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Distributed Adaptive Optimization and Control of Network Structures

Louis Kempton, Guido Herrmann and Mario di Bernardo

Abstract— In this paper we present a generic distributed
weight adaptation framework to optimize some network ob-
servables of interest. We focus on the algebraic connectivity λ2,
the spectral radius λn, the synchronizability λn/λ2, or the total
effective graph resistance Ω of undirected weighted networks,
and describe distributed systems for the estimation of these
functions and their derivatives for on-line adaptation of the
edge weights.

I. INTRODUCTION

When controlling a multi-agent network, the structure of
the network plays a vitally important role in determining
the performance of the system. Functions of the eigenvalues
of the Graph Laplacian matrix L, 0 = λ1 ≤ λ2 ≤ · · · ≤
λn, have been shown to be instrumental in determining
the properties and performance of a wide range of multi-
agent network systems. For example, the second smallest
eigenvalue of L, the algebraic connectivity λ2, governs the
convergence rate in many consensus algorithms [1], [2]. In
nonlinear synchronization applications, the local transversal
stability of the synchronous solution is dependent on λ2 or
the eigenratio λn/λ2 [3], depending on the specific shape of
the Master Stability Function [4], [5]. For continuous time
linear consensus with time delays, the largest eigenvalue λn
becomes important for guaranteeing convergence [1]. The
robustness of a linear consensus system to additive white
noise can be quantified using the Total Effective Graph
Resistance [6], [7]:

Ω = n

n∑
i=2

1

λi
(1)

As such the control and optimization of these spectral
functions is important for designing network systems with
desirable properties, and much research has been undertaken
in this field. In [8] and references therein, a number of
functions of graph Laplacian eigenvalues, including the al-
gebraic connectivity and effective graph resistance, are op-
timized centrally over the edge weights, using semi-definite
programming (SDP). Maximising the algebraic connectivity
of a state-dependent Laplacian is achieved in [9] and a
distributed solution to this problem is presented in [10],
achieved through repeated solution of local SDPs. A number
of techniques have also been proposed to maintain connec-
tivity of mobile robot networks [11], [12], [13], [14], [15],
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Fig. 1. General overview of the distributed estimator-optimizer system. Dis-
tributed estimation of the gradient of the objective function is accomplished
in the blue box. Typically this system will require agents to reach consensus
on some global variables, and distributed Proportional-Integral consensus
is employed to achieve this [21]. The estimated gradient is fed into the
optimizer system which formulates a control law for the weight update,
using gradient descent whilst enforcing the constraints. The network adapts
according to this control law, with the current network structure influencing
the gradient estimation.

with [15] proposing an adaptive method for estimating the
algebraic connectivity in a completely decentralized manner.
This adaptive method was applied in [16] to solve a con-
strained optmization problem using a weight adaptation law
utilizing adaptive logarithmic barrier functions. Minimization
of the eigenratio is explored in [17], [18] using simulated
annealing, and discrete optimization is employed to increase
the synchronisability of the network in [19]. In [20], power
iteration was employed for distributed optimization of λ2
and λn, but with the restriction that the method breaks down
when these eigenvalues are not sufficiently separated.

In this paper, we present a generic multi-level framework
for the optimization of a number of spectral functions of
the graph Laplacian, as presented in Figure 1. Distributed
estimation of the gradient of the objective function forms
the foundation of the system, with the gradient estimator fre-
quently requiring the use of a number of average consensus
sub-systems. These consensus subsystems allow individuals
in the network to cooperatively infer norms of vectors.
Finally, a slower weight adaptation layer uses the estimated
gradients to evolve the network to an optimal structure.

Our contribution in this paper is threefold. Firstly, we
describe a dynamical system for the adaptation of the edge
weights that performs gradient descent using the estimated
gradients and enforces the boundary conditions, so that an
optimal configuration may be reached adaptively and in a to-
tally distributed manner. Secondly, we describe a distributed
adaptive system of stochastic differential equations that can
be used to estimate the total effective graph resistance and its
partial derivatives in an entirely distributed manner. Thirdly,
we collect together a number of related network optimiza-



tion problems and discuss their common structures. We
demonstrate our approach with several numerical examples,
highlighting some of the most interesting features.

II. WEIGHT ADAPTATION

We begin by proposing a weight adaptation method that
finds a local optimum of the constrained continuous op-
timization problem with objective function f(w) and p
inequality constraints gk(w), where w is the vector of edge
weights in the network of interest:

minimize
w

f(w) (2,a)

subject to gk(w) ≤ 0 ∀k ∈ 1, . . . , p (2,b)

The weight adaptation method we use is the set of ordinary
differential equations (ODEs),

ẇ{i,j} = − ∂f(w)

∂w{i,j}
−
∑
k

∂gk(w)

∂w{i,j}
νk (3,a)

ν̇k = gk(w)νk (3,b)

which is based on the first order necessary Karush-Kuhn-
Tucker (KKT) conditions [22]. In this equation, the variables
νk behave as KKT multipliers, the dual variables, where
the w{i,j} are the primal variables. The first order necessary
KKT conditions for a local minimum w∗ are simply:
• Stationarity: ∇f(w∗) +

∑
k∇gk(w∗)ν∗k = 0 which

is equivalent to the stationarity of the primal variables
ẇ = 0 in Equation (3,a).

• Dual Feasibility: ν∗k ≥ 0 for all k. This is guaranteed if
the initial conditions νk(0) are chosen to be positive.

• Primal Feasibility: gk(w∗) ≤ 0 for all k. If we assume
that the primal variables are infeasible, i.e. there is some
gk(w) > 0, then νk will not be stationary so long as
νk 6= 0. (In the case that ν∗k = 0, gk(w∗) > 0 this
stationary point is unstable.)

• Complementary slackness: gk(w∗)ν∗k = 0 for all k. This
is equivalent to the stationarity of the dual variables
ν̇k = 0 for all k in Equation (3,b).

Thus, the stationary point of the system defined by (3)
satisfies all of the first order necessary KKT conditions.
This is sufficient for optimality if f(w) is convex and all
inequality constraints gk(w) are convex and continuously
differentiable.

This weight adaptation law is not distributed as the partial
derivatives ∂f(w)

∂w{i,j}
and ∂gk(w)

∂w{i,j}
, and the constraints gk(w)

may be functions of variables not available to every node.
To distribute this weight adaptation law, estimates of the
partial derivatives and boundary conditions must be available
to each edge.

III. DISTRIBUTED ESTIMATION OF GRADIENTS

Next, we review distributed, adaptive strategies for esti-
mation of the gradients of some global observables.

A. Algebraic Connectivity λ2
It was shown in [15] that an estimate a of the eigenvector

v2 corresponding to the algebraic connectivity λ2 can be

obtained through the adaptive system:

ȧ = −k1
11>a

n
− k2L(w)a− k3

(
a>a

n
− 1

)
a (4)

where k1, k2, and k3 are control parameters to be chosen,
with k1 > k2λ2, k3 > k2λ2. The algebraic connectivity λ2
can then be computed using the norm of the equilibrium
position a∗ of the system [15] as:

λ2 =
k3
k2

(
1− a∗>a∗

n

)
(5)

Further to this, it was shown that the system can be com-
pletely distributed through the use of distributed estimates of
the arithmetic mean of a, 1>a

n , and the mean of the squared
components of a, a>a

n . These distributed estimates were
made using two separate Proportional-Integral (PI) average
consensus estimators [21]. In the first PI average consensus
estimator each agent maintains an estimate for the mean
of the components of a, so that a vector, πa, tracks the
vector 11>a

n . Another vector za is the collection of integrator
variables, and is not used outside of the consensus estimator
[21]. Specifically, we have:

π̇a = kg(a− πa)− kPL(w)πa + kIL(w)za

ża = −kIL(w)πa

(6)

In the second PI average consensus estimator, the vector of
proportional variables πa2 tracks the vector 1a>a

n

π̇a2 = kg(a
2 − πa2)− kPL(w)πa2 + kIL(w)za2

ża2 = −kIL(w)πa2

(7)

where the notation a2 implies component-wise squaring,
defining the vector with components a2i . The control gains
kg , kP , and kI are required to be suitably larger than the
control gains of the eigenvector estimator, so that the PI
consensus subsystems converge much more rapidly.

Combining equations (4), (6), and (7), a distributed esti-
mate of λ2 can be obtained by solving the equations:

ȧi = −k1πa,i + k2
∑
j∈Ni

w{i,j}(aj − ai)− k3
(
πa2,i − 1

)
ai

π̇a,i = kg(ai − πa,i) + kP
∑
j∈Ni

w{i,j}(πa,j − πa,i)

− kI
∑
j∈Ni

w{i,j}(za,j − za,i)

ża,i = kI
∑
j∈Ni

w{i,j}(πa,j − πa,i)

π̇a2,i = kg(a
2
i − πa2,i) + kP

∑
j∈Ni

w{i,j}(πa2,j − πa2,i)

− kI
∑
j∈Ni

w{i,j}(za2,j − za2,i)

ża2,i = kI
∑
j∈Ni

w{i,j}(πa2,j − πa2,i) (8)

where Ni is defined as the set of neighbors of node i. Thus,
the computational and memory load of the estimator grows
linearly with the number of neighbors, not the size of the
network. Each node may then make a local estimate of the



algebraic connectivity, λ̂2
(i)

, as in (5):

λ̂2
(i)

=
k3
k2

(1− πa2,i) (9)

Finally, each node can estimate the partial derivative of
the algebraic connectivity with respect to the weights of the
edges that connect it to each of its neighbors [15] as:

∂̂λ2
∂w{i,j}

(i)

=
(ai − aj)2

nπa2,i
(10)

Example 1: We apply the techniques to controlling a
network of autonomous mobile robots so that a formation
with high algebraic connectivity emerges [10]. Each robot i
in the network is located at a position xi, with the collection
of all robots positions being denoted x. The strength of
communication between two neighboring robots i and j
is represented by the edge weight w{i,j}, which is a non-
increasing function of the distance between robots.

We aim to maximize the algebraic connectivity of the
state-dependent weighted graph Laplacian, whilst ensuring
that the network remains reasonably spaced and avoids
collisions, by enforcing an upper bound on the weighted
degree of each node, which is simply the diagonal elements
of the graph Laplacian li,i. Specifically we tackle the non-
convex optimization problem:

minimize
x

− λ2(L(w(x)))

subject to li,i(x) ≤ 1 ∀i ∈ 1, . . . , n
(11)

Unlike the convex problem of maximising λ2 over w [8], this
formulation is non-convex due to the fact that edge weights
are now functions of the positions xi of the robots. In this
example we choose to model this relation by an inverse-
square law reflecting the intensity of signal strength of a
radio transmitter, assuming that the antenna is radiating in
all directions equally in three dimensions,

w{i,j} = σ(x) =
1

||xi − xj ||22
(12)

Other monotonic non-increasing weight functions may be
used, for example sigmoids, ramps, and hyperbolae [12],
[10]. One advantage of using an inverse-square law is that
the edge weight grows unboundedly as the distance between
neighboring robots tends to zero. As the maximum weighted
degree of each robot is bounded, this provides an effective
action for preventing collisions.

The distributed weight adaptation law is formulated ac-
cording to Equations (3,a) and (3,b), using local estimates
of global functions, and using the chain rule as the objective
function is now a function f(w(x)):

ẋi = kw

∑
j∈Ni

 ∂̂λ2
∂w{i,j}

(i)

− νi − νj

 ∂w{i,j}

∂xi

ν̇i = (li,i − 1)νi

(13)

On top of the 5 ODEs from the algebraic connectivity
estimator, each robot now follows a further ODE for the
maximum weighted degree boundary condition, and a further
d ODEs for controlling position, where d is the dimension

of the space in which the robots are controlled. Thus, in
our example where robots move in the plane, each robot
follows a system of 8 coupled ODEs. Crucially, this remains
fixed even for arbitrarily large networks, and the number of
variables in each ODE scales linearly with the number of
neighbors of each node. Therefore, the memory and compu-
tational requirements of each robot in the network scales
well even for large networks. The initial network shown
in Figure 3 evolves according to this networked system of
ODEs and results in a locally optimal formation. As the
robots’ positions change over time, the strength of the edge
weights change, resulting in a dynamically weighted graph
Laplacian L(t). The eigenvalues of this dynamic network
are shown in Figure 2, clearly showing an increase in the
algebraic connectivity over time.
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Fig. 2. The spectrum of the weighted graph Laplacian as the network
evolves in time. It can be seen that the algebraic connectivity (highlighted
in red) is increased over time, however, in the limit, the network system falls
into a persistent oscillation as λ2 = λ3 at the locally optimal positions.
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Fig. 3. The network adapts from the initial positions (xi, yi) of 16
agents, chosen uniformly at random in the interval ([0, 20], [0, 20]) (left).
A complete communication graph is chosen, with edge weights determined
by the Euclidean distance between agents, and illustrated in the figure using
the thickness of the edges. After a simulated 4000 seconds, the robots
have arranged themselves into a locally optimal formation, maximising the
value of λ2(w(x,y)). For this specific problem, the robots have arranged
themselves into a ring of 13, with a second ring of 3 located inside.

B. Largest Eigenvalue λn and the Eigenratio λn/λ2

The largest eigenvalue of L(w) is equivalent to the
spectral radius of L(w), and is important in the average
consensus problem with equal time-delays of τ [1], where it
is required that λn < π

2τ , λ2 > 0 for the system,

ẋ(t) = −L(w)x(t− τ) (14)

to globally asymptotically converge. This eigenvalue is also
important in the discrete time linear consensus system,

x(k + 1) = (I− hL(w))x(k) (15)



where convergence on the average value is determined by the
condition λn < 2/h, λ2 > 0, so minimizing λn means that
consensus will be reached for larger step size h. Moreover,
the speed of convergence is determined by the function
max{|1 − hλn|, |1 − hλ2|}, with smaller values resulting
in faster convergence.

The eigenratio λn/λ2 is often referred to in the literature
as the synchronizability [3], [23] of a network as it deter-
mines whether or not the synchronous solution in a class
of network coupled oscillators may be stabilized for any
coupling strength [4], [5]. A lower eigenratio then results
in a locally, transversally stable synchronous solution for a
wider range of coupling strengths [17].

Using a similar approach to the algebraic connectivity
estimator, the largest eigenvalue λn can be estimated using
an entirely distributed approach [24]. Specifically an estimate
b of the eigenvector associated with the largest eigenvalue
can be obtained by solving the equation,

ḃ = −k1
11>b

n
+ k2Lb− k3

(
1− b>b

n

)
b (16)

Instead of converging under the action of L(w) so that the
slowest mode dominates, as happens in (4), the second term
in the right hand side of (16) provides a diverging force so
that the fastest mode dominates. Again, renormalization is
achieved through the terms in (16) scaled by k3, so that
the estimator vector b remains bounded. In this system,
the vector b converges onto b∗, which has direction of
the eigenvector vn associated with the eigenvalue λn, with
magnitude such that:

λn =
k3
k2

(
b∗>b∗

n
− 1

)
(17)

Again, two PI average consensus estimators are employed to
completely distribute the system, so that for λn estimation
each agent i follows the 5 ordinary differential equations:

ḃi = −k1πb,i − k2
∑
j∈Ni

w{i,j}(bj − bi)− k3
(
πb2,i − 1

)
bi

π̇b,i = kg(bi − πb,i) + kP
∑
j∈Ni

w{i,j}(πb,j − πb,i)

− kI
∑
j∈Ni

w{i,j}(zb,j − zb,i)

żb,i = kI
∑
j∈Ni

w{i,j}(πb,j − πb,i)

π̇b2,i = kg(b
2
i − πb2,i) + kP

∑
j∈Ni

w{i,j}(πb2,j − πb2,i)

− kI
∑
j∈Ni

w{i,j}(zb2,j − zb2,i)

żb2,i = kI
∑
j∈Ni

w{i,j}(πb2,j − πb2,i) (18)

Agent i can then make a local estimate λ̂n
(i)

using the fact
that the PI consensus estimator for b>b

n converges on b∗>b∗

n
as b→ b∗:

λ̂n
(i)

=
k3
k2

(πb2,i − 1) (19)

Agent i’s local estimate for the partial derivative of λn with
respect to the edge weights of edges that connect i to each
of its neighbors j ∈ Ni can be made [24]:

∂̂λn
∂w{i,j}

(i)

=
(bi − bj)2

nπb2,i
(20)

which is available to both parent nodes i and j of the edge.
If both the λ2 and λn estimators are run concurrently so
that each agent follows a dynamical system of 10 ordinary
differential equations, it is simple to infer a local estimate of
the eigenratio λn/λ2, and its gradient with respect to each
neighboring edge using the quotient rule:

̂∂λn/λ2
∂w{i,j}

(i)

=
λ̂2

(i)
∂̂λn

∂w{i,j}

(i)

− λ̂n
(i)

∂̂λ2

∂w{i,j}

(i)

(
λ̂n

(i)
)2 (21)

Example 2: We take the problem of minimising the
spectral radius of the graph Laplacian λn so that simple
consensus with uniform time delays will converge for the
largest time delay [1]. Connectivity of the network is guar-
anteed by enforcing a positive lower bound on the algebraic
connectivity. In this example we arbitrarily choose a lower
bound λ2 ≥ 2 and solve the optimization problem:

minimize
w

λn(L(w))

subject to λ2(L(w)) ≥ 2
(22)

It can be seen that the objective function is convex, as is the
inequality constraint, so that the first order necessary KKT
conditions are also sufficient for the local optimum to be the
global optimum.

Each node follows both the λ2 and λn estimators (Equa-
tions (8) and (18)) so that each node can infer the partial
derivatives of these functions with respect to the weights of
each neighboring edge. Then weight adaptation is accom-
plished according to (3) as:

ẇ{i,j} =
kw
2

∑
k∈{i,j}

νk ∂̂λ2
∂w{i,j}

(k)

− ∂̂λn
∂w{i,j}

(k)


ν̇i = (2− λ̂2
(i)

)νi

(23)

Each node maintains an estimate of the dual variable for
the optimization problem νi, and each edge {i, j} adapts its
weight according to the average of its parent nodes i and j
estimated gradients and dual variables.

Starting from the randomly chosen network, shown inset
in Figure 4, with n = 16 nodes and m = 47 edges each
of initial weight w{i,j}(0) = 1, each node follows the set
of 11 ODEs defined by Equations (8), (18) and (23) while
communicating with its set of neighbors, so that each edge
weight follows the one ODE defined in Equation (23). The
results of the distributed optimization are shown in Figure 4,
displaying the trajectories of the Laplacian eigenvalues.

C. Total Effective Graph Resistance

We focus next on optimising a spectral function which
depends on all n−1 non-trivial eigenvalues of the Laplacian
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Fig. 4. Edge weights are adapted using a totally distributed method to
minimize λn (highlighted in blue) whilst maintaining the constraint λ2 ≥ 2.
The initial network (inset) has λn ≈ 10.52 and λ2 ≈ 2.64 with unit edge
weights. At t = 2000 the network has decreased its spectral radius to
λn ≈ 5.66, whilst maintaining an algebraic connectivity of λ2 ≈ 1.99.
Note that this is slightly in the infeasible region due to oscillation about the
solution.

matrix, the total effective graph resistance Ω, given by:

Ω(w) = n

n∑
i=2

1

λi(w)
(24)

We could estimate all n − 1 eigenvalues by successive
deflation. For example, we could estimate λ3 in a similar
manner to the algebraic connectivity estimator, but deflating
on the consensus mode v1 and also on v2, using the estimate
for v2 from Equation (8). This process could be continued
for all n−1 eigenvalues, but would rapidly become unwieldy
for even modest sized networks.

Thus, if we want to provide a distributed estimator with
a relatively few number of local variables at each node
(that does not grow as the network becomes arbitrarily
large) another method must be employed. A solution is to
excite all modes with equal energy using white noise. We
assume that each agent has access to a source of white
noise. This is simple in the discrete time implementation
where we approximate the Ito integral of the Stochastic
Differential Equation (SDE) using the Milstein method [25].
Then we need only assume that each agent has access to their
own normally distributed pseudo-random number generator,
available in the vast majority of programming languages.

The SDE for making a distributed estimate of the total
effective graph resistance can be formulated using the result
that the linear consensus system with additive white noise of
intensisty σ has expected variance at long time, proportional
to the total effective graph resistance [6]. As such we
introduce the SDE [26]:

da = (−k1πa − k2La)dt+ dW

dπa = (kγ(a− πa)− kPLπa + kILza)dt

dza = −kILπadt
dπa2 = (kγ(a2 − πa2)− kPLπa2 + kILza2)dt

dza2 = −kILπa2dt

dy = kL(πa2 − y)dt (25)

This has a very similar form to the systems used for the

distributed estimation of λ2 and λn, but now all modes are
excited with equal energy using additive white noise (dW
is a vector of length n of independent Wiener processes of
intensity 1).

The second PI consensus estimator πa2 , za2 is used to
estimate the variance of the vector a (it has expected mean
of 0 due to deflation on the consensus mode), and this is fed
into a simple first order low pass filter with time constant
1
kL

to remove some of the noise. Each node can then make
a distributed estimate of the total effective graph resistance:

Ω̂(i) = 2k2n

(
nyi −

1

2k1

)
(26)

To estimate the partial derivatives of the total effective
graph resistance, an extension to the system (25) is required.
Specifically, the following further equations need to be added
to (25). For further details on this extended system see [26].

db = (−k1πb − k2Lc)dt+ dW

dc = kγ(Lb− c)dt

dπb = (kγ(b− πb)− kPLπb + kILzb)dt

dzb = −kILπbdt

(27)

Each node is now able to make a low-pass filtered estimate
of the partial derivative of the total effective graph resistance
by means of the equations:

q̇{i,j} = kL
(
(bi − bj)2 − q{i,j}

)
∂̂Ω

∂w{i,j}

(i)

= −2k2q{i,j}
(28)

Example 3: We now use these two stochastic systems
(25) and (27) with the filtered gradient estimation (28) to
illustrate a set point control problem. Given an arbitrary
connected undirected weighted network, we wish to devise
a distributed weight control law that will drive the total
effective resistance of the network Ω to a desired value. In
this example, we choose to drive Ω to 10, formulating the
unconstrained minimization problem:

minimize
w

(Ω(L(w))− 10)2 (29)

which will most likely have multiple solutions. Nevertheless
we can formulate the distributed weight control law:

ẇ{i,j} = −
∑

k∈{i,j}

(
Ω̂(k) − 10

) ∂̂Ω

∂w{i,j}

(k)

(30)

Figure 5 shows the edge weights in a randomly chosen
network of n = 8 nodes and m = 14 edges, adapting under
the control law to drive the total effective resistance of the
network to the desired value of 10.

An important feature of this system to note is that edge
weights never settle to fixed values. This is due to the
inherently stochastic nature of the control law, and the
persistent excitation of edges. Moreover, the optimization
problem described in (29) will have multiple solutions, and
so edge weights may converge to a neutrally stable manifold.
Nevertheless, the weight control law results in a network
whose total graph reistance is driven towards the desired
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Fig. 5. The resultant total effective graph resistance is controlled towards
a desired value of 10. Some stochasticity remains in the system, but the
expected value of Ω tends towards the desired value as t→∞.

value, and stays close to it for all time.

IV. CONCLUDING REMARKS

We have formulated a generic weight adaptation law for
constrained, continuous optimization, which, when combined
with the distributed estimators, can be utilized to find optima
of several common network optimization problems in a
wholly distributed manner. These we demonstrated through
the use of three example problems: formation control to
maximize algebraic connectivity, maximising the allowable
delay in linear consensus whilst maintaining a minimum
connectivity, and control of a network to a desired total
effective graph resistance.

A common theme in all of these estimators is the separa-
tion of time scales. It is required that the weight adaptation
happens on a slower time scale than the estimation system
so that the estimators can be assumed to have converged.
Likewise, the estimators rely on PI average consensus to infer
quantities proportional to the mean or 2-norm, and these need
to converge faster than the estimators. When eigenvalues are
not distinct, a small change in the edge weights may result
in a rapid change in the gradient of the spectral function as
eigenvalues change order. The estimator systems will need
some time to reconverge on the new gradient, and in this time
the weight adaptation will overshoot. This sets up a limit
cycle around the optimum if at the optimum the eigenvalues
are not distinct. The size and frequency of this limit cycle can
be controlled through the size of the separation in time-scales
of the subsystems. The theoretical analysis of convergence
and stability of the method presented in this paper can be
obtained by using singular perturbation techniques and will
be presented elsewhere.
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