastive Detector” (MCD). Meta-RCNN

learns a binary object detector in an episodic learning paradigm on the training

data with a class-aware attention module. Meta-RCNN can be end-to-end meta-

optimized and shows significantly improvements. Based on Meta-RCNN, MCD

follows the principle of contrastive learning to enhance the representation for few-

shot detection, and a new hard negative sampling strategy is proposed to address

imbalance issue of training samples. We demonstrate the effectiveness of Meta-

RCNN and MCD in few-shot detection on Pascal VOC dataset and obtain promising

results.

In summary, we have explored novel techniques to address three research chal-

lenges to make object detection algorithms practical for real-world applications. In

particular, we first explore scale-invariant detection and propose FAN to achieve

state-of-the-art results on face detection benchmarks (Chapter 3). We second ex-

plore high-quality detection and propose an anchor-based method BPN (Chapter

4) and an anchor-free method KPNet (Chapter 5), both of which show significant

improvement in high quality settings. Finally, we study the last problem few-shot

detection and propose two meta-learning based detectors: Meta-RCNN (Chapter

6) and MCD (Chapter 7). We hope this dissertation can spur future research on

developing object detection algorithms for real-world applications.
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[154] M. Rätsch, S. Romdhani, and T. Vetter. Efficient face detection by a cascaded support
vector machine using haar-like features. In Joint Pattern Recognition Symposium,
2004.

[155] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. ICLR,
2016.

[156] M. Rayat Imtiaz Hossain and J. Little. Exploiting temporal information for 3d human
pose estimation. In ECCV, 2018.

[157] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

[158] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In arXiv preprint
arXiv:1612.08242, 2016.

[159] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In CVPR, 2017.

[160] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu. Accurate
single stage detector using recurrent rolling convolution. In CVPR, 2017.

169



[161] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel. Meta-learning for semi-supervised few-shot clas-
sification. arXiv preprint arXiv:1803.00676, 2018.

[162] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NeurIPS, 2015.

[163] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. Generalized
intersection over union: A metric and a loss for bounding box regression. In CVPR,
2019.

[164] H. Robbins and S. Monro. A stochastic approximation method. In The annals of
mathematical statistics, 1951.

[165] S. Romberg, L. G. Pueyo, R. Lienhart, and R. van Zwol. Scalable logo recognition in
real-world images. In Proceedings of ACM International Conference on Multimedia
Retrieval, 2011.

[166] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake. Computationally efficient face
detection. In ICCV, 2001.

[167] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, 2015.

[168] P. Samangouei, M. Najibi, L. Davis, and R. Chellappa. Face-magnet: Magnifying
feature maps to detect small faces. In arXiv preprint arXiv:1803.05258, 2018.

[169] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmenta-
tion. In arXiv preprint arXiv:1801.04381, 2018.

[170] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, S. Pankanti, R. Feris,
A. Kumar, R. Giries, and A. M. Bronstein. Repmet: Representative-based metric
learning for classification and one-shot object detection. In CVPR, 2019.

[171] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. In
arXiv preprint arXiv:1312.6229, 2013.

[172] K. S. D. A. Shang, Wenling and H. Lee. Understanding and improving convolutional
neural networks via concatenated rectified linear units. In ICML, 2016.

[173] W. Shen, K. Zhao, Y. Jiang, Y. Wang, Z. Zhang, and X. Bai. Object skeleton ex-
traction in natural images by fusing scale-associated deep side outputs. In CVPR,
2016.

[174] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue. Dsod: Learning deeply
supervised object detectors from scratch. In ICCV, 2017.

[175] Z. Shen, H. Shi, R. Feris, L. Cao, S. Yan, D. Liu, X. Wang, X. Xue, and T. S. Huang.
Learning object detectors from scratch with gated recurrent feature pyramids. In
arXiv preprint arXiv:1712.00886, 2017.

170



[176] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-time single image and video super-resolution using an efficient sub-
pixel convolutional neural network. In CVPR, 2016.

[177] K. Shmelkov, C. Schmid, and K. Alahari. Incremental learning of object detectors
without catastrophic forgetting. In ICCV, 2017.

[178] A. Shrivastava and A. Gupta. Contextual priming and feedback for faster r-cnn. In
ECCV, 2016.

[179] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors
with online hard example mining. In CVPR, 2016.

[180] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Beyond skip connection-
s: Top-down modulation for object detection. In arXiv preprint arXiv:1612.06851,
2016.

[181] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In arXiv preprint arXiv:1409.1556, 2014.

[182] B. Singh and L. S. Davis. An analysis of scale invariance in object detection–snip.
In CVPR, 2018.

[183] B. Singh, M. Najibi, and L. S. Davis. Sniper: Efficient multi-scale training. In
NeurIPS, 2018.

[184] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, 2017.

[185] H. Su, S. Gong, and X. Zhu. Scalable deep learning logo detection. In arXiv preprint
arXiv:1803.11417, 2018.

[186] H. Su, X. Zhu, and S. Gong. Deep learning logo detection with data expansion by
synthesising context. In 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), 2017.

[187] X. Sun, P. Wu, and S. C. Hoi. Face detection using deep learning: An improved faster
rcnn approach. In Neurocomputing, 2018.

[188] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint
identification-verification. In NeurIPS, 2014.

[189] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition with very deep
neural networks. In arXiv preprint arXiv:1502.00873, 2015.

[190] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning
to compare: Relation network for few-shot learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[191] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In AAAI, 2017.

[192] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[193] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In CVPR, 2016.

171



[194] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In arXiv preprint arXiv:1905.11946, 2019.

[195] X. Tang, D. K. Du, Z. He, and J. Liu. Pyramidbox: A context-assisted single shot
face detector. In ECCV, 2018.

[196] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolutional one-stage object
detection. In arXiv preprint arXiv:1904.01355, 2019.

[197] L. Tychsen-Smith and L. Petersson. Denet: Scalable real-time object detection with
directed sparse sampling. In ICCV, 2017.

[198] L. Tychsen-Smith and L. Petersson. Improving object localization with fitness nms
and bounded iou loss. In arXiv preprint arXiv:1711.00164, 2017.

[199] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Selective search
for object recognition. In IJCV, 2013.

[200] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object
detection. In ICCV, 2009.

[201] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, 2016.

[202] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, 2001.

[203] P. Viola and M. J. Jones. Robust real-time face detection. In IJCV, 2004.

[204] H. Wang, Z. Li, X. Ji, and Y. Wang. Face r-cnn. In arXiv preprint arXiv:1706.01061,
2017.

[205] H. Wang, Q. Wang, M. Gao, P. Li, and W. Zuo. Multi-scale location-aware kernel
representation for object detection. In CVPR, 2018.

[206] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin. Region proposal by guided
anchoring. In CVPR, 2019.

[207] X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard positive generation via
adversary for object detection. In CVPR, 2017.

[208] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen. Repulsion loss: Detecting
pedestrians in a crowd. In CVPR, 2018.

[209] Y. Wang, X. Ji, Z. Zhou, H. Wang, and Z. Li. Detecting faces using region-based
fully convolutional networks. In arXiv preprint arXiv:1709.05256, 2017.

[210] Y.-X. Wang, D. Ramanan, and M. Hebert. Meta-learning to detect rare objects. In
ICCV, 2019.

[211] A. Wong, M. J. Shafiee, F. Li, and B. Chwyl. Tiny ssd: A tiny single-shot detection
deep convolutional neural network for real-time embedded object detection. In arXiv
preprint arXiv:1802.06488, 2018.

[212] S. Woo, S. Hwang, and I. S. Kweon. Stairnet: Top-down semantic aggregation for
accurate one shot detection. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2018.

172



[213] J. Wu, L. Cong, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural
networks for mobile devices. In CVPR, 2016.

[214] X. Wu, D. Zhang, J. Zhu, and S. C. Hoi. Single-shot bidirectional pyramid networks
for high-quality object detection. In arXiv preprint arXiv:1803.08208, 2018.

[215] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations
for deep neural networks. In CVPR, 2017.

[216] S. L. Xizhou Zhu, Han Hu and J. Dai. Deformable convnets v2: More deformable,
better results. In CVPR, 2019.

[217] H. Xu, X. Lv, X. Wang, Z. Ren, and R. Chellappa. Deep regionlets for object detec-
tion. In ECCV, 2018.

[218] X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin. Meta r-cnn : Towards
general solver for instance-level low-shot learning. In ICCV, 2019.

[219] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Craft objects from images. In CVPR, 2016.

[220] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and accurate cnn object
detector with scale dependent pooling and cascaded rejection classifiers. In CVPR,
2016.

[221] S. Yang, P. Luo, C.-C. Loy, and X. Tang. From facial parts responses to face detec-
tion: A deep learning approach. In ICCV, 2015.

[222] S. Yang, P. Luo, C.-C. Loy, and X. Tang. Wwider face: A face detection benchmark.
In CVPR, 2016.

[223] S. Yang, Y. Xiong, C. C. Loy, and X. Tang. Face detection through scale-friendly
deep convolutional networks. In arXiv preprint arXiv:1706.02863, 2017.

[224] T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun. Metaanchor: Learning to detect
objects with customized anchors. In NeurIPS. 2018.

[225] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin. Reppoints: Point set representation for
object detection. In ICCV, 2019.

[226] B. Yu and D. Tao. Anchor cascade for efficient face detection. In arXiv preprint
arXiv:1805.03363, 2018.

[227] Y. Yu, J. Zhang, Y. Huang, S. Zheng, W. Ren, C. Wang, K. Huang, and T. Tan. Object
detection by context and boosted hog-lbp. In PASCAL VOC Challenge, 2010.

[228] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár.
A multipath network for object detection. In BMVC, 2016.

[229] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang. Gated bi-directional cnn for
object detection. In ECCV, 2016.

[230] Y. Zhai, J. Fu, Y. Lu, and H. Li. Feature selective networks for object detection. In
CVPR, 2018.

[231] C. Zhang, X. Xu, and D. Tu. Face detection using improved faster rcnn. In arXiv
preprint arXiv:1802.02142, 2018.

173



[232] J. Zhang, X. Wu, J. Zhu, and S. C. Hoi. Feature agglomeration networks for single
stage face detection. In arXiv preprint arXiv:1712.00721, 2017.

[233] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Jjoint face detection and alignment us-
ing multi-task cascaded convolutional networks. In IEEE Signal Processing Letters,
2016.

[234] K. Zhang, Z. Zhang, H. Wang, Z. Li, Y. Qiao, and W. Liu. Detecting faces using
inside cascaded contextual cnn. In ICCV, 2017.

[235] S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li. Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In CVPR,
2020.

[236] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-shot refinement neural
network for object detection. In CVPR, 2018.

[237] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li. S3fd: Single shot scale-
invariant face detector. In ICCV, 2017.

[238] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye. FreeAnchor: Learning to match anchors
for visual object detection. In NeurIPs, 2019.

[239] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L. Yuille. Single-shot object
detection with enriched semantics. In CVPR, 2018.

[240] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling. M2det: A
single-shot object detector based on multi-level feature pyramid network. In AAAI,
2019.

[241] X. Zhao, S. Liang, and Y. Wei. Pseudo mask augmented object detection. In CVPR,
2018.

[242] P. Zhou, B. Ni, C. Geng, J. Hu, and Y. Xu. Scale-transferrable object detection. In
CVPR, 2018.
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