8 research outputs found

    Deep Learning-Based Average Consensus

    Full text link
    In this study, we analyzed the problem of accelerating the linear average consensus algorithm for complex networks. We propose a data-driven approach to tuning the weights of temporal (i.e., time-varying) networks using deep learning techniques. Given a finite-time window, the proposed approach first unfolds the linear average consensus protocol to obtain a feedforward signal-flow graph, which is regarded as a neural network. The edge weights of the obtained neural network are then trained using standard deep learning techniques to minimize consensus error over a given finite-time window. Through this training process, we obtain a set of optimized time-varying weights, which yield faster consensus for a complex network. We also demonstrate that the proposed approach can be extended for infinite-time window problems. Numerical experiments revealed that our approach can achieve a significantly smaller consensus error compared to baseline strategies

    Hubs-attracting laplacian and related synchronization on networks

    Get PDF
    In this work, we introduce a new Laplacian matrix, referred to as the hubs-attracting Laplacian, accounting for diffusion processes on networks where the hopping of a particle occurs with higher probability from low to high degree nodes. This notion complements the one of the hubs-repelling Laplacian discussed in [E. Estrada, Linear Algebra Appl., 596 (2020), pp. 256-280], that considers the opposite scenario, with higher hopping probabilities from high to low degree nodes. We formulate a model of oscillators coupled through the new Laplacian and study the synchronizability of the network through the analysis of the spectrum of the Laplacian. We discuss analytical results providing bounds for the quantities of interest for synchronization and computational results showing that the hubs-attracting Laplacian generally has better synchronizability properties when compared to the classical one, with a low occurrence rate for the graphs where this is not true. Finally, two illustrative case studies of synchronization through the hubs-attracting Laplacian are considered

    Self-Organization of Weighted Networks for Optimal Synchronizability

    No full text
    corecore