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Self-organization of weighted networks for optimal
synchronizability

Louis Kempton, Guido Herrmann and Mario di Bernardo

Abstract—We show that a network can self-organize its ex-
isting topology, i.e. by adapting edge weights, in a completely
decentralized manner in order to maximize its synchronizability
whilst satisfying local constraints: we look specifically at non-
negativity of edge weights, and maximum weighted degree of
nodes. A novel multilayer approach is presented which uses a
decentralized strategy through which each node can estimate one
of two spectral functions of the graph Laplacian, the algebraic
connectivity λ2 or the eigenratio r = λn/λ2. These local estimates
are then used to evolve the edge weights so as to maximize λ2,
or minimize r and, hence, achieve globally optimal values for
the edge weights for the synchronization of a network of coupled
systems.

I. INTRODUCTION

Many network systems that we see in nature adapt their
structure in time to better perform a specific function. Learning
through changing the strength of synapses [1], or through
rewiring of a collection of neurons [2] can be seen as a
paragon of this observation. For such networks, a desired
global behaviour emerges from the local interactions of agents
who can adapt their dynamics and interaction strengths in
response to their local environment to steer the macroscopic
network behaviour and functionality. Devising microscopic
strategies able to mimic this ability to adapt and evolve in order
to steer the macroscopic behaviour of physical networks in a
controlled way can offer a number of benefits in engineering
applications. Examples range from the synchronization of
power networks [3] to the coordination of robotic swarms [4].
Indeed, adaptive networks can be robust, coping well with
missing or broken parts; they are able to self-organize, remov-
ing the requirement for a dedicated designer, and adapting to
changes in the operating environment in real time. Moreover
these systems tend to cope well with an increasing number of
agents, adjusting and readapting their dynamics to maintain a
desired function [5].

In this paper we focus on the problem of synthesizing a
decentralized adaptive strategy able to make an undirected
network self-organize into an optimal structure. As a represen-
tative problem we choose that of making the network achieve
optimal synchronizability, that is, a configuration allowing its
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Figure 1. A schematic diagram of the problem where we wish to adapt
edge weights w = [wi,j ]m×1 in time to maximize λ2 of a given graph
with n nodes and m edges, in a distributed manner. For clarity, the horizon
of knowledge for edge {1, 2} (dot-dash) and node 3 (dashed) are shown.
We call nodes 2 and 4 the one-hop neighbourhood of 3, i.e. N3 = {2, 4}.
Different values of the edge weights are represented in terms of thickness of
the network links.

nodes to synchronize with maximal range of coupling gains
(see [6]–[9] for further details). As discussed in previous work
(e.g. [9]–[11]), maximal synchronizability can be achieved by
maximizing the algebraic connectivity λ2, the second smallest
eigenvalue of the graph Laplacian, or by minimizing the
eigenratio r = λn/λ2, with λn being the largest Laplacian
eigenvalue. We add some constraints to model the realistic
case of each agent having a limited communication bandwidth.
Thus, for edges being physically feasible they should have
non-negative weight, though it should be noted that allowing
negative weights can improve synchronizability [12]. For
limited communication, the weights cannot be infinitely large.
To efficiently achieve this using local constraints, we upper
bound the weighted degree of each node by a constant value,
and require that edge weights to be non-negative. A real world
example of these constraints are the limitations of the shared
link bandwidths common in wired and wireless sensor and
actuator networks (e.g., in distributed robot swarms), where
distributed optimization of the network can be of great benefit;
see, for example, [13].

The problem of rewiring a network or adapting its structure
in order to achieve maximal synchronizability has been well
studied in previous literature, with many techniques proposed,
both for weighted and unweighted, directed and undirected
networks. However, previous methods either require global
knowledge of the network to find the optimal structure, cannot
guarantee optimality when local rules are used solely, or
does not provide strong algorithm robustness, in particular
when the estimated and optimized eigenvalues are non-unique
during optimization. In the first case, it has been shown that
finding the structure which maximizes algebraic connectivity
can be formulated as a semi-definite program (SDP) [14] and
extended to the unweighted case using mixed integer semi-
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definite programming (MISDP) [15], [16]. To find a solution,
it is assumed that the solver has complete knowledge of the
network. Likewise, methods employing simulated annealing
with edge-rewiring, to find optimal, or near-optimal, graphs
[10], [17], [18] also require an external supervisor of the
network with global knowledge to evolve the network struc-
ture. In the second case, only local information is used to
assign edge weights. An example is found in [19] where node
degree is used to modify edge weights, enhancing λn/λ2,
but convergence towards an optimal structure is not guar-
anteed. An application of such decentralized algorithms was
recently presented in [20] where the problem is discussed of
maintaining a minimal algebraic connectivity in a network of
mobile robots. This is achieved by increasing the determinant
of a reduced Laplacian. Thus the problem of minimizing the
algebraic connectivity is addressed indirectly by looking at
the Laplacian determinant. Some recent work by [21] and
[22] has targeted similar problems to those presented in our
paper; control of the algebraic connectivity in a random ad-
hoc network, and optimization of λ2 and λn for network
averaging. However, in both of these works communication
constraints on the nodes are not addressed, and in particular
the estimation algorithms for λ2 and λn presented in [22]
fail when the controlled eigenvalues become non-unique. This
strongly contrasts to our solutions as demonstrated later, and
this issue of non-distinctness in the extremal eigenvalues
becomes increasingly prevalent as networks become larger.

In this paper we present a new optimal strategy that adapts
the edge weights so as to directly maximize λ2 or minimize
λn/λ2 for a given undirected graph. Unlike previous methods
which find the optimal network structure, we impose the
further constraint of only using information local to each node
to adapt the network, see Figure 1 for a schematic of the
problem and the horizons of each agent’s knowledge. Namely,
nodes may only communicate with their one-hop neighbours.
Thus, the contributions of this paper are

1) Decentralized estimation of largest eigenvalue λn of the
Laplacian in modification to the algebraic connectivity
estimator of [23].

2) Decentralized estimation of the eigenratio λn/λ2 (ratio
of the largest eigenvalue of the Laplacian to the algebraic
connectivity) and of its partial derivatives with respect
to edge weights.

3) Presentation of an online-capable (distributed) gradi-
ent descent and barrier function based optimization
approach, which permits the constrained minimization
of the ratio of the largest eigenvalue to the algebraic
connectivity and for the constrained maximization of
the algebraic connectivity. The approach is based on
the convexity and quasi-convexity of the optimized
variables.

4) Distributed three stage approach for optimization and
also control of the estimated eigenvalues of the Lapla-
cian. The algorithm uses the above mentioned gradient
descent techniques and the decentralized eigenvalue es-
timators. Moreover, preliminary ideas to prove stability
using a singular perturbation technique are discussed.

This paper is structured accordingly: Section II defines
the mathematical problem to be solved. Section III explains
the overall approach, where Section III-A presents the novel
weight adaptation algorithm, Section III-B reiterates the es-
timator of λ2 and of its sensitivity [23], Section III-C intro-
duces the new estimator of λn and λn/λ2 and the relevant
sensitivities to summarize also and Section III-E discusses the
novel combined, distributed optimization strategy with respect
the constrained the maximization of λ2 and the minimizer of
λn/λ2. Section IV shows in several numerical examples that it
is possible to control and optimize the network weights using
either λ2 or λn/λ2.

II. PROBLEM FORMULATION

We shall consider a generic homogeneous network of n
nonlinear dynamical agents of the form:

ẋi = F(xi)− σ
n∑
j=1

li,jH(xj) (1)

where xi = [xj ]d×1 is the d-dimensional state vector of the
ith system, F(xi) : Rd 7→ Rd is the vector field of the ith

isolated system, σ is a scalar global coupling parameter, and
H(xj) : Rd 7→ Rd is the coupling function between nodes
(see for example Figure 11) The weighted, symmetric graph
Laplacian is denoted by L = [li,j ]n×n, and is defined as a
function of edge weights wi,j :

li,j =

{∑
j∈Ni

wi,j if i = j

−wi,j if i 6= j
(2)

with Ni denoting the one-hop neighbourhood of node i, so
that L is a square, symmetric matrix with zero row sum. The
eigenvalues of the graph Laplacian are thus real, and can then
be ordered as 0 = λ1 < λ2 ≤ · · · ≤ λn.

As shown in the previous literature [24], [25] and briefly
summarized in Appendix A, local transversal stability of the
synchronization manifold in a network of identical nonlinear
systems can be studied using the Master Stability Function
(MSF) approach (see Appendix A for further details). Ac-
cording to this approach, the range of coupling strengths that
render the synchronous solution locally transversally stable
can be maximized by maximizing the algebraic connectivity
λ2 or minimizing the Laplacian eigenratio r according to the
specific shape of the MSF for the systems of interest.

Therefore, if we wish to maximize the synchronizability of
a network, then we must consider two cases, which can be
formulated in the standard form of an optimization problem

minimize
w

f(w) (3)

subject to w ∈ W

where w = [wi,j ]m×1 is the vector of all edge weights,
and the objective function f(w) is equal to −λ2(L) [Case
1] or λn(L)/λ2 (L) [Case 2] according to the type of MSF
considered.W is a set of feasible edge weights, which is both

1For instance, the one-hop connected dynamics of node 3 are ẋ3 =
F(x3)− σ (w2,3(H(x2)−H(x3)) + w3,4(H(x4)−H(x4))).
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closed and convex. For our examples in this paper, we will
use the following feasible region,

W = {w : w ≥ 0 ∧ li,i ≤ κi,∀i} (4)

so as to allow only non-negative edge weights, and upper
bound the weighted degree of each node by a constant κi
(feasible edge weights lie in a closed polytope in the positive
orthant of Rm).

Remark 1: The feasible set of Equation (4) creates a convex,
bounded set, in which the investigated objective function f(w)
has a unique minimizer. One can easily change the set W to
include for instance negative lower bounds for w, e.g. w ≥
−u for u ≥ 0. Moreover, it is for instance also possible to
include the further constraint λn(L) ≤ 1, which would render
the two minimization cases f(w) = −λ2(L) and f(w) =
λn/λ2 to be equivalent.

III. DESCRIPTION OF THE METHOD

To optimize the desired objective (maximizing λ2 or min-
imizing r) we take advantage of the fact that λ2(L) is a
concave function of the edge weights [14] [−λ2(L) is then a
convex function], and r(L) is a quasiconvex function of edge
weights [26], thus for either function any local minimizer is a
global minimizer. Then, as our set of feasible edge weights is
a convex set, we can minimize −λ2(L) or r(L) by gradient
descent in a distributed fashion. This gradient descent method
forms the top level in a hierarchy of distributed processes (see
Figure 2) which is added to an underlying layer designed
to estimate the gradient of the chosen objective. Note that
Case 2 is an example of a single ratio quasi-convex fractional
program, and thus can be transformed to a parameter-free
convex program, as described in [26] (Proposition 8).

A. Gradient Descent with Logarithmic Barriers

First, let us describe the Weight optimizer layer in Figure 2.
The goal of this layer is to minimize the objective function
f(w) (which may alternatively be −λ2 or r depending on the
case we are considering). This is achieved by forcing edge
weights in the direction of steepest descent of a modified ob-
jective function g(w), which enforces the boundary constraints
of the feasible region through the use of logarithmic barriers
[27]:

g(w) = f(w)− 1

q(t)

 ∑
{i,j}∈E

log(wi,j) +

n∑
i=1

log(κi − li,i)


(5)

For conciseness of notation we have used E to signify the edge
set, so that the first summation is over all edges in the network.
The severity of these barriers is determined by the function
q(t) which is chosen to be positive monotonic increasing and
unbounded (further details on its choice will be given below).
The barriers will then become steeper over time and in the
case that the optimization problem is solved with at least one
inequality constraint being tight, the stationary point will move
progressively closer to the edge of the feasible set.

Each edge weight is then adapted in time using gradient
descent according to:

ẅi,j = −ka
∂g(w)

∂wi,j
− c1ẇi,j (6)

where the sensitivity of the modified objective with respect to
an edge weight can be computed as:

∂g(w)

∂wi,j
=
∂f(w)

∂wi,j
− 1

q(t)

(
1

wi,j
− 1

κi − li,i
− 1

κj − lj,j

)
(7)

The constants ka and c1 are positive reals. These two degrees
of freedom, ka and c1, can be used to easily control the
transient dynamics which determine how quickly edge weights
adapt, similar to [28]. 2

Remark 2: As mentioned for remark 1, it is easily possible
to change the constraints. For instance, considering a modified
set to

W = {w : w ≥ −u ∧ λn(L) ≤ 1}

for u ≥ 0, one can rewrite the objective function g(w) (5) to
state

g(w) =f(w)

− 1

q(t)

 ∑
{i,j}∈E

log(wi,j + ui,j) + log(1− λn(L))

 .

Subsequently, this creates a more complex analysis for the
partial derivative ∂g(w)

∂wi,j
due to an extended use of the chain

rule. Instead, for the minimization of λn/λ2, it was chosen to
separate the local constraints from the global objective, which
then needs to be estimated in a distributed manner.

Choice of steepness function: It is sufficient that q(t) be
a positive, monotonic increasing, unbounded function, that
does not escape to infinity in finite time, for edge weights to
converge to the constrained minimum of the desired objective
f(w). The simplest choice would simply be q(t) = t, but this
does not regulate how rapidly the barriers should steepen. A
reasonable method to achieve this is to use an approximation
of how well the system has converged for the current value of
q(w). We can infer how closely the system has converged
to the stationary point for a given q(w) by observing the
magnitude of the gradient of the modified objective func-
tion ||∇g(w)||2 (the stationary point for given q(t) satisfies
||∇g(w)||2 = 0). As such, we propose to regulate the growth
of q(t) according to the second-order adaptive law:

q̈ =
kb

||∇g(w)||2 + δ
− c2q̇ (8)

with kb, δ and c2 being positive real constants, that can be
used for tuning the response. However, it can be seen that this
equation is not fully distributed, violating our requirements
(||∇g(w)||2 is a global variable). To overcome this problem
we assign a local qi,j for each weight, which is updated

2We found that this second order solution can be particularly useful for
the numerical implementation of the algorithm in contrast to for instance to
a first order law, ẇi,j = −ka ∂g(w)

∂wi,j
, which would also work but gives less

freedom in tuning.
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according to:

q̈i,j =
kb∣∣∣∂g(w)

∂wi,j

∣∣∣+ δ
− c2q̇i,j (9)

Then, the microscopic dynamics of each edge weight follows
Equation (6), but with the new gradient:

∂g(w)

∂wi,j
=
∂f(w)

∂wi,j
− 1

qi,j(t)

(
1

wi,j
− 1

κi − li,i
− 1

κj − lj,j

)
(10)

It can clearly be seen that the forcing from the logarithmic
barrier functions on the adaptive dynamics of a single edge
requires only information local to that edge (its own weight
wi,j , the weighted degrees of its parents li,i and lj,j and
their maximum allowed weighted degrees κi and κj). Only
the sensitivity of the chosen objective function, ∂f(w)

∂wi,j
, with

respect to the edge remains as a global parameter, which will
be computed locally via a set of distributed estimators (in
Case 1, by the λ2 Estimator layer, shown in Figure 2). This will
permit the optimization algorithm to be fully decentralized.

In what follows we describe how to implement the layer to
obtain a decentralized estimation of the ∂f(w)

∂wi,j
. We focus first

on the problem of estimating the algebraic connectivity λ2 and
the largest Laplacian eigenvalue λn. Then we show how these
local estimates can be combined to obtain an estimation of
the sensitivities of the two cost functions under consideration
with respect to the edge weights.

B. Case 1: Decentralized Estimation of λ2
To estimate the sensitivities of the algebraic connectivity to

variation of the edge weights, we use the distributed strategy
by Yang et al. [23] to evaluate the algebraic connectivity
of a weighted undirected network in a distributed fashion.
The strategy can be implemented as two additional layers,
the Proportional-Integral (PI) Consensus layer and the λ2-
Estimator layer shown in Fig. 2. The dynamics of these two
layers can be described by the following set of differential
equations inspired by power iteration (see [23] for further
details) :

ȧ = −k1ϕa − k2La− k3(ψa − 1) ◦ a (11)
ϕ̇a = γ(a−ϕa)− kPLϕa − kILχa (12)
χ̇a = kILϕa (13)

ψ̇a = γ(a2 −ψa)− kPLψa − kILωa (14)
ω̇a = kILψa (15)

For concise notation, component-wise product of vectors is
signified by ◦, and squaring a vector is taken component-wise
also, so that a2 = a◦a. Here a is an estimate of the eigenvector
associated with λ2, and Equation (11) forms the λ2 estimator
layer, and requiring two further global variables: the arithmetic
mean of a, 〈a〉 , 1/n

∑
ai, and the mean of the squared

components, 〈a2〉 , 1/n
∑
a2i .

These global variables are estimated in a distributed man-
ner using a further layer (see Figure 2) consisting of two
Proportional-Integral (PI) consensus estimators [29], with ϕa

being an estimate of 〈a〉1, and ψa being an estimate of 〈a2〉1.

ai

kP kI γ

λ2
Estimator

k1 k2 k3

PI
Consensus

ψa,i = 〈̂a2〉

Weight
Optimiser

ai

aj , ∀ j ∈ Ni

w{i,j}, ∀ j ∈ Ni

∂λ2

∂w{i,j}

w{i,j}, ∀ j ∈ Ni

Estimators
ϕa,i = 〈̂a〉

L(w)

ϕa,j , ψa,j ∀ j ∈ Ni

Figure 2. Schematic diagram of the distributed multilayer approach for λ2
maximization proposed in the paper, with faster processes at the bottom, and
slower processes built on top. The processes occurring in a single node are
expanded, and all nodes follow identical rules.

The variables χa and ωa are the integrator variables in the two
PI consensus estimators.

The parameters k1, k2 and k3 control three actions which
can be summarized as deflation, direction update, and renor-
malization, respectively [23]. The result of these actions is that
for a, there are two stable stationary points, which together
are global attractors if k1 > k3 ≥ k2λn:

a∗ = ±v2(L)

√
n(k3 − k2λ2)

k3
(16)

where v2 is the unit eigenvector associated with λ2. Hence,
λ2 can be estimated by node i using Equations (11), (12), (14)
and (16). Specifically, by rearranging and noting that ψai is
node i’s estimate of ||a||22/n, a local estimate of λ2 at node i
can be obtained:

λ̂2
(i)

=
k3
k2

(1− ψai) (17)

C. Case 2: Estimation of λn

λ2

By reversing the sign of the direction update in (11), the
distributed λ2 estimator may be modified to form a distributed
estimator for λn and the estimated eigenvector b associated
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with it. Specifically, we can use the set of equations:

ḃ = −k1ϕb + k2Lb− k3(ψb − 1) ◦ b (18)
ϕ̇b = γ(b−ϕb)− kPLϕb − kILχb (19)
χ̇b = kILϕb (20)

ψ̇b = γ(b2 −ψb)− kPLψb − kILωb (21)
ω̇b = kILψb (22)

so that b will converge to an eigenvector associated with λn.
Following a similar argument to that made above for λ2, node
i can then compute a local estimate of λn as:

λ̂n
(i)

=
k3
k2

(ψbi − 1) (23)

This process can be seen as the mirror to the algebraic
connectivity estimator presented in [23]. Instead of the term
associated with k2 contracting the state towards consensus
so that the slowest mode dominates, it now expands away
from consensus so that the fastest mode dominates. Again,
k1 ensures that the estimate is perpendicular to the consensus
mode and k3 acts to force the vector b towards a Euclidean
ball of radius

√
n, stopping the estimate from diverging.

D. Inferring Sensitivity with respect to Edge Weights

These two methods which make decentralized estimates of
λ2 and λn can further be used by each node to obtain local
estimates of the sensitivity of each objective function with
respect to an edge weight wi,j . We derive, in a similar manner
to [30], the partial derivatives of a generic eigenvalue, say λ, of
the weighted graph Laplacian with respect to the edge weight
wi,j . Imagine that we know an associated right eigenvector
v so that we can define the unit eigenvector v̂ = v/||v||2.
As L is symmetric, we know that the unit left eigenvector is
the transpose û = v̂>. Then, pre-multiplying the eigenvector
relation Lv̂ = λv̂ by the unit left eigenvector yields:

v̂>Lv̂ = λv̂>v̂ = λ (24)

Taking the component-wise derivative with respect to the edge
weight wi,j , we find that:

∂λ

∂wi,j
=

∂v̂T

∂wi,j
Lv̂ + v̂T ∂L

∂wi,j
v̂ + v̂TL

∂v̂

∂wi,j

As L is symmetric, it is ensured that

∂v̂T

∂wi,j
Lv̂ + v̂TL

∂v̂

∂wi,j
= λ

∂(v̂Tv̂)

∂wi,j
= 0

Thus,
∂λ

∂wi,j
= v̂T ∂L

∂wi,j
v̂ (25)

Without loss of generality we can relabel nodes i and j to 1
and 2, revealing

∂λ

∂w1,2
=

1

||v||22
vT

 +1 −1
−1 +1 0

0 0

v

=
1

||v||22
(v1 − v2)

2 (26)

where v = [v1, v2, . . . , vn]>.
From the distributed estimation procedure outlined in Equa-

tions (11), (12) and (14), and the set of Equations (18), we
can compute estimates for the eigenvectors associated with
λ2 and λn, respectively a and b, and estimates of the mean
of their squared components, respectively ψa and ψb. Using
the relabelling argument that any two nodes could be labelled
1 and 2, along with Equation (26), we arrive at node i’s
distributed estimates for the sensitivities:

∂̂λ2
∂wi,j

(i)

=
(ai − aj)2

nψai
(27)

∂̂λn
∂wi,j

(i)

=
(bi − bj)2

nψbi
(28)

Moreover, applying the quotient rule for differentiation, we
can also estimate the sensitivity of r:

∂̂r

∂wi,j

(i)

=
λ̂2

(i)
∂̂λn

∂wi,j

(i)

− λ̂n
(i)

∂̂λ2

∂wi,j

(i)

(
λ̂n

(i)
)2 (29)

E. Decentralized optimization

By using Equation (27) or Equation (29), it is now possible
to estimate the gradient of either objective function in a
fully decentralized manner. Hence, the edge weights can be
adapted by steepest descent, also in a decentralized fashion and
satisfying the feasibility constraints, using Equations (6), (9)
and (10) where the term ∂f(w)

∂wi,j
is replaced by its corresponding

estimate according to Equation (27) or Equation (29). For
Equation (27), this also requires the use of two additional
layers, the Proportional-Integral (PI) Consensus layer and
the λ2-Estimator layer as in Equations (11)-(15). Fig. 2
summarizes this. In the minimization of λn/λ2 case, twice
the number of additional layers are required, as indicated in
Fig. 3. These are Equations (11)-(15) and also Equations (18)-
(22).

It is worth noting that we require the estimators to converge
faster than the weights adapt so that the sensitivities can be
estimated with enough accuracy. By exploring the parameter
space numerically, it appears that separating the time-scales
between layers by an order of magnitude is sufficient for well-
behaved convergence onto the solution. Note that it is always
possible to tune the time-scale separation of the processes
involved by tuning the gains of the PI layers, estimator layers,
and those determining the response of the adaptive edge weight
dynamics.

A proof of convergence of each of the layers involved in our
approach can be found in [23], [29], [31]. It is evident from
[23], [29], that the two fastest, lowest layers, the Proportional-
Integral (PI) Consensus layer and the λ2/λ2-Estimator layer,
i.e. Equations (11)-(15) and also Equations (18)-(22), are each
exponentially stable. The right hand sides of these estimators
each are analytic, as are the locations of the equilibria, which
are also well-defined when the associated eigenvalues are
distinct. The weight adaptation layer [31] of Equation (6)
(together with Equation (9)) is asymptotically stable and the
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ai

kP kI γ

λ2
Estimator

k1 k2 k3

PI
Consensus

ψa,i = 〈̂a2〉

Weight
Optimiser

ai

aj , ∀ j ∈ Ni

∂λ2

∂w{i,j}

w{i,j}, ∀ j ∈ Ni

Estimators
ϕa,i = 〈̂a〉

L(w)

ϕa,j , ψa,j ∀ j ∈ Ni
bj , ∀ j ∈ Ni
ϕb,j , ψb,j ∀ j ∈ Ni

λ̂2

bi

kP kI γ

λn
Estimator

k1 k2 k3

PI
Consensus

ψb,i = 〈̂b2〉

bi

∂λn

∂w{i,j}

Estimators
ϕb,i = 〈̂b〉

λ̂n

∂r
∂w{i,j}

Figure 3. Schematic diagram of our distributed method for r minimization. The flow diagram structure is a schematic of how variables interact in the different
estimation layers within a single node i. On the left of the diagram, the algebraic connectivity is being estimated (green block) which requires two PI average
consensus estimators (blue block). From these blocks, distributed estimates are made for λ2 and ∂λ2/∂wi,j for each edge that connects to node i. In a similar
fashion, on the right hand side of the diagram, distributed estimates of λn and ∂λn/∂wi,j are being made. Combining these estimates, a local estimate
of ∂r/∂wi,j is formed, and this is fed into the weight optimizer (yellow block), which uses this estimate and the local boundary constraints to inform the
adaptation of each of the weights.

right hand side is again analytic for finite value of q(t) > 0.
The lack of exponential stability in the slowest layer does not
easily allude to singular perturbation arguments (e.g. [32]).
Hence, this requires a more careful analytical investigation of
the required time scale separation. A proof of convergence is
currently under investigation and will be presented for space
reasons elsewhere.

IV. APPLICATIONS

A. Decentralized Constrained λ2 Maximization

Firstly, we shall illustrate a representative application of our
strategy to adapt the edges of a small undirected network for
maximizing the algebraic connectivity λ2, Case 1.

The optimization problem we wish to solve is to find
the edge weights which yield the maximum λ2 for a given
connected, undirected graph, when no weighted degree at any
node may exceed the number of neighbours which it connects
to: κi =

∑
j∈Ni

1 in Equation (4), and no edge weights may be
negative. Through this choice of a feasible set, we can be sure
that total weight in the network may not increase over time,

and any improvement in λ2 must be due to better distribution
of edge weights, rather than absolute increase of their total
value.

We have randomly generated a connected graph of twenty
nodes, and set all weights at wi,j(0) = 1− ε, where ε is small
so that the initial edge weights lie in the interior of the feasible
set. When all weights are equal to 1, the initial algebraic
connectivity is found to be λ2(0) ≈ 0.3344. Edge weights
are then adapted according to the algorithm in Figure 2, using
Equations (11), (12) and (14) with (27) to estimate the gradient
of the objective function, and (6) to adapt each edge weight
according to gradient descent. In particular, the gains ka
and c1 from Equation (6) are tuned to values of 0.01 and
1 respectively, so that the weight adaptation response is slow
and over-damped. Moreover, we tune the control parameters
so that the PI consensus estimator layer is approximately 10
times faster than the algebraic connectivity estimator, which in
turn is chosen to be 10 times faster than the weight adaptation
layer. This gives us sufficient separation in time scale between
the layers.
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Figure 4. Edge weights are adapted in time according to our distributed algorithm. The algebraic connectivity λ2 of the network increases over time and
settles to a maximum value. To see the initial dip in connectivity while the layers of estimators take time to converge, see the inset. In the diagrams showing
the initial and end state of the network, node diameter is proportional to maximum allowed weighted degree, κi, and edge thickness and colour is proportional
to weight, higher weights are redder and thicker.

As edge weights are adapted, shown in Figure 4, the alge-
braic connectivity initially decreases until the estimator layers
have properly converged, whereupon it increases rapidly, as
the nadir of the potential well of the objective function for a
given set of qi,j is reached. Finally, as the qi,j increase and the
logarithmic barriers enforcing the feasible set become steeper,
the edge weights slowly converge to their optimal values, see
Figure 4.

It should be noticed that the algebraic connectivity con-
verges more rapidly than the slowest converging edges due
to weak sensitivity of λ2 with respect to some edges. After
5000 seconds of simulated time, the algebraic connectivity has
reached a value of λ2(5000) ≈ 0.3707, which is over 99.9%
of the result for optimal λ2 found using the method of [14]:
λ∗2 ≈ 0.3708. At this time, some of the edges have yet to
converge, but it is known that three edges will tend to zero
value, and could be removed from the network at no detriment
to the algebraic connectivity.

B. Decentralized Constrained λn/λ2 Minimization

Now we go on to Case 2: minimization of the ratio
r = λn/λ2, using the same network, initial weights and
constraint conditions as the previous example. Through the
use of Equations (11), (12) and (14) the eigenvector associated
with λ2 is estimated, and the set of Equations (18) are
used to estimate the eigenvector associated with λn. Then,
Equations (17) and (23) are used to infer the values of λ2 and
λn respectively, and Equations (27) to (29) to estimate the
sensitivities, ∂r/∂wi,j .

Again, weight adaptation is controlled using the estimated
sensitivity from Equation (6), where the partial derivative of
the modified objective function is given by Equation (10)
to account for the multiple qi,j which grow according to
Equation (9). The interplay of these equations is summarized
in the schematic diagram shown in Figure 3.

As shown in Figure 5, the eigenratio decreases rapidly
from its initial value r(0) = 26.8, and converging onto
r = 20.6 within 4000 seconds. However, it can be seen that the
edge weights continue to exhibit small amplitude oscillations
at steady state. These oscillations are due to the optimal
Laplacian possessing non-distinct extremal eigenvalues.

Specifically, due to the limitation of the distributed estimator
for λn only being able to estimate an associated eigenvector,
rather than the entire eigenspace, weights will adapt to reduce
λn so that it now becomes λn−1, and the distributed estimator
takes time to converge onto the new λn. In this time where
the estimator provides an incorrect value, edge weights may
overshoot, and set up a persistent oscillation around the opti-
mal value. As the speed of the distributed estimator layers is
increased relative to the weight adaptation layers, oscillations
become smaller in amplitude and higher in frequency.

The presence of these oscillations does not affect in any
case convergence towards an optimal value. In practice each
edge weight can be “locked” to its average steady-state value
as is typically done in the practical implementation of adaptive
controllers, for example in [33]. This result strongly contrasts
the outcome of [22], where non-distinctness of eigenvalues
damages the continuation of the algorithms.

C. Decentralized Control of λ2

As opposed to maximizing or minimizing these spectral
functions of the graph Laplacian, control can also be achieved
with minor changes to the weight adaptation law. To show
this, we demonstrate control of the algebraic connectivity to
a desired reference value ρ using the weight adaptation law:

ẅi,j = −ka
∂g(w)

∂wi,j

(
ρ− λ̂2

(i)
)
− c1ẇi,j (30)

Edge weights are simply forced in the direction of increasing
λ2 when the current estimated algebraic connectivity is less
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Figure 5. Edge weights are adapted in time according to our distributed algorithm for the minimization of r = λn/λ2. It can be seen that the eigenratio r
decreases over time settling into a persistent oscillation. Again, in the network diagrams, edge thickness and redness is proportional to edge weight, and node
diameter is proportional to the maximum allowed weighted degree at each node.

than the desired value, and forced in the opposite direction in
the case that the current estimate of the algebraic connectivity
exceeds the desired value.

As an example, we use the case described in Section IV-A,
but now force the λ2 towards a value of ρ = 0.25, Figure 6.
This is a feasible reference algebraic connectivity for the
weighted network as it is less than the constrained maximum
of 0.3708, but the solution is clearly not unique. To demon-
strate one of the benefits of using an adaptive method, we
simulate the loss of an edge between two nodes, by setting
the weight to 0 at t = 2000 seconds. At this point, algebraic
connectivity is temporarily reduced, but through the action of
the controller, the set point of λ2 = 0.25 is quickly recovered.

V. CONCLUSION

We have shown that a network of agents may cooperate
together, exchanging only local information, and only main-
taining a small number of states in local memory of each
node (9 for λ2 maximization, and 14 for r minimization, and
not growing with the size of the network), and still come
to agreement on a globally optimal network structure. This
has been achieved through the use of a multi-layer weight
adaptation algorithm. By means of such a multilayer approach,
we showed that it is possible for nodes in the network
to locally estimate the sensitivities of two global spectral
functions of the graph Laplacian: the algebraic connectivity λ2
and the eigenratio λn/λ2. This information can then be used
by the edges to locally adapt their weights so as to maximize
the network synchronizability. It is therefore possible for the
network to self-organize in order to steer some macroscopic
observables, such the algebraic connectivity or eigenratio, by
using only microscopic information. Moreover, the method
can be used to evolve the network edge weights in order to
control the value of the algebraic connectivity so as for it to
achieve some desired value. In this way a fully decentralized
adaptive control strategy is shown to steer in real-time a global

0 500 1000 1500 2000 2500 3000 3500 4000

Time (t)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34
λ

2

0 500 1000 1500 2000 2500 3000 3500 4000

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

E
dg

e
w

ei
gh

ts

Figure 6. With a small change to the weight adaptation law, Equation (30),
the chosen spectral function can be controlled. In this case we force λ2 to
the value of 0.25. We simulate an edge failing in the network at t = 2000
seconds by setting the weight to 0, at which point other edges adapt again to
compensate for the loss of connectivity.

macroscopic property of the graph without relying on any
global information.



REFERENCES 9

Future work will be aimed at investigating how to extend
this approach to control other emerging properties of a network
of interest and, hence, achieve control of other macroscopic
properties of the network via local adaptive rules. We are also
interested in formulating a discrete time implementation of the
method with a rigorous complexity analysis of the algorithm,
and bounds for control parameters to guarantee the stability
of the algorithm.
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APPENDIX A

In networks of identical, coupled, nonlinear systems, as
described by Equation (1), the predominant technique for
determining the local stability of the synchronous solution is
the Master Stability Function (MSF) approach [24], [25]. The
MSF Ψ(α) plots the Largest Lyapunov Exponent (LLE) of the
system governed by Equation (31): the dynamics of virtual
displacement δy between two trajectories in the vicinity of
the synchronous solution s(t), as a function of the coupling
strength α between them. The matrices DF and DH are
the Jacobians of the vector field of the isolated system F(x)
and coupling function H(x) respectively, evaluated on the
synchronous solution s(t). For more details, please see for
example [24], [25].

dδy

dt
= (DF(s)− αDH(s))δy (31)

In intervals where α is such that the LLE of Equation (31)
is negative (the MSF Ψ(α) is negative), any small distance
between trajectories near to the synchronous solution will
decay away, and thus the synchronous solution is locally
transversally stable.

As an illustrative example, we will consider a network
of coupled identical Rössler oscillators (as in [25]) with
individual dynamics governed by:ẋ1ẋ2

ẋ3

 = F(x) ,

 −x2 − x3
x1 + 1

5x2
1
5 + x3(x1 − 9)

 (32)

And we will inspect the MSFs under two separate diffusive
coupling conditions given by:

H1(x) ,

x10
0

 , H2(x) ,

 0
x2
0

 (33)

Observing Figure 7, we can see that both MSFs are positive
at α = 0 indicating that the Rössler oscillator with parameters
as given in (Equation (32)) is chaotic (trajectories with nearby
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Figure 7. The two MSFs Ψ1(α) (solid) and Ψ2(α) (dashed) for the
Rössler oscillator (Equation (32)) and two different couplings H1 and H2

respectively are given. The MSFs display class Γ2 (solid) and Γ1 (dashed)
characteristic shapes, respectively. For the synchronous solution s(t) to be
locally, transversally stable, the spectrum of σL must lie inside the negative
interval.

initial condition diverge). Under the coupling strategy H1 the
MSF initially decreases becoming negative first before rising
again to cross the axis once more resulting in a negative
interval of the MSF, α ∈ (0.186, 4.61) . In the classification of
[25] this characteristic shape with a single bounded negative
interval is called Γ2, and coupling that is too weak or too
strong will result in desynchronization. Under the coupling
strategy H2 a different characteristic shape is seen where
the negative interval of the MSF Ψ2(α) (α ∈ (0.156,∞])
is right unbounded. For any sufficiently strong coupling the
sychronous solution will be stable. In the classification scheme
of [25] this characteristic shape is deemed Γ1.

In general, for a given MSF Ψ(α), intervals in the scalar
argument α for which its value is negative fall into two cate-
gories: right-unbounded Ψ(α) < 0 for α ∈ (α1,∞), or proper
bounded Ψ(α) < 0 for α ∈ (α1, α2). Using the classification
system of Huang et al. [25], those MSFs which contain only
one negative interval and that interval is right-unbounded are
called Γ1, and those for which their sole negative interval is
proper bounded are called Γ2. These two types of negative
interval lead to two ideas of synchronizability, both of which
have previously been presented in the literature [6], [8].

For systems with a Γ1 MSF, the synchronous solution is
stable if σλ2(L) > α1 (Case 1). That is, networks with greater
algebraic connectivity λ2 require a lower global coupling
strength σ, and are thus more easily synchronized. On the other
hand, for systems with a Γ2 MSF, the synchronous solution
can only be stable if α1 < σλ2 ≤ σλn < α2 (Case 2). Thus,
such systems can only admit a locally transversally stable
synchronous solution if λn/λ2 < α2/α1. Graphs with lower
eigenratio r = λn/λ2 are then deemed more synchronizable
as a greater range of global coupling strengths will allow a
stable synchronous solution [6]. Therefore, depending on the
shape of the specific MSF for the network system, one of these
two spectral functions of the graph Laplacian determines its
synchronizability, and this is why we consider the two cases
in this paper.


