1,351 research outputs found

    Cognitive Connectivity Resilience in Multi-layer Remotely Deployed Mobile Internet of Things

    Full text link
    Enabling the Internet of things in remote areas without traditional communication infrastructure requires a multi-layer network architecture. The devices in the overlay network are required to provide coverage to the underlay devices as well as to remain connected to other overlay devices. The coordination, planning, and design of such two-layer heterogeneous networks is an important problem to address. Moreover, the mobility of the nodes and their vulnerability to adversaries pose new challenges to the connectivity. For instance, the connectivity of devices can be affected by changes in the network, e.g., the mobility of the underlay devices or the unavailability of overlay devices due to failure or adversarial attacks. To this end, this work proposes a feedback based adaptive, self-configurable, and resilient framework for the overlay network that cognitively adapts to the changes in the network to provide reliable connectivity between spatially dispersed smart devices. Our results show that if sufficient overlay devices are available, the framework leads to a connected configuration that ensures a high coverage of the mobile underlay network. Moreover, the framework can actively reconfigure itself in the event of varying levels of device failure.Comment: To appear in IEEE Global Communications Conference (Globecom 2017

    On Mass-Spring System Implementation in Cluster-Based MANETs for Natural Disaster Applications

    Get PDF
    Communication after natural disasters is paramount.Disasters such as earthquakes, hurricanes and tsunamis leavethe affected area reachable only to wireless devices. In suchconditions, Mobile Ad-hoc Networks (MANETs) play a criticalrole. The issue of MANETs communication backbone can beaddressed by self-organized cluster-based algorithms. The vir-tual backbone will maintain an efficient communication on theMANET, adapting to the dynamic topology changes thanks toits self-organized nature. Nevertheless, they do not take intoaccount the node’s mobility. If a node moves away from itsneighboring nodes, connectivity will be lost and thus, networksegmentation will occur. Therefore, it is fundamental to maintainthe connectivity and the communication between nodes whileexploring the area. In this paper, we propose the applicationof a mass-spring system on the Energy-Efficient Self-OrganizedAlgorithm (EESOA) for Disaster Area applications. Results willshow that our proposal performs best when deployment ofMANET’s nodes is dense while maintaining a connected network.ITESO, A.C

    HIRO-NET.Heterogeneous intelligent robotic network for internet sharing in disaster scenarios

    Get PDF
    This article describes HIRO-NET, an Heterogeneous Intelligent Robotic Network. HIRO-NET is an emergency infrastructure-less network that aims to address the problem of providing connectivity in the immediate aftermath of a natural disaster, where no cellular or wide area network is operational and no Internet access is available. HIRO-NET establishes a two-tier wireless mesh network where the Lower Tier connects nearby survivors in a self-organized mesh via Bluetooth Low Energy (BLE) and the Upper Tier creates long-range VHF links between autonomous robots exploring the disaster stricken area. HIRO-NET’s main goal is to enable users in the disaster area to exchange text messages to share critical information and request help from first responders. The mesh network discovery problem is analyzed and a network protocol specifically designed to facilitate the exploration process is presented. We show how HIRO-NET robots successfully discover, bridge and interconnect local mesh networks. Results show that the Lower Tier always reaches network convergence and the Upper Tier can virtually extend HIRO-NET functionalities to the range of a small metropolitan area. In the event of an Internet connection still being available to some user, HIRO-NET is able to opportunistically share and provide access to low data-rate services (e.g., Twitter, Gmail) to the whole network. Results suggest that a temporary emergency network to cover a metropolitan area can be created in tens of minutes. Inde

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    • …
    corecore