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ABSTRACT

In complex networked systems, the structure of the underlying communication between
individual agents can have profound impacts on the performance and dynamics of the
system as a whole. For example, processes such as consensus can occur at faster or slower

rates depending on the structure of the communication graph, and the synchronisation of coupled
chaotic oscillators may be unachievable in one configuration, when it is achievable in another.
As such, it is vital for agents within a complex networked system to be able to make estimates
of the properties of the network as a whole, and be able to direct their own actions to modify
these properties in a desirable way, even when they are only able to communicate with their
direct neighbours, and have no global knowledge of the structure of the network. In this thesis
we explore decentralised strategies by which individual agents in a network can make estimates
of several functions of the graph Laplacian matrix eigenvalues, and control or optimise these
functions in a desired manner, subject to constraints. We focus on the following spectral functions
of the graph Laplacian matrix, which determine or bound many interesting properties of graphs
and dynamics on networks: the algebraic connectivity (the smallest non-zero eigenvalue), the
spectral radius (the largest eigenvalue), the ratio between these extremal eigenvalues (also
known as the synchronisability ratio), the total effective graph resistance (proportional to the
sum of the reciprocals of non-zero eigenvalues), and the reduced determinant (the product of the
non-zero eigenvalues).
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1
INTRODUCTION

Networked systems are ubiquitous within both natural and engineering systems. We see

networks of interconnected, individual, and dynamic agents present in the connected

sources and sinks in power grids [1, 2, 3], hyperlinked pages in the world wide web

[4, 5], friendship groups in social networks [6, 7], food webs in ecology [8, 9], and even in the

neurons forming the connectome of the brain [10, 11]. It is important to realise that in networked

systems, the performance and properties of the whole system are not only resultant from the

performance of the individual parts that constitute the networked system, but also from the

interactions between the parts, and the properties of the underlying structure of the network. It

may, for example, prove impossible for a network of coupled oscillators to synchronise for specific

network structures [12, 13]. Furthermore, with relatively little edge rewiring, global properties of

networks such as the diameter and mean path length can rapidly change resulting in radically

different collective behaviours [14, 15].

It is the structure of networks which is the primary topic of interest in this thesis, and in

particular, how individual agents within a network, following simple local rules, can adapt their

structure over time so the network itself can better perform its function. The human brain (and

the network of interconnected neurons that comprise it) is often seen as the epitome of natural

networked systems that exhibit this complex adaptive behaviour; reorganising itself and learning

from past experience. This self-organisation of the network of neurons is seen both in the changing

strengths of synapses [16], and in the rewiring of collections of neurons [17]. Adaptive behaviours

such as these could afford engineering networks increased robustness, allowing networks to

manage broken nodes or other faults in the network with minimal cost to performance. Indeed,

devising strategies for adapting networks to improve and control desired attributes has become a

fruitful direction for research [18, 19, 20, 21]. Self-organising behaviours remove the need for a
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CHAPTER 1. INTRODUCTION

dedicated centralised designer, giving increased flexibility to autonomous robotic networks which

may be required to operate in a dynamic environment. Moreover, self-organisation could be a

great advantage for the scalability of large networks, where distributed computing power will

grow linearly with the size of the network [22]. It is these complex adaptive and self-organising

behaviours which we aim to replicate in the following chapters of this thesis.

1.1 Complex Systems

There have been many attempts to define and categorise the ideas of complexity and complex

systems since their inception [23, 24, 25]. Central to most definitions of complexity are the ideas

of emergent properties (properties of the whole which are not self-evident from the properties

of the parts), spontaneous order (which may be viewed as self-organisation), and hierarchical

structure. In Mitchell [26], page 12, a definition of a complex system is given as “A system in

which large networks of components with no central control and simple rules of operation give rise

to complex collective behaviour, sophisticated information processing, and adaptation via learning

or evolution”. By observing systems we think of as complex, and the previous attempts at defining

complex systems, Ladyman, Lambert, and Wiesner [27] devised a core list of properties that are

often features of complex systems. This list includes: Nonlinearity - though it is argued that both

nonlinearity and chaos are neither sufficient nor necessary conditions for complexity to arise (but

is a frequent source of the emergent properies that arise); Feedback - which is fundamentally

important and necessary for any system that adapts to its environment; Spontaneous Order -

which relates to pattern formation, symmetry, and self-organisation; Robustness and Lack of

Central Control - this will be a central theme of the control strategies presented later in this

thesis; Emergence - which is often characterised by limitations of reductionist methods, and often

hazily described as “the whole being greater than the sum of its parts”, and hence is often related

to non-linear dynamics; Hierarchical Organisation - which again relates to self-organisation,

but also to clustering of subsystems into systems; and finally Numerosity - the large number of

individual agents and interactions between them within the collective.

These features of a complex system could be broken down into those which are inherrent

properties of the system and the agents within: nonlinearity, feedback, lack of central control,

and numerosity, and those which are resultant from the behaviour of the system: spontaneous

order through self-organisation, emergence, and robustness to changing environments. It is these

resultant behaviours of the whole, which emerge through a multitude of local interactions, which

we want to capture and replicate by formulating decentralised control laws which use feedback

and the inherrent numerosity present in networks.

In Liu, Slotine, and Barabási [28], it was stated that: “The ultimate proof of our understanding

of natural or technological systems is reflected in our ability to control them”. In a similar vein,

we seek to design these simple local interactions within a network so that a desired global

2



1.2. OUTLINE

behaviour emerges. Namely, we desire that the network of autonomous individual agents is able

to adapt and self-organise, without any central control, into a globally optimal configuration that

maximises some property of the network as a whole. We will see that to achieve this feat, the

local rules we devise will be nonlinear in nature, comprising a hierarchical multi-layered control

structure of decentralised estimation and decentralised optimisation, with feedback present in all

scales across the network, both within each layer of control and also between each of the layers,

and hence is clearly a complex and adaptive networked system.

Decentralised control is well suited to the control of such complex networked systems where

there are many autonomous interacting parts, which through their interactions determine the

behaviour of the collective. And through designing methods for the decentralised control of

networks, we may perhaps achieve a deeper understanding of these dichotomies of part and

whole, local and global, simple and complex, present in the study of complex systems.

1.2 Outline

In the next chapter, Chapter 2, we will introduce some useful notation and definitions, comprising

the mathematical preliminaries from graph theory and spectral graph theory, which will be relied

upon in subsequent chapters. Further to this, we will provide several interesting theorems and

examples that demonstrate the relationship between properties of graphs and the spectra of their

related matrices.

Chapter 3 reviews a number of recent papers on the control and optimisation of the eigenval-

ues of graph Laplacian matrices, looking both at centralised and decentralised strategies. Special

attention is paid to two decentralised methods for agents in a network to estimate the algebraic

connectivity and its associated eigenvector [29, 30], which are then compared.

Using one of these methods [29], we proceed in Chapter 4 to suggest two edge weight

adaptation strategies which, when used in conjuction with the decentralised algebraic connectivity

estimator, solve a constrained algebraic connectivity maximisation problem. The first strategy

(presented in Section 4.2) is a primal interior point logarithmic barrier method first presented in

[31]. The second method (Section 4.3) uses a sytem of coupled nonlinear differential equations, for

which the stable equilibrium point solves the Karush-Kuhn-Tucker (KKT) first order necessary

conditions, and this weight adaptation method is presented in [32] and utilised in [33]. Each of

these adaptive edge weight control schemes can be used flexibly to account for different objective

functions and sets of constraints, provided that these functions and their partial derivatives

can themselves be estimated in a decentralised manner. In subsequent chapters, we focus on

modifying and extending the decentralised algebraic connectivity estimator for the estimation of

other interesting spectral functions of the graph Laplacian, so that we may solve a wide range of

decentralised network optimisation problems.

In Chapter 5, we modify the algebraic connectivity estimator so that, instead, the largest
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eigenvalue of the graph Laplacian, its spectral radius and its associated eigenvector may be

estimated. Utilising this spectral radius estimator in conjuction with the algebraic connectivity

estimator, and a suitable weight adaptation strategy, allows the solution of a number of network

optimisation problems. One such problem relevant to a number of engineering applications is the

synchonisability maximisation problem, in which the ratio between the algebraic connectivity

and spectral radius is maximised, facilitating synchronisation in networks of coupled oscillators.

This modification to the algebraic connectivity estimator and the application to maximise the

synchronisability of complex networks was presented in [34], using the logarithmic barrier

weight adaptation strategy presented in Section 4.2. We also strive in this chapter to prove

that the suggested multi-layer control scheme using the KKT satisfaction weight adaptation

strategy (Section 4.3) is stable given sufficient separation in time-scale between the estimation

and control layers, using methods from singular perturbation theory, and this proof of stability of

the multi-layer system is published in [32].

Chapter 6 then introduces two further modifications to the algebraic connectivity estimator

presented in Chapter 3. This time, changes are made so that the effective graph resistance and

its partial derivatives, and the partial derivatives of the reduced graph Laplacian determinant

may be estimated, and hence controlled in a decentralised manner, using the schemes presented

in Chapter 4. These two spectral functions are closely related to random walks on networks: the

effective graph resistance related to the expected commute time of a random walker, and the

determinant of the reduced Laplacian being related to the number of spanning trees of a network.

The ideas behind the estimator for the effective graph resistance, and its relation to the algebraic

connectivity and spectral radius estimators were presented in [33]. The proof of convergence of

the effective resistance estimator and the reduced Laplacian determinant estimator, and the

connection between these two estimators presented in this Chapter is planned to be the subject

of a future paper.

Finally, conclusions and suggestions for further work are made in Chapter 7. Figure 1.1,

illustrates a schematic representation of the dependencies between chapters, with pointers to the

publications which each of the main results chapters are based upon.

1.3 List of Publications

Part of the work presented in this thesis has been described in a number of publications, which

we list below and provide a brief synopsis for. We also refer to which chapter of the thesis the

publication relates.

• [31] Louis Kempton, Guido Herrmann, and Mario di Bernardo. “Adaptive weight selection

for optimal consensus performance”. In: 53rd Annual Conference on Decision and Control

(CDC). IEEE. 2014, pp. 2234–2239. DOI: 10.1109/CDC.2014.7039730
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1.3. LIST OF PUBLICATIONS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6

Chapter 7

Introduction

Mathematical Preliminaries

Literature Review

Weight Adaptation

Spectral Radius Graph Resistance

Conclusions

Estimator Estimator

[31, 32]

[34, 32] [33]

Figure 1.1: Notation and definitions are introduced in Chapter 2 and hence this chapter serves
as a basis for subsequent chapters. Chapter 4 utilises the decentralised algebraic connectivity
estimator from [29] and presented in Section 3.3.1 of the literature review. Both Chapters 5 and
6 use the weight adaptation strategies described in Chapter 4, but can be read independently of
each other. Each of the main results chapters (4, 5, and 6) indicate which publications the results
appear in.

This conference paper utilises the decentralised algebraic connectivity estimator of [29] in

conjuction with a novel decentralised edge weight adaptation strategy to solve a constrained

algebraic connectivity maximisation problem. This weight adaptation strategy utilises

adaptive logarithmic barriers to enforce the constraints, and is described in Section 4.2

of Chapter 4. As such, Section 4.2 of Chapter 4 is based upon the paper [31] and draws

material from it.

• [34] Louis Kempton, Guido Herrmann, and Mario di Bernardo. “Self-organization of

weighted networks for optimal synchronizability”. In: Transactions on Control of Network

Systems (2017). (Accepted). DOI: 10.1109/TCNS.2017.2732161

This paper presents the modification to the algebraic connectivity estimator [29] so that

the spectral radius may also be estimated in a decentralised manner (this modification is

5
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presented in this thesis in Section 5.1). Utilising the adaptive logarithmic edge adaptation

strategy (Section 4.2, [31]), the problem of maximising the synchronisability of complex

networks is solved using a wholly decentralised approach.

• [33] Louis Kempton, Guido Herrmann, and Mario di Bernardo. “Distributed adaptive

optimization and control of network structures”. In: 55th Annual Conference on Decision

and Control (CDC). IEEE. 2016, pp. 5839–5844. DOI: 10.1109/CDC.2016.7799167

In this conference paper, we present the flexibility of the multi-layer decentralised estima-

tion and adaptation strategies, by illustrating the modularity of the estimator and weight

adaptation systems. This flexibility is demonstrated through solving a number of frequently

studied network optimisation problems: maximising algebraic connectivity in a network of

mobile robots, maximising the synchronisability of a network, and minimising the effective

resistance of a network. We also introduce a decentralised estimator for the total effective

graph resistance, which is presented more fully in Chapter 6 of this thesis.

• [32] Louis Kempton, Guido Herrmann, and Mario di Bernardo. “Distributed optimisation

and control of graph Laplacian eigenvalues for robust consensus via an adaptive multi-

layer strategy”. In: International Journal of Robust and Nonlinear Control 27.9 (2017),

pp. 1499–1525. DOI: 10.1002/rnc.3808

In this paper, a decentralised strategy for minimising the spectral radius of the graph

Laplacian, subject to the global connectivity constraint of maintaining a minimal value

for the algebraic connectivity is presented. This improves robustness to time-delays in

networks following a linear consensus protocol. The KKT satisfaction weight adaption

strategy is utilised in this pursuit, and hence, Section 4.3 of Chapter 4 is based upon the

weight adaptation section of this paper [32]. In the paper, the proof of stability of the

multi-layer approach of decentralised estimation and adaptation is then given, provided a

sufficient time-scale separation exists, and this proof is reiterated in Chapter 5, Sections

5.4 and 5.5 of this thesis.
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2
MATHEMATICAL PRELIMINARIES

2.1 Graph Theory

The primary object of study in this thesis is the weighted, undirected graph. A graph

describes a collection of objects, which are referred to as nodes1, and maps pairwise

interactions between them by ascribing edges2 between two nodes if such an interaction

exists. As such, graphs are frequently used to describe and model many multi-agent systems;

systems where the entirety is composed of many interacting sub-units. Classic examples are

social networks, where nodes represent individual people, and edges represent a relationship

between people. Relationships may be, for example, friendship, sexual, or familial relationship.

Edges on graphs may be undirected, where the direction of interactions between agents does

not matter or is symmetric. Take friendship in the previous example, if Alice is friends with Bob,

we might expect Bob to be friends with Alice. Contrarily, direction may be important, as in the

familial tree: Bob may sire Charlie, but certainly Charlie then does not father Bob! This is where

we make the first distinction in categories of graph: if pairwise interactions are symmetric or

direction is unimportant then we may model a multi-agent system using an undirected graph; if

pairwise interactions are directional then it is more suitable to model the multi-agent system

with a directed graph.

Definition 2.1 (Simple, undirected, unweighted graph). A simple, undirected, unweighted

graph G , of n nodes and m edges is an ordered pair G = (V ,E ), where V is the vertex set

V = {1, . . . ,n}, and the edge set is a subset of all two element subsets (pairs, P ) of the vertex set:

E ⊆ {P |P ⊆ V , |P | = 2}.

1Also referred in literature as vertices.
2Also known as arcs or links.
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1

2

3

4

5 8

7

6

Figure 2.1: A simple, undirected, unweighted graph, G1 = (V ,E ), on n = 8 nodes, and with
m = 13 edges. This graph is defined by the vertex set V = {1,2,3,4,5,6,7,8}, and edge set E =
{{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,6}, {3,4}, {3,6}, {4,5}, {5,6}, {5,8}, {6,7}, {7,8}}.

The number of nodes in the graph is denoted by n(G ) , |V |, and the number of edges by

m(G ), |E |. 4

Note 2.1. This definition of the edge set does not allow for self loops, or for multiple edges, so the

graph is known as simple.

The sole difference between a directed and an undirected graph is that edges in a directed

graph have direction. That is, each edge has one node from which it originates, and one node to

which it is destined. The origin and destination nodes may also be called, respectively, the parent

and the child.

Definition 2.2 (Simple, directed, unweighted graph). Keeping the same definition of a graph

G = (V ,E ) of n nodes and m edges, with the vertex set defined as before: V = {1, . . . ,n}, we now

define the edge set to be a subset of all ordered pairs of vertices: E ⊆ V ×V . Note that so far this

definition allows for self-loops in the edge set, so to restrict the definition to simple graphs, we

need to add the following requirement: (i, i) ∉ E ,∀i ∈ V . Convention is that the edge (i, j) indicates

that there is an edge originating at node i and terminating at node j; j is then the child of i. 4

1

2

3

4

5 8

7

6

Figure 2.2: A simple, directed, and unweighted graph, G2 = (V ,E ), on n = 8 nodes, and with
m = 14 edges. The graph is defined by the vertex set V = {1,2,3,4,5,6,7,8}, and edge set E =
{(1,3), (1,4), (1,5), (2,1), (3,2), (3,6), (4,3), (5,4), (5,6), (5,8), (6,2), (7,6), (7,8), (8,7)}.

8



2.2. MATRIX REPRESENTATIONS OF GRAPHS

2.1.1 Edge weighted graphs

Taking the definition of an unweighted graph given above, we can model the strength of inter-

actions by labelling each edge with a real number. This formulation offers more flexibility in

modelling. In the friendship example mentioned previously, we could only describe who was

friends with whom, but using a weighted network we can also describe the strength of particu-

lar friendships, perhaps reflecting the amount of time that two people spend together. Such a

refinement would clearly be beneficial for modelling the spread of a communicable disease on the

network.

In this way, we define a simple, undirected, weighted graph in the following manner:

Definition 2.3 (Simple, undirected, weighted graph). A simple, undirected, weighted graph G

is defined by the ordered triple G = (V ,E ,w), with the vertex set V and edge set E defined in

Definition 2.1. Now however, a function w : E →R is defined so that each edge is associated with

a real number. For conciseness of notation, we shall denote the weight of the edge between nodes

i and j, w{i, j} , w({i, j}). 4

Likewise a weighted and directed graph can be defined by augmenting the pair (V ,E ), which

defines the topology of the weighted graph, with an edge weight function w : E →R. Furthermore,

it is entirely reasonable to ascribe a weight function to the nodes as well, for both the directed

and undirected case, and such a vertex weight is commonly called a mass. However, as we focus

on edge weighted graphs in this thesis, a rigorous definition of vertex weighted graphs is not

required.

1

2

3

4

2
2

41

1

Figure 2.3: An example edge weighted, undirected graph. The graph G3 = (V ,E ,w) is defined
through the vertex set, V = {1,2,3,4}, edge set, E = {{1,2}, {1,4}, {2,3}, {2,4}, {3,4}} , and the weight
function: w : E →R, {1,2} 7→ 2, {1,4} 7→ 1, {2,3} 7→ 1, {2,4} 7→ 2, {3,4} 7→ 4.

2.2 Matrix Representations of Graphs

Before introducing the spectra of graphs (of which there are several), it will be necessary to define

the matrix representations of graphs to which these spectra belong. Matrices can succinctly

describe the structure of the graphs which they represent, and can reveal many interesting

properties of the graphs structure through linear algebra [35, 36, 37].
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2.2.1 The Adjacency Matrix

The unweighted adjacency matrix is perhaps the simplest and most fundamental matrix rep-

resentation of a graph, and has been used extensively since its introduction3. For undirected

graphs, two nodes i and j are said to be adjacent if there exists an edge between them, and the

adjacency matrix An×n fully lists all possible pairs of nodes, and whether or not an edge exists

between them. In the case that an edge exists between the nodes i and j a ‘1’ is to be found in the

(i, j) element of the adjacency matrix, else a ‘0’ indicates that no such edge exists. As such, the

unweighted adjacency matrix is both a square and Boolean matrix.

Definition 2.4 (Unweighted, undirected adjacency matrix). The adjacency matrix is defined

A= [ai, j]n×n where,

(2.1) ai, j =
1 if {i, j} ∈ E

0 otherwise

4

As {i, j}= { j, i} it is clear that the adjacency matrix is symmetric for undirected graphs. For

simple graphs, i.e. {i, i} ∉ E , it is also evident that the main diagonal of the matrix consists entirely

of zeros.

Example 2.1. For the graph G1 illustrated in Figure 2.1, with vertex set V = {1,2,3,4,5,6,7,8},

and edge set E = {{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,6}, {3,4}, {3,6}, {4,5}, {5,6}, {5,8}, {6,7}, {7,8}}, the

adjacency matrix is defined according to Definition 2.4:

(2.2) A=



0 1 1 1 1 0 0 0

1 0 1 0 0 1 0 0

1 1 0 1 0 1 0 0

1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 1

0 1 1 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0


For directed graphs, the adjacency matrix need not be symmetric, and an entry in the (i, j)

element indicates that there is an edge oriented from node i to node j. If indeed the adjacency

matrix is symmetric then (i, j) ∈ E ⇐⇒ ( j, i) ∈ E , and the definition of a directed graph collapses

onto the definition of an undirected graph.

3The earliest recorded use of the adjacency matrix I have found is in Shannon’s 1956 paper “The zero error
capacity of a noisy channel” [38], though the definition used here differs from the modern definition by the addition of
the identity matrix.
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Definition 2.5 (Unweighted, directed adjacency matrix). The adjacency matrix of an unweighted

and directed graph is defined A= [ai, j]n×n where,

(2.3) ai, j =
1 if (i, j) ∈ E

0 otherwise

4

Weighted graphs can also be succinctly described by the adjacency matrix, simply by allocating

the edge weight wi, j to the (i, j)th element:

Definition 2.6 (Weighted, directed adjacency matrix). For a weighted and directed graph, the

weighted adjacency matrix is defined A= [ai, j]n×n where,

(2.4) ai, j =
wi, j if (i, j) ∈ E

0 otherwise

4

From this definition, we see that an unweighted network may be treated as a special case of

weighted network where all edges have unit weight, wi, j = 1, ∀(i, j) ∈ E . Moreover, if any edge

weight in a weighted network is 0, this can be seen as being equivalent to removing that edge

from the network.

Example 2.2. For the graph G3 illustrated in Figure 2.3, the weighted adjacency matrix, according

to Definition 2.6, is simply:

(2.5) A=


0 2 0 1

2 0 1 2

0 1 0 4

1 2 4 0


As the graph G3, is undirected, its weighted adjacency matrix is symmetric.

2.2.2 The Incidence Matrix

The incidence matrix first appeared in the fundamental book on graph theory, König’s 1936 text

“Theorie der endlichen und unendlichen Graphen” [39]. Whereas the adjacency matrix indicates

which nodes are adjacent to each other, the incidence matrix indicates which nodes are incident

to each edge4. Unlike the adjacency matrix, the incidence matrix is not necessarily square5, as it

relates edges to nodes, and is instead an m×n matrix. In this thesis, we will be interested in two

related incidence matrices, namely the unoriented and oriented incidence matrices, defined as

follows:
4Somewhat unsurprisingly...
5Unless n = m.
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Definition 2.7 (Unoriented incidence matrix). Let q : {1, . . . ,m}→ E be a bijective function from

the set of integers from 1 to m, to the edge set, so that we may define an ordering on the edges.

We may then define the unoriented incidence matrix M= [mi, j]m×n

(2.6) mi, j =
1 if j ∈ q(i)

0 if j ∉ q(i)

4

Example 2.3. For the graph G1 illustrated in Figure 2.1, with ordering on the edges defined by

the function q,

(2.7)

q : {1, . . . ,m}→ E

1 7→ {1,2}, 2 7→ {1,3}, 3 7→ {1,4}, 4 7→ {1,5}, 5 7→ {2,3},

6 7→ {2,6}, 7 7→ {3,4}, 8 7→ {3,6}, 9 7→ {4,5}, 10 7→ {5,6},

11 7→ {5,8}, 12 7→ {6,7}, 13 7→ {7,8}.

the unoriented incidence matrix is defined according to Definition 2.7 as,

(2.8) M=



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1


Note that the choice of ordering on the edges is arbitrary, and corresponds to a permutation of rows

in the incidence matrix. Likewise, permuting columns corresponds to a relabelling of nodes in a

graph. Alternatively, it can be seen that an incidence matrix induces an ordering on an otherwise

unlabelled graph.

We can see that the unoriented incidence matrix is a Boolean matrix and each row has exactly

two non-zero elements, corresponding to the incident nodes of each edge. Row sums are equal to

2, and column sums are equal to the degree of each node. No distinction is made between the

two incident nodes, so the unoriented incidence matrix is more suited to describing undirected

12
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graphs. Contrariwise, the oriented incidence matrix does make this distinction by denoting the

origin of an edge with a −1 and the destination with the positive 1.

Definition 2.8 (Oriented incidence matrix (for directed graphs)). Again, let q : {1, . . . ,m}→ E be

a bijective function from the set of integers from 1 to m, to the edge set, defining an ordering on

the edges, and let q(i)= (ai,bi). We may then define the oriented incidence matrix P= [pi, j]m×n

(2.9) pi, j =


−1 if j = ai

+1 if j = bi

0 if j ∉ q(i)

4

This matrix again has exactly two non-zero elements in each row, but now row sums are equal

to zero; column sums are equal to the in-degree minus the out-degree.

Although the oriented incidence matrix is the natural choice for directed graphs, it is also

useful in the analysis of undirected graphs. In this case, as both incident nodes are treated

equally, it does not matter which is labelled with the −1 and which with the +1. As such, we

arbitrarily choose to label the node with lower index with the negative value.

Definition 2.9 (Oriented incidence matrix (for undirected graphs)). Again letting q : {1, . . . ,m}→
E be a bijective function from the set of integers from 1 to m, to the edge set, defining an ordering

on the edges, we may then define the oriented incidence matrix P= [pi, j]m×n

(2.10) pi, j =


−1 if j =min(q(i))

+1 if j =max(q(i))

0 if j ∉ q(i)

4

Example 2.4. Again, using the undirected graph G1 and the same ordering on the edges as

specified through the function q in Example 2.3, the oriented incidence matrix P is specified

13
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according to Definition 2.9,

(2.11) P=



−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

−1 0 0 1 0 0 0 0

−1 0 0 0 1 0 0 0

0 −1 1 0 0 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 1 0 0 0 0

0 0 −1 0 0 1 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 −1 0 0 1

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1


2.2.3 The Graph Laplacian

The weighted graph Laplacian, L, is the primary matrix of interest in this thesis, and it connects

the adjacency matrix and the incidence matrix through two equivalent definitions. Firstly, the

graph Laplacian can be seen simply as the diagonal matrix of weighted degrees minus the

adjacency matrix:

Definition 2.10. The out-degree graph Laplacian matrix for weighted and directed graphs

L= [l i, j]n×n is defined as:

(2.12) l i, j =


∑

k∈Ni wi,k if i = j

−wi, j if (i, j) ∈ E

0 otherwise

Alternatively if we define the weighted out-degree matrix D= [di, j]n×n as the diagonal matrix of

weighted out-degrees,

(2.13) di, j =


∑
k∈Ni wi,k if i = j

0 otherwise

then the out-degree graph Laplacian is simply given by:

(2.14) L=D−A

As such, it is clear that the out-degree graph Laplacian matrix always has zero row sum. If

the graph is undirected, then the graph Laplacian is symmetric and also has zero column sum,

as the out-degree is equal to the in-degree at each node. 4
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The graph Laplacian also admits another definition when the graph is symmetric, showing a

connection to the oriented incidence matrix P, defined previously in Definition 2.7:

Definition 2.11. Defining the vector of edge weights w = [wi]m×1 using the ordering on the

edges defined by the function q, as in Definition 2.7:

(2.15) wi , wq(i)

and using the diag function which maps a vector to a diagonal matrix with elements of the vector

on the main diagonal, in the same order,

(2.16) L=P>diag(w)P

Furthermore, if the the network is unweighted (i.e. diag(w)= I ) then the above equation simplifies

to:

(2.17) L=P>P

This view of the the graph Laplacian reveals a number of interesting properties. Specifically, it is

immediately clear that the Laplacian matrix is positive semi-definite, Lº 0, if the edge weights

are non-negative. 4

The graph Laplacian has the spectrum σL = {λ1,λ2 . . . ,λn}, and as stated previously, the graph

Laplacian has zero row sum, i.e. L1 = 0, that is λ1 = 0 is always an eigenvalue of the graph

Laplacian. Moreover, in the symmetric case (for undirected graphs), the graph Laplacian has

real eigenvalues and is positive semi-definite if edge weights are non-negative6. It can also be

seen that the graph Laplacian is diagonally dominant (but not strictly diagonally dominant),

so that we can bound the eigenvalues between zero and twice the maximum diagonal element

(the maximum weighted degree, ∆) using Geršgorin’s circle theorem. Thus we can order the

eigenvalues of the graph Laplacian 0 = λ1 ≤ λ2 ≤ ·· · ≤ λn ≤ 2∆. Many known results on the

Laplacian spectrum, connecting the spectrum to properties such as diameter, degree distribution,

isoperimetric number, can be found in the reviews [40, 41] and the textbooks [35, 36].

2.3 Spectral Graph Theory

Having defined several matrix representations of weighted and unweighted graphs, and their

respective spectra, it will be useful to discuss a few select applications of these spectra, to provide

some motivation for why these spectra are interesting, and why controlling or optimising the

graph spectra may prove useful.

6Note that this a sufficient but not necessary condition; the graph Laplacian may still be positive semi-definite
with some (but not all) negative edge weights.
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2.3.1 Connectivity and Partitioning of Graphs

Firstly, we would like to present some results that connect the graph Laplacian and its spectrum

to connectivity properties of the graph: specifically on the number of connected components, and

measures of how easy it is to partition a graph into two disconnected subgraphs. In 1973, it

was Fiedler [42] who first recognised the importance of the second smallest eigenvalue, λ2, on

connectivity properties of the graph, and named this eigenvalue the algebraic connectivity of the

graph7, thanks to its connection to the edge and vertex connectivities: respectively the number of

edges or nodes that need to be removed to disconnect a graph.

Lemma 2.1. In a connected component G of an undirected weighted graph, with Laplacian

matrix L(G ), if all edge weights are positive, the algebraic connectivity λ2(L(G ))> 0.

Proof. [36] Let x be the eigenvector associated to the null eigenvalue. Thus,

Lx= 0

x>Lx= ∑
{i, j}∈E

2wi, j(xi − x j)2 = 0

If all wi, j > 0, then xi = x j if {i, j} ∈ E . As G is connected then there exists a path between all pairs

of vertices, and we can conclude that x is a vector where all components are equal, i.e. x is a

scalar multiple of the vector of all ones, x=α1, α 6= 0. Hence the eigenspace associated with the

zero eigenvalue has dimension 1, and as Lº 0, we can conclude that all other eigenvalues are

strictly positive, and specifically λ2 > 0.

The related Lemma for unweighted graphs was first proved in [42] using the Perron-Frobenius

theorem, however, we choose to present a proof based upon Proposition 1.3.7 in [36], as it is

simple to extend to positively weighted graphs.

Lemma 2.2. The multiplicity of the zero eigenvalue is at least k in a graph G with k connected

components.

Proof. There exists a permutation matrix P so that,

P>L(G )P=


L1 0 0 0
0 L2 0 0

0 0 . . . 0
0 0 0 Lk


This transformation essentially corresponds to a relabelling of vertices so that if node i is in the

pth component and node j is in the qth component, then q > p =⇒ j > i for all i, j.

7A number of authors, however, call this eigenvalue the Fiedler value, and its associated eigenvector, the Fiedler
vector.
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Following from the zero row-sum property of Laplacian matrices we can immediately find

that:
L1 0 0 0
0 L2 0 0

0 0 . . . 0
0 0 0 Lk




1
0
...

0

= 0,


L1 0 0 0
0 L2 0 0

0 0 . . . 0
0 0 0 Lk




0
1
0
0

= 0, . . . ,


L1 0 0 0
0 L2 0 0

0 0 . . . 0
0 0 0 Lk




0
...

0
1

= 0

Hence, there are k linearly independent eigenvectors associated to the null eigenvalue.

Lemma 2.3. A weighted, undirected graph with positive edge weights and k connected components

has precisely k zero eigenvalues, with all other eigenvalues being strictly positive.

Proof. Proof follows directly from Lemmas 2.1 and 2.2.

From these lemmas, it is clear that the algebraic connectivity λ2 is central to determining the

connectivity of a graph, and moreover, if we can guarantee that λ2 > 0, then we guarantee that a

network is connected; therefore information can spread across the entire network, which is for

example essential for consensus and synchronisation problems, [43, 44, 45, 46].

Furthermore, not only does the algebraic connectivity determine connectivity, it is also

a metric for measuring how strongly connected a graph is. In [42], Fiedler showed that the

algebraic connectivity λ2 was a lower bound on the more common notions of connectivity, the edge

connectivity e (the minimum number of edges required to be removed to disconnect the graph),

and the vertex connectivity v (the minimum number of nodes, with incident edges, required to be

removed to disconnect the graph). For unweighted graphs it is shown in [42] that,

(2.18) λ2 ≤ v ≤ e

However, as shown in the following sections, the spectrum of the graph Laplacian reveals much

more about partitioning of graphs, including those of weighted graphs.

2.3.2 Min & Max Cut

A partition of a graph’s vertex set P (V ) is a division of the vertex set into multiple sub-sets, so

that the union of subsets covers the original vertex set, but the intersection of any two subsets is

zero; i.e. all nodes in the vertex set belong to exactly one partition:

(2.19)
P (V )= V1, . . . ,Vp : V1 ∪·· ·∪Vp = V

Va ∩Vb =;∀a 6= b

The cost of a cut is typically defined as the sum of all edge weights in the cut set C , where the

cut set is defined:

(2.20) C (P (V ))= {
{i, j} ∈ E : i ∈ Va, j ∉ Va,∀a

}
17



CHAPTER 2. MATHEMATICAL PRELIMINARIES

The cost of the cut is then:

(2.21) cut(P (V ))= ∑
{i, j}∈C

wi, j

A particularly useful inequality relating the eigenvalues of the Laplacian matrix to the cost

of cuts on a graph is shown in the set of lecture notes [47]8, illustrating that the cost of any

bipartition is bounded by the extremal non-trivial eigenvalues of the graph Laplacian, λ2 and λn:

(2.22)
λ2

n
≤ cut(V1,V2)

|V1||V2|
≤ λn

n

For the minimum cut (when |V1| may be as low as 1), the weighted edge connectivity (equivalent

to the min-cut),

(2.23) e(G )≥ n−1
n

λ2

which is a slightly weaker bound than Fiedler provided for unweighted graphs: e(G ) ≥ λ2 [42].

Contrarily, the maximum cut can only be achieved when |V1| = |V2| = n
2 , a balanced bipartition:

(2.24) max cut(G )≤ nλn

4

which was previously proven in [49]. We can see that by maximising the algebraic connectivity we

can provide a larger guarantee on the amount of edge weight required to be removed to disconnect

the graph. Finding the minimum or maximum cut is an NP-hard problem in general, so using

optimisation of the eigenvalues of the graph Laplacian as a proxy for making the graph more

resilient to disconnection is a sensible method.

Example 2.5. Taking the weighted, undirected graph G3, depicted in Figure 2.3, the graph

Laplacian matrix is:

L=


3 −2 0 −1

−2 5 −1 −2

0 −1 5 −4

−1 −2 −4 7


with the graph Laplacian spectrum found to be:

σL = {0,3.0376. . . ,6.6222. . . ,10.0342. . . }

Specifically, the algebraic connectivity is found to be λ2 = 3.0376. . . , and the spectral radius of the

graph Laplacian, λn = 10.0342. . . . According to inequality (2.23), the minimum cut of this graph

is at least:
e(G3)≥ n−1

n
λ2

≥ 3
4
×3.0376 · · · = 2.2782. . .

8This inequality stems from Theorem 2 in [48], which equates the Rayleigh coefficient of a partition vector to the
cost of the associated cut, but is then relaxed for vectors which may contain elements other than +1 or −1.
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Using the further information that all edge weights are integer, and so the cost of any cut is also

integer, we can be sure that the minimum cut in this graph is at least 3. In fact, it can be quickly

seen that the degree of node 1 is 3, and so the cut that isolates this node is a minimum cut.

Furthermore, a lower bound on a balanced cut, when the two partitions are each of two nodes

(|V1| = |V2| = 2), can be inferred from the algebraic connectivity, using the inequality 2.22:

λ2

4
≤ cut(V1,V2)

2×2
cut(V1,V2)≥λ2

Again, using the fact that all edges have integer weight, then we can be sure that the minimum

balnced cut has a cost of at least 4. Such a bipartition is the cut that separates V1 = {1,2} from

V2 = {3,4}. The edges in the cut set have a combined weight of w{1,4} +w{2,4} +w{2,3} = 1+2+1= 4.

Finally, an upper bound on the maximum cut can be deduced using 2.24

max-cut(G3)≤ nλn

4
≤λn = 10.0342. . .

Again, the range can be further narrowed to max-cut(G3)≤ 10, but for this particular graph, the

bound is not tight: the maximum cut is found to be that which divides V1 = {1,4} from V2 = {2,3},

with a cost of 8.

2.3.3 Consensus

Of particular interest to this thesis is the problem of achieving consensus in a network of

dynamical agents [50, 45, 51, 52, 53]. Given a network of interconnected agents, it is often

required that all agents are able to reach a collective decision, and that every agent will agree

with every other in the network. Such a task is important, for instance, in the applications

of distributed averaging in wireless sensor networks [54], clock synchronisation in wireless

networks [55, 56], resource allocation for parallel computing [57], energy management in the

smart grid [2, 58], and formation control in swarms of mobile robots [59, 60, 61].

In general, consensus is achieved in a network of n nodes when each agent’s local state

variable xi is equal to every other in the network: x1 = x2 = ·· · = xn. However, as a specific case,

we can consider the scenario when state variables take a real number, xi ∈R. Then, one of the

simplest consensus protocols9[45] is given by the set of ordinary differential equations:

(2.25) ẋi =
∑

j∈Ni

w{i, j}(x j − xi)

That is, each agent only updates its local state in response to the (possibly weighted) sum of

differences between its state and those of its neighbours. The dynamics of the collective can be

9Often referred to as simple linear consensus, or linear diffusive coupling.
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more concisely described using the (weighted) graph Laplacian matrix:

(2.26) ẋ=−Lx

where the vector x is the vector of state variables [x1, x2, . . . , xn]>.

Lemma 2.4. In the case when the communication graph is undirected (L is symmetric), con-

sensus is achieved if and only if the graph is connected, λ2 > 0. Moreover, consensus is reached

exponentially fast with the rate of convergence governed by the algebraic connectivity, λ2, and the

consensus value reached is the arithmetic mean of the initial condition.

Proof. As L is symmetric, there exists a unitary matrix V which diagonalises L. Let Λ=V>LV,

where Λ= diag(0,λ2, . . . ,λn), and V>V= I. Then, applying the transformation x=Vz:

(2.27)

ẋ=−Lx

Vż=−LVz

V>Vż=−V>LVz

ż=−Λz

It can be seen that, through diagonalisation, the modes have been decoupled. The consensus mode

is constant, ż1 = 0, where all other modes decay exponentially fast, żi =−λi zi for i = 2, . . . ,n. The

slowest decaying of these modes is the smallest non-zero eigenvalue of the graph Laplacian, λ2,

and is the limiting rate of convergence to the consensus mode. Furthermore, the consensus mode,

which is constant z1 = v1
>x, where v1 is the right column eigenvector associated with λ1 = 0,

v1 = 1p
n 1, shows that the sum of all initial states is an invariant quantity. Asymptotically, when

all other modes except the consensus mode have decayed, z∗ = [ 1p
n 1x(t = 0),0, . . . ,0]>. Reversing

the transformation to the diagonal basis we find that the equilibrium point x∗ =Vz= 11>x(t=0)
n ;

each node’s state has converged on the arithmetic mean of the networks intial states.

Example 2.6. The simple linear consensus protocol, as described by Equation (2.25), is run on

the network G1, illustrated in Figure 2.1. Initial states are drawn uniformly at random from the

interval [−5,5), the mean of the initial states being 0.2284. . . . This mean is the consensus value and

indicated by the red line in Figure 2.4. The continuous time equations have been discretised using

the forward Euler method, with a time step of 1×10−3. It can be seen that consensus is achieved

rapidly in the network. Further, by examining the error from the consensus value, y= x− 11>x(0)
n ,

and plotting the natural log of the Euclidean norm of this error against time (Figure 2.5), the

rate of convergence can be graphically illustrated. For the unweighted network G1 , the algebraic

connectivity is exactly equal to 1, and this corresponds to the gradient of the log error norm in

Figure 2.5.
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Figure 2.4: An illustration of the simple linear consensus protocol, Equation (2.25), instantiated
on the example graph G1, with initial values drawn uniformly at random from the interval [−5,5).
In this figure, the arithmetic mean of the initial states is designated by the red line.
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Figure 2.5: The algebraic connectivity of the graph G1, on which the simple linear consensus
protocol is run, is λ2 = 1. It can be seen graphically that this is the quantity determining the
rate at which consensus is reached, through observing the gradient of the natural logarithm
of the norm of the discrepancy from the consensus value, ln(||y||2), where y is the discrepancy
y= x− 11>x(0)

n .
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2.3.4 Synchronisation

Synchronisation can be seen as a more general phenomenon than consensus [52, 62, 63, 64].

However, rather than agents in a network coming to agreement on a particular equilibrium value,

agents in a network of nonlinear dynamical systems interact with each other to share a similar

pattern of behaviour. In the case of full state synchronisation, each agent’s state vector xi(t) is

equal to all others in the network for all time, x1(t)= x2(t)= ·· · = xn(t); and all systems follow the

same trajectory. The set of n−1 constraints x1 = x2 = ·· · = xn define the synchronisation manifold

[43].

In the case of chaotic oscillators, any small deviation from the synchronisation manifold will

grow over time, and this growth can be measured by the maximum Lyapunov exponent of the

system, which is positive for chaotic systems [65]. However, with suitable coupling strategies,

the synchronous solution can be made to be locally transversally stable; the maximum Lyapunov

exponent of the equation describing the dynamics of the errors between nearby trajectories is then

negative. One of the fundamental tools in studying the local stability of the synchronous solution

in a network of chaotic oscillators is the Master Stability Function (MSF) [43, 44] which tracks

the maximum Lyapunov exponent of the system as the coupling strength between subsytems is

increased.

We can consider the generic homogeneous networked system of n identical agents:

(2.28) ẋi =F(xi)−σ
n∑

j=1
l i, jH(x j)

where xi = [x j]d×1 is the d-dimensional state vector of the ith subsystem, and F(xi) :Rd 7→Rd is

the vector field of the ith isolated system. The global coupling strength between subsystems is

controlled by the scalar parameter σ, and H(x j) :Rd 7→Rd is the coupling function between nodes.

The topology and local strength of the pairwise interactions are determined through the weighted

graph Laplacian matrix L= [l i, j]n×n. Evidently10, the synchronous solution, x1(t)= x2(t)= ·· · =
xn(t)= s(t), where,

(2.29) ṡ=F(s)

is a solution to (2.28). The Master Stability Function is then found by plotting the maximum

Lyapunov exponent (the so-called Largest Lyapunov Exponent (LLE)) of the block diagonalised

variational equation, over a range of coupling strengths, as described in Sections 2 and 3 of [13],

which we briefly reiterate here for completeness. The variational equation gives the dynamics

of a small virtual displacement in the vicinity of the synchronous solution. Defining the virtual

displacement δxi(t)= xi(t)−s(t), its linearised dynamics are found to be:

(2.30)
dδxi

dt
=DF(s)δxi −σ

n∑
j=1

l i, jDH(s)δx j

10This follows from the zero row sum property of the Graph Laplacian matrix, L.
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where the matrices DF and DH are the Jacobians of the vector field of the isolated system

F(x) and coupling function H(x) respectively, evaluated on the synchronous solution s(t). The

modes of this variational equation can then be block decoupled through the following linear

transformation:

(2.31)


δy>

1

δy>
2

...

δy>
n

=V>


δx>

1

δx>
2

...

δx>
n


where V is the n×n unitary matrix of right column eigenvectors of L, V = [v1,v2, . . . ,vn] such

that Λ=V>LV. Each block of the block diagonalised variational equation is then given by,

(2.32)
dδyi

dt
= (DF(s)−σλiDH(s))δyi

with λi being the eigenvalues of L. It can then be seen that each mode δyi follows similarly

structured dynamics, with the strength of the coupling term being proportional to the mode’s

associated eigenvalue, λi. By using a dummy variable α, as in (2.33), to substitute for the

quantity σλi, the transversal stability of the synchronous solution can be characterised of a range

of possible coupling strengths and Laplacian eigenvalues.

(2.33)
dδy
dt

= (DF(s)−αDH(s))δy

The MSF Ψ(α) achieves this by plotting the Largest Lyapunov Exponent (LLE) of the system

governed by Equation (2.33), as a function of the coupling strength α. In intervals where α is

such that the LLE of Equation (2.33) is negative (the MSF Ψ(α) is negative), any small distance

between trajectories near to the synchronous solution will decay away, and thus the synchronous

solution is locally transversally stable. For more details on the MSF, or how the LLE is calculated,

see for example [43, 13].

Example 2.7. As a representative example, we consider a network of coupled Rössler oscillators

with parameters as in [13]. In the fashion of Equation (2.28), the isolated system is given by

x, [x, y, z]>

ẋ=F(x),


−y− z

x+ζy

β+ z(x−γ)

 , ζ= 0.2,β= 0.2,γ= 9

A solution of the uncoupled oscillator is presented below, in Figure 2.6. We then investigate two

different coupling regimes:

x-diffusive coupling:

H(x), [x,0,0]>

23



CHAPTER 2. MATHEMATICAL PRELIMINARIES

x

15 10 5 0 5 10 15 20

y

20
15

10
5

0
5

10
15

z

0

10

20

30

40

50

60

Figure 2.6: A phase-space depiction of the chaotic Rössler attractor.

y-diffusive coupling:

H(x), [0, y,0]>

each with its own MSF Ψ(α), Figure 2.7, where α is a dummy variable representing σλi.
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Figure 2.7: The MSFs Ψ(α) for the Rössler oscillator with two different couplings are shown,
showing class Γ1 (y-diffusive coupling, dashed line) and Γ2 (x-diffusive coupling, solid line)
characteristic shapes. The negative interval for the x-diffusive coupling is found to be (0.187,4.615)
to 3 decimal places, and the negative interval for the y-diffusive coupling is found to be (0.156,∞)
to 3 decimal places. This is in close agreement to the results published in [13].

In general, for a given MSF Ψ(α), intervals in the scalar argument α for which its value is

negative fall into two categories: right-unbounded Ψ(α) < 0 for α ∈ (α1,∞), or proper bounded

Ψ(α)< 0 for α ∈ (α1,α2). Using the classification system of Huang et al. [13], those MSFs which
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contain only one negative interval and that interval is right-unbounded are called Γ1, and those

for which their sole negative interval is proper bounded are called Γ2. These two types of negative

interval lead to two ideas of synchronisability. For systems with a Γ1 MSF, the synchronous

solution is stable if σλ2(L) > α1 (this is seen to be the case for the y-diffusive coupling of the

Rössler oscillators in Example 2.7). That is, networks with greater algebraic connectivity λ2

require a lower global coupling strength, and are thus more easily synchronized; less control

effort is required.

On the other hand, for systems with a Γ2 MSF, the synchronous solution can only be stable if

α1 <σλ2 ≤σλn <α2 (as seen to be the case for the x-diffusive coupling of the Rössler oscillators

in Example 2.7). Thus, such systems can only permit a locally transversally stable synchronous

solution if λn/λ2 <α2/α1. Graphs with lower eigenratio λn/λ2 are then deemed more synchroniz-

able [44], as a greater range of global coupling strengths will allow a stable synchronous solution.

Thus, depending on the shape of the specific MSF for a network of coupled chaotic oscillators,

one of these two spectral functions of the graph Laplacian, the algebraic connectivity or spectral

radius, determines its synchronisability.

Example 2.8. To show the effect of network structure on synchronisation, we compare two

networks of y-diffusively coupled Rössler oscillators, with parameters as described in Example 2.7.

The continuous time dynamics were discretised for the purposes of simulation using the forward

Euler method with a time step of 1×10−2. To show the large impact that network structure can

have on the graph Laplacian eigenvalues, we choose two network topologies, both with n = 10

nodes, and m = 15 edges, and moreover both having identical degree distributions11. The two

network topologies chosen are shown in Figure 2.8, with their respective Laplacian spectra.

From the MSF computed in Example 2.7, we would expect the synchronisation manifold to be

locally transversally stable if σλ2 > 0.156. As such, we pick σ= 0.25, arbitrarily, giving a value for

α= 0.5> 0.156 for the Petersen graph, and α= 0.05538< 0.156 for the second graph with lower

algebraic connectivity.

Starting with initial condition xi = [X ∼N (5,0.12),0,0] (X is a random variable drawn from

the normal distribution with mean 5 and standard deviation of 0.1), the network of coupled

Rössler oscillators is simulated on both graphs.

To measure the level of synchronisation, we choose to observe the log12 of the mean Euclidean

distance from the centroid of all oscillator states. The centroid of all oscillator states is given by

µ= 1
n

∑
i xi, and the synchronisation level is given by:

(2.34)
[
log10

(
1
n

∑
i
√

(xi −µ)>(xi −µ)
)]

11In fact, both graphs are regular, with a valency of 3.
12We choose to plot the log of the mean distance as straight lines will then correspond to exponential increase or

decrease in the mean distance.
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Figure 2.8: The Petersen graph (left) has Laplacian spectrum 0,2,2,2,2,2,5,5,5,5; its alge-
braic connectivity is 2. The other 3-regular graph on 10 nodes (right) has Laplacian spectrum
0,0.2215,2,3,3,3.2892,4,4,5,5.4893 with non-integer values rounded to 4 decimal places; its
algebraic connectivity is approximately 0.2215.

For the Petersen graph we see that the synchronous solution is locally transversally stable, as

the logarithm of the mean Euclidean distance to the centroid decays quickly, and approximately

exponentially.
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Figure 2.9: We see that the synchronous solution is maintained (left) over the 60 second simulation
time. Each oscillator state is plotted in a separate colour (x - blue, y - green, z - red). We can
see in the rightmost pane that the mean Euclidean distance to the centroid of the oscillators’
states decreases over time asymptoically approaching zero, and for the mostpart, this decrease
appears to be exponentially fast. This is also apparent from the negative LLE evaluated on the
synchronous solution, at this coupling strength.

For the second graph with lower algebraic connectivity, the variance in state grows over time,

and synchronisation is quickly lost.
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Figure 2.10: When the simulation is run on the second network topology (with lower algebraic
connectivity) it can be seen that synchronisation is lost, and the synchronisation manifold is
unstable. The mean Euclidean distance to the centroid of the system’s states grows over time, as
seen in the rightmost plot.

2.4 Summary

In this chapter, we first introduced some important definitions and notations relating to directed

and undirected, weighted and unweighted graphs. From this, we introduced three important

matrix representations of a graph: the adjacency matrix, the incidence matrix, and the Laplacian

matrix, and stated some important properties of these matrices. Finally, we looked at some moti-

vating results from spectral graph theory, particularly in how the eigenvalues of the Laplacian

matrix relate to properties of the graph: namely relating to connectivity, the cost of partitioning

the graph, the speed of consensus on the graph, and the synchronisability of complex networks.

In the next Chapter, we will explore some of the approaches taken to optimise and control the

spectra of graphs, particularly that of the graph Laplacian matrix, using both centralised and

decentralised approaches.
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2.5 Table of Notation

Symbol Referring to

Capital, bold letters Matrices

I The Identity Matrix

L The Graph Laplacian Matrix

A The Adjacency Matrix

M The Unoriented Incidence Matrix

P The Oriented Incidence Matrix

V The matrix of right column eigenvectors of L. V= [v1,v2, . . . ,vn]

Lowercase, bold letters Vectors

1 The vector of all ones.

0 The vector of all zeroes. This may also refer to a matrix of zeroes.

If dimensions are unclear, they will be indicated with subscripts.
vi The lowercase, bold, v refers to the right (column) eigenvec-

tors of the matrix L. Bold subscripts are used to indicate the

associated eigenvalue, and as such v2 is the eigenvector asso-

ciated with the algebraic connectivity λ2 (commonly known as

the Fiedler vector). When referring to a single element of an

eigenvector, we use the lowercase vi, j to refer to the jth element

of vi.
ui The left (row) eigenvectors of the Graph Laplacian matrix L.

Lowercase, non-bold letters Scalar quantities

λ2 The second smallest eigenvalue of the Graph Laplacian matrix

L. This quantity is commonly known as the algebraic connectiv-

ity of a graph, or the Fiedler eigenvalue, and is referred to in

this thesis as the algebraic connectivity.
λn The largest eigenvalue of the Graph Laplacian matrix L; its

spectral radius. This quantity is referred to as the spectral

radius of L, or often, when the meaning is clear, simply, the

spectral radius.
λi The ith eigenvalue of L.

i, j i and j are used as indexes, especially when referring to ele-

ments of a vector or matrix. ai is the ith element of the vector a.

bi, j is likewise the i, jth element of the matrix B.
m The number of edges in a graph.

n The number of nodes in a graph.

ki The weighted degree of node i
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Calligraphic, capital letters Sets, especially relating to graphs

G A graph. Graphs may be directed or undirected, weighted or

unweighted, see Definitions 2.1 to 2.3.
V The vertex set of a graph.

E The edge set of a graph.

Functions

w({i, j}) The weight function, that assigns a numeric value to the undi-

rected edge {i, j} or directed edge (i, j), typically a real scalar.

For convenience, the weight of the edge {i, j} is often written in

the more compact form w{i, j}. See Definition 2.3.
q({i, j}) A bijective function that maps the edge set to the set of inte-

gers [1, . . . ,m]. In this way, we can order the edge weights of a

weighted graph, and construct an edge weight vector w.
diag(x) The diag function maps the elements of a vector (in this case x)

to the elements of a diagonal matrix, in the same order.
P (V ) A partition of the vertex set.

Other symbols

〈x〉 The arithmetic mean of the vector x.

≺, Â, ¹, º Matrix inequality symbols. The relation AÂB is equivalent to

A−BÂ 0; hence A−B is positive definite. Similarly, A¹ 0 is the

statement that the matrix A is negative semidefinite.
N (µ,σ2) The normal distribution with mean µ and variance σ2. The

notation X ∼ N (µ,σ2) signifies a random variable X drawn

from the normal distribution N (µ,σ2).
ẋ The time derivative of the vector x, dx

dt
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3
OPTIMISATION AND CONTROL OF GRAPH EIGENVALUES

In the previous Chapter, we saw several matrices that can be induced from a network, in-

cluding both the Adjacency matrix and the Laplacian matrix. A number of useful properties

of the spectra of these matrices were demonstrated, especially relating to the connectivity

properties of the network. The uses of these spectra are numerous, from spectral partitioning

[66, 49, 67, 68], allocation of computing resources [69], bounding graph colouring problems [70],

bounding travelling salesman problems [71, 72], and many more. We refer the reader to the

following textbooks [66, 35] for a wider review on the applications of graph spectra.

As these spectra are so useful for bounding bulk properties of networks, or estimating the

performance of networks, it is often expedient to design networks with desirable spectra. In

practice, this often boils down to finding graphs which maximise some function of the spectra,

subject to constraints on which graphs are allowed. Such graphs are often called optimal graphs,

and can be found using numerical methods as we will explore later in this Chapter, or alternatively

for specific sets of constraints, e.g. strongly regular graphs, families of optimal or near-optimal

graphs may be found using extremal graph theory [19, 73, 74].

In this Chapter, we will review some results for finding both weighted and unweighted

graphs with desirable eigenvalues, starting from closed form solutions for specific classes of

graphs, to centralised optimisation methods for more general graphs (predominantly semi-

definite programming), and finally on to decentralised strategies for the estimation and control

of graph spectra, where agents in a network may communicate only with their neighbours and

cooperate to infer and adapt the desired properties of the network. We pay special attention

to the method presented in [29] for the decentralised estimation and control of the algebraic

connectivity of a network, a continuous time formulation based upon power iteration, as we

use this method extensively throughout this thesis, and develop it in subsequent chapters for
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estimation and optimisation of other spectral functions of the graph Laplacian.

3.1 Closed form solutions

As mentioned in Chapter 2, it was Miroslav Fielder who in 1973 first connected the second

smallest eigenvalue of the graph Laplacian to connectivity properties of the graph [42], and it

is he in [75] who is responsible for finding one of the few closed form solutions for a maximal

spectral function of a graph. In [75], Fiedler addresses the problem of finding the maximum

algebraic connectivity of a weighted, undirected graph subject to the constraint that the sum

of edge weights is equal to the number of edges in the graph (alternatively that the mean edge

weight is exactly 1). Fiedler calls this value the absolute algebraic connectivity of a graph, and

provides a closed form solution for the absolute algebraic connectivity when the graph is a tree.

Expressing this problem in the standard form of an optimisation problem, Fiedler finds the

maximal value of λ2 for the tree, subject to the constraint that all weights in the tree sum to the

number of edges:

(3.1)
maximise

w
λ2

(
G (V ,E ,w)

)
subject to wT1= |E | = m

where the weighted, undirected graph G (V ,E ,w) is a tree.

In fact, it is proven in [75] that the absolute algebraic connectivity of a tree is exactly the

reciprocal of the variance of the tree (see [75, 41] for the definition of the variance of a tree).

Unfortunately, however, it is unknown whether there exists a closed form solution for finding the

edge weights that give this maximal algebraic connectivity.

3.2 Centralised Optimisation

3.2.1 Weighted graphs

Some of the seminal work in optimising graph Laplacian eigenvalues on weighted, undirected

graphs using semi-definite programming comes from Stephen Boyd and his collaborators. In

particular in [54], Xiao and Boyd formulated a semi-definite program (SDP) to find the edge

weights in a network that give the fastest linear averaging in a network, and showed surprisingly

that optimal edge weights may be negative. This problem can be formulated as an eigenvalue

optimisation problem, minimising the spectral radius of the matrix (I−L(w)), when edge weights

are constrained so that the weighted degree of each node is not more than 1: i.e. diag(L)≤ 1. In

[76], the effective graph resistance (a convex function of the spectrum of the graph Laplacian)

is minimised over the edge weights using an SDP1. These problems share many similarities,

and a number of similar problems are summarised succinctly in the conference paper by Boyd
1We propose a decentralised strategy for minimising the effective graph resistance in Chapter 6.
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[77]. Techniques from convex optimisation were also used to find upper bounds on the algebraic

connectivity of a number of families of graphs in [78], recovering some previously known upper

bounds on the algebraic connectivity.

Much work has also been undertaken on Laplacian matrices where edge weights are functions

of some state of the nodes (normally the relative positions and the distance between nodes).

Frequently, this introduces non-convex constraints into the optimisation problem which makes

solution via SDPs more difficult. Nevertheless, finding the network formation that maximises the

algebraic connectivity, when the weight of edges is determined by the relative distance between

two nodes is explored in [79]. The solution is found by iterated solutions of SDPs where the

non-convex constraints are replaced locally by linear constraints. Such a process is guaranteed to

find locally optimal solutions, but in practice appears to find globally optimal solutions often.

3.2.2 Unweighted graphs

The problem of selecting a number of edges to add to a graph to maximise algebraic connectivity

was explored in [80]. This is an NP-hard combinatorial problem [81], and so an SDP relaxation was

solved. A greedy heuristic based on the eigenvector associated with the algebraic connectivity2,

was then used to select the candidate edges, resulting in a good (but sub-optimal) graph.

Using the SDP relaxation with a branch and bound algorithm can be used to find globally

optimal networks (this is known as Mixed-Integer Semidefinite Programming or MISDP) and is

presented for undirected graphs in [82] and directed graphs in [83]. However, this method can be

slow due to solving the SDP at each branch, and so a relaxation of the semi-definite constraint to

a group of quadratic contraints was also proposed in [82] to accelerate the performance, to the

detriment of no longer guaranteeing that the globally optimal solution is found.

Related to the problem of edge addition to maximise algebraic connectivity is the edge rewiring

problem, where at each step one edge is chosen to be removed and another added. In [84] a

heuristic method for selecting edges to be removed and added based on the difference between

elements in the Fiedler vector was compared for some common network models. This method

of adding edges based on the difference between elements in the Fiedler vector is effective for

the same reasons that the Fiedler vector can be used to find a low cost partition of a graph. The

problem of optimal edge addition and deletion for the effective graph resistance is explored in [85]

using heuristics based upon the degree distribution of nodes, the Fiedler vector and the resistance

distance between nodes. Edge addition was also looked at in [86] in terms of maximising the

weighted sum of the algebraic connecitivity and the cost of a link, and again the focus was on

augmenting the node with lowest degree to speed up the algorithm.

2Often called the Fiedler vector.
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3.3 Decentralised Methods

Efforts have been made to develop strategies and heuristics for improving the algebraic connec-

tivity using only information local to each node. For example, in [87] the effect of adding a link

between the lowest degree node and a random node (which only requires local information) is

compared to adding a link based upon the maximum difference in elements of the Fiedler vector

(which is a global variable of the entire graph). A similar degree-based method for edge rewiring

is analysed in [88], and this degree based method is also tested in [85] for reducing the total

effective graph resistance of the network.

In [89] the global SDP was broken down into a number of local SDPs: one for each agent, with

each agent solving an SDP for its two-hop neighbourhood. At each time step, the new positions of

agents were updated as the average of the local SDPs. However, even for small graphs (n = 6),

this distributed SDP strategy does not converge onto the centralised solution in roughly half of

the simulated cases.

Decentralised control of networks is most crucial in collections of autonomous units, for

example in connectivity maintenance in robot formations [90, 91, 92] where connectivity is

maintained through the use of local potential fields around each agent and local estimates of

network connectivity through consensus [91]. Potential fields are also used to preserve network

connectivity in [93, 94]. In [95] decentralised formation control of a network of mobile robots that

seeks to maximise the algebraic connectivity is achieved using the decentralised computation

of the eigenvectors of the graph Laplacian, following the ‘Decentralized Orthogonal Iteration

Algorithm’ proposed in [96]. The unfortunate drawback of this method is that all n eigenvectors

of the graph Laplacian need to be estimated, and so the number of variables that each node must

store grows linearly with the number of nodes in the network.

On the other hand, it is possible to estimate all the non-trivial eigenvalues of a symmetric

graph Laplacian using just two local variables at each node and some signal processing techniques,

as is done in [97]. In this decentralised method, each node i in the network interacts with its

neighbours and adapts its internal state according to the local interaction rule:

(3.2)

ẋi = zi +
∑

j∈Ni

(
zi − z j

)
żi =−xi −

∑
j∈Ni

(
xi − x j

)
so that the dynamics of the entire network can be described by the matrix differential equation:

(3.3)

[
ẋ
ż

]
=S

[
x
z

]
, S=

[
0 I+L

−I−L 0

]

The eigenvalues of the skew symmetric matrix S are purely imaginary and are functions of

the eigenvalues of the graph Laplacian matrix, such that all nodes’ internal states xi and zi

follow trajectories which are linear combinations of sinusoids with frequencies governed by the
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eigenvalues of the graph Laplacian. In fact the frequencies of these sinusoids are simply the

eigenvalues of the graph Laplacian, shifted by 1, i.e. 1,1+λ2, . . . ,1+λn. Each node i can then

make an estimate of the entire spectrum of the graph Laplacian by estimating the frequencies of

the sinusoids of which the signal xi(t) is composed in a finite time window. This can be achieved

for example offline using Fourier analysis tools, or using online methods, as in [97]. The great

advantage of this method is that the entire spectrum of the graph Laplacian can be deduced

together using a relatively simple system, but there are also a number of significant drawbacks

compared to other methods: primarily, no information is obtained about the associated eigenvec-

tors of the Laplacian eigenvalues, and these can be used to estimate the partial derivatives of

the eigenvalues (as seen later in Section 3.3.1.2); also, if the ith component of the eigenvector

associated with a particular eigenvalue is zero, then this mode will not excite the ith agent’s

states, and node i will be blind to this particular mode; finally, eigenvalues with multiplicity

greater than one will not be discernible from distinct eigenvalues.

Due to the lack of information to be gained about the eigenvectors of the graph Laplacian using

the method of [97], this algorithm was not chosen to be utilised for estimating and optimising the

algebraic connectivity of a network, and instead we focus on the method presented in [29], where

nodes communicate in continuous time with their neighbours so as to maintain an estimate of just

their element in the Fiedler vector (the eigenvector associated with the algebraic connectivity),

rather than all vectors, and we proceed to look at more closely at this algorithm in the next

section. A related discrete time algorithm is proposed in [98] which makes an estimate of the

algebraic connectivity and the Fiedler eigenvector, but runs into numerical stability issues when

the algebraic connectivity λ2 is not well separated from λ3.

3.3.1 Decentralised Estimation of the Algebraic Connectivity

In Yang et al. [29], the following ordinary differential equation was proposed to facilitate decen-

tralised estimation of the algebraic connectivity in a network of autonomous agents:

(3.4) ȧ=−k1〈a〉1−k2La+k3
(
1−〈a◦2〉)a

where the angle brackets indicate the arithmetic mean of a vector, and Hadamard exponentiation

is used so that 〈a〉 = 1
n

∑
i ai and 〈a◦2〉 = 1

n
∑

i a2
i . In this system, a is an estimate vector whose

dynamics are such that, when the algebraic connectivity is a distinct eigenvalue, a tends towards

aligning with the Fielder eigenvector, v2. The control parameters k1, k2 and k3 each determine

the relative strength of each of the three terms on the right hand side. The first term provides an

action that deflates the consensus mode, which is the mode associated with the simple eigenvalue

λ1 = 0, v1 = β1 (where β is any non-zero real number). This ensures that the estimate vector

a is orthogonal to the consensus manifold. The second term is a direction update in which the

algebraic connectivity is the dominant eigenvalue. Finally, the third term provides a normalising

force which prevents the estimate vector converging towards the origin. Furthermore, at the
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stable equilibrium point of the system a∗, it is proven in [29] that,

(3.5) ||a∗||2 =
√

n(k3 −k2λ2)
k3

so that an estimate of the algebraic connectivity λ2 can be made by rearranging:

(3.6) λ2 = k3

k2

(
1− a∗Ta∗

n

)
The system (3.4) is essentially a continuous-time formulation of a power-iteration method for

calculating the largest eigenvalue of the matrix −L, which has been deflated on the consensus

mode so that −λ2 is the leading eigenvalue. A similar, discrete-time, power-iteration approach for

the decentralised estimation of the algebraic connectivity is used in [99] by Li, Zhang and Xi.

Alternatively, using more conventional matrix notation, the system (3.4) can be written:

(3.7) ȧ=−k1

n
11Ta−k2La+k3a− k3

n
aaTa

This matrix differential equation effectively describes the macroscopic view of the system, but

equally we can focus on the update law each individual node follows; the microscopic view:

(3.8) ȧi =−k1〈a〉+k2
∑

j∈Ni

w{i, j}(a j −ai)+k3
(
1−〈a◦2〉)ai

From this viewpoint, it is clear that this update law is not completely decentralised; the arith-

metic means, 〈a〉 and 〈a◦2〉, are functions of all components of a which are not available to

each node, following the constraint of using only local communication. In [29], this problem is

circumvented by employing two Proportional-Integral (PI) average-consensus estimators [100],

to make decentralised estimates of the averages.

3.3.1.1 PI average consensus

To make a decentralised estimate of the two arithmetic means: 〈a〉 = 1
n

∑
i ai and 〈a◦2〉 = 1

n
∑

i a2
i ,

two PI average-consensus estimators, as described in [100] are utilised. Such an estimator tracks

the arithmetic mean of a dynamic input vector u(t) through the following coupled ODEs:

ẏi = kγ(ui − yi)+kP
∑

j∈Ni

w{i, j}(yj − yi)+kI
∑

j∈Ni

w{i, j}(z j − zi)(3.9)

żi =−kI
∑

j∈Ni

w{i, j}(yj − yi)(3.10)

with kγ being the input gain, kP being the proportional control gain, and kI being the integral

control gain. The variable yi is the proportional variable, and zi is the integral variable located

at node i. This method is clearly fully decentralised as each node requires only variables located

at its neighbours and incident edges, to compute the update to its proportional and integral

variables.

36



3.3. DECENTRALISED METHODS

It is shown in [100] that for positive control parameters kγ, kP and kI , the stable equilibrium

for each yi is the mean of all components of the input vector u, that is y∗i = 〈u〉 = 1
n 1Tu. Thus,

to decentralise the system (3.8), two PI average consensus systems are required, the first with

u , a, and the second with u , a◦2. To distinguish these two estimators, we use subscripts to

designate which the vector is being averaged:

ẏa = kγ (a−ya)−kPLya −kPLza(3.11)

ża = kPLya(3.12)

and

ẏa◦2 = kγ
(
a◦2 −ya◦2

)−kPLya◦2 −kPLza◦2(3.13)

ża◦2 = kPLya◦2(3.14)

Substituting in these two PI average consensus estimators for the global functions 〈a〉 and

〈a◦2〉, we arrive at the full set of decentralised equations that each agent i follows, in order to

update its five internal states:

(3.15)

ȧi =−k1 ya,i +k2
∑

j∈Ni

w{i, j}(a j −ai)+k3(1− ya◦2,i)ai

ẏa,i = kγ(ai − ya,i)+kP
∑

j∈Ni

w{i, j}(ya, j − ya,i)+kI
∑

j∈Ni

w{i, j}(za, j − za,i)

ża,i =−kI
∑

j∈Ni

w{i, j}(ya, j − ya,i)

ẏa◦2,i = kγ(a2
i − ya◦2,i)+kP

∑
j∈Ni

w{i, j}(ya◦2, j − ya◦2,i)+kI
∑

j∈Ni

w{i, j}(za◦2, j − za◦2,i)

ża◦2,i =−kI
∑

j∈Ni

w{i, j}(ya◦2, j − ya◦2,i)

and each node can maintain its own estimate of the algebraic connectivity, λ̃2
(i)

:

(3.16) λ̃2
(i) = k3

k2

(
1− ya◦2,i

)
In [29] it is argued that there needs to be a sufficient time scale separation between the eigenvalue

estimator and the two PI average consensus estimators for stability of the decentralised system,

however no bound on this separation is given. In Chapter 5, we look at a similar system for

estimating the largest eigenvalue of the graph Laplacian matrix, and derive a lower bound on a

sufficient time-scale separation.

3.3.1.2 Partial derivatives of the algebraic connectivity

An interesting and important feature of the symmetric graph Laplacian matrix is that the partial

derivatives of any particular eigenvalue with respect to the edge weights can be easily calculated

from the normalised eigenvector associated with the particular eigenvalue. For clarity, we provide

a proof found in [99], though this property was found earlier, [101]:
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Lemma 3.1 (Theorem 3.3 [101]). For a simple eigenvalue λk of L(w), of an undirected graph,

with associated unit eigenvector vk, such that Lvk =λkvk, the partial derivative of the eigenvalue

with respect to an edge w{i, j} may be calculated as:

∂λk

∂w{i, j}
= (vk,i −vk, j)2 ≤ 2(3.17)

Proof. As L(w) is symmetric, we can deduce the unit left eigenvector corresponding to λk, uk,

such that ukvk = 1: uk = vk
T. Premultiplying the eigenvector relation, Lvk =λkvk, by this left

eigenvector yields:

vk
TLvk =λkvk

Tvk =λk

Then, taking the derivative with respect to the edge weight w{i, j} of both sides, we find that:

∂λk

∂w{i, j}
= ∂vk

T

∂w{i, j}
Lvk +vk

T ∂L
∂w{i, j}

vk +vk
TL

∂vk
∂w{i, j}

However, as L is symmetric, it is ensured that:

∂vk
T

∂w{i, j}
Lvk +vk

TL
∂vk
∂w{i, j}

=λk
∂(vk

Tvk)
∂w{i, j}

= 0

Thus,

(3.18)
∂λk

∂w{i, j}
= vk

T ∂L
∂w{i, j}

vk

Without loss of generality, we can relabel the nodes i and j to 1 and 2, revealing that

∂λk

∂w{1,2}
= vk

T


+1 −1

−1 +1 ∅

∅ ∅

vk

= (
vk,1 −vk,2

)2

As any two nodes i and j could have been labelled 1 and 2, we then recover the original

equation:

∂λk

∂w{i, j}
= (vk,i −vk, j)2 ≤ 2(3.19)

Finally, the inequality follows from the fact that ||vk||2 = 1. Equality is only achieved when

vk,i = 1p
2
, vk, j =− 1p

2
, and all other elements of vk are zero.

Lemma 3.1 has the corollary that each node can make decentralised estimates of the partial

derivative of the algebraic connectivity with respect to the weight of each of its incident edges.

This is achieved using only its own component of the estimate vector ai, its one-hop neighbour’s

component of the estimate vector a j and its own estimate for the Euclidean norm of the estimate
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vector. Specifically, noting that at the equilibrium point of the second PI average consensus

subsystem, y∗a◦2,i = 〈a2〉 = 1
n ||a||22:

(3.20)
ã( ∂λ2

∂w{i, j}

)(i)

= (ai −a j)2

nya◦2,i

Note 3.1. Note that the denominator in the equation (3.20) will be equal at equilibrium for

all nodes. Therefore, this common factor only affects the magnitude of the gradient, and not

the direction of steepest descent. Hence, this factor may be omitted in many gradient descent

algorithms.

The partial derivative of the algebraic connectivity with respect to any edge weight is propor-

tional to the square of the difference between the incident components of the Fiedler vector. For

this reason, either the square of the difference in components, or simply the absolute difference

between any two components3, is often used as a heuristic for choosing which edges to add in, or

remove from, a network, for example [80, 84].

3.3.2 A discrete time power iteration method for estimation of the algebraic
connectivity

A power iteration method in discrete time for estimating the algebraic connectivity and the

Fiedler vector is also proposed by Bertrand and Moonen [98, 102, 30]. The algorithm proposed is

based upon the power iteration of the matrix:

M= I− 1
α

L(3.21)

where the constant α ≥ λk, which is guaranteed if α = n (for unweighted networks) or α = 2∆,

with ∆ being the greatest weighted degree of the network. To estimate the algebraic connectivity

we then consider the difference equation:

(3.22) x(i+1)=Mx(i)

Note that the update step (3.22) is mean preserving, so a further update step is needed

to ensure that the mean of the estimator vector is returned to zero, from any intitial offset

introduced in the initialising procedure, or introduced through floating point error. The update

step which removes any nonzero mean is simply:

x(i+1)=Lx(i)(3.23)

3The square of the difference is a monotonic increasing function of the absolute difference between elements.

39



CHAPTER 3. OPTIMISATION AND CONTROL OF GRAPH EIGENVALUES

and this update is carried out every Nth iteration, with the power iteration (3.22) occuring at all

other times. Thus, the combined system can be written as:

(3.24) x(i+1)=
Lx(i) if i mod(N)= 0

Mx(i) elsewise

A bound on N is given in Theorem 3.1 in [30] so that the estimate vector x will eventually

converge onto the Fielder vector:

(3.25) N >
log

(
λ3
λ2

)
log

(
α−λ2
α−λ3

) +1

A less tight lower bound is also provided in [30] as N > α
λ2

.

However, it is noted in [30] that both operations do not preserve the norm of x. Thus, a

separate estimate is made in a decentralised manner for the rate at which the norm decreases:

(3.26) r(i)= ||Mx(i)||
||x(i)||

The estimate of the rate r(i) is denoted by p and is broadcast across the network (not necessarily

at every time step). This estimate p is then used to compensate for the change in norm caused by

the operations (3.22) and (3.23), resulting in the system:

(3.27) x(i+1)=


1
α|1−p|Lx(i) if i mod(N)= 0
1
p Mx(i) elsewise

The details by which r(i) is estimated by each node, and each node receives the estimate p can

be found in Section 3− A of [30]. Furthermore, Table 2 in [30] contains complete details of the

distributed update, mean-shifting, and renormalisation procedure.

It can be seen that the structure of this algorithm bears a strong similarity to the method

presented in [29] - there are three updates: an update to deflate on the consensus mode, ensuring

that the mean of the estimate vector is zero; a direction update which causes the mode associated

with the algebraic connectivity to dominate; and a renormalisation measure to stop the estimate

vector growing or shrinking without bound.

However, there are a number of disadvantages associated with this method. In particular

the norm of the estimate vector is not known, so a further decentralised estimate of the norm

of the vector is required, if it is desired that the normalised Fiedler eigenvector be estimated.

Furthermore, convergence speed of this method, as calculated in Remark 3 of [30], is determined

by the quantity:

(3.28)
(
λ2

λ3

) 1
N

(
α−λ2

α−λ3

) N
N−1

In particular, this means that when λ2 is not simple, the system often exhibits numerical

instability, with the estimate vector rapidly diverging to infinity, or converging to zero.
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3.4 Summary

In this Chapter, we reviewed a number of centralised and decentralised methods for adapting

edge weights in networks, in order to control or optimise the graph Laplacian eigenvalues. When

centralised methods are suitable for an application, techniques from semi-definite programming

(SDP) can prove can lead to efficient solution of many network optimisation problems [77]. In

recent years, SDP has been combined with integer programming techniques, resulting in Mixed

Integer Semidefinite Programs (MISDPs) which have been used to successfully optimise a number

of unweighted networks [83, 82]. Heuristics using the Fiedler eigenvector, calculated centrally,

have also been used to choose which edges to add or rewire in an unweighted network [80, 84].

When centralised solutions are not feasible, a number of decentralised heuristics have been

developed to find sub-optimal networks with improved performance, particularly when dealing

with edge addition and rewiring problems in unweighted networks. Many of these use local

degree information as the heuristic [88, 87]. We then paid special attention to two decentralised

methods for estimating the algebraic connectivity and Fiedler vector of a network, based upon

power iteration [29, 30]. However, one of the methods [30] showed signs of instability when

the algebraic connectivity was not a simple eigenvalue. For this reason, we choose to use the

decentralised method for the estimation of the algebraic connectivity presented in [29] as the

basis for the decentralised optimisation of the algebraic connectivity presented in Chapter 4. In

subsequent Chapters, we also use the continuous time power-iteration ideas from [29] to develop

three further decentralised eigenvalue estimators for estimating important spectral functions

of the graph Laplacian: the spectral radius in Chapter 5, and the graph resistance and reduced

Laplacian determinant in Chapter 6.
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4
WEIGHT ADAPTATION LAWS

In the previous Chapter, it was seen how a decentralised estimate of the algebraic connec-

tivity and its associated eigenvector, the Fiedler vector, could be inferred by a network of

agents communicating only with their neighbours [29]. In the paper in which this method

was proposed, [29], this estimator was then used to formulate a gradient controller to maintain

connectivity in a network of mobile agents, with multiple leaders. In this Chapter, we will show

that by direct control of the edge weights, the algebraic connectivity estimator may be utilised in

conjunction with a suitable weight adaptation law to solve a number of decentralised constrained

connectivity optimisation problems.

4.1 Algebraic Connectivity Maximisation

We begin by looking at the following optimisation problem: maximising the algebraic connectivity

of a weighted undirected graph, subject to constraints on the edge weights. We choose to bound

the region of feasible edge weights by adding two constraints: non-negativity of the edge weights

and upper bounds on the weighted degrees of nodes, the diagonal entries of L, l i,i. Maximum

allowed weighted degrees κi ∈ R>0 are chosen to model a group of individual agents, making

decisions on allocating their own resources, of which they have a limited amount. Non-negativity

is chosen to bound the feasible set of edge weights W , such that W is the compact convex set,

(4.1) W = {w : w≥ 0∩ l i,i ≤ κi,∀i}

corresponding to a polytope in the positive orthant of Rm, which guarantees that λ2 > 0 for

connected graphs.
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Setting this problem in the standard form of a continuous optimisation problem, we have:

(4.2)
maximise

w
λ2

(
L(w)

)
subject to w ∈W

The problem is a convex optimisation problem, and can be formulated as a semidefinite

program [77] for efficient numerical computation by using, for example, a primal-dual interior

point method [103]. It can be seen that the optimisation problem (4.2) is equivalent to the

following formulation:

maximise
w

γ(4.3)

subject to X=L(w)+β11T −γIº 0,

w ∈W , γ,β ∈R

This is because X is a matrix with eigenvalues nβ−γ,λ2−γ,λ3−γ, . . . ,λn−γ: the addition of β11>

to L which has λ1 = 0, with associated eigenvector v1 = 1, increases the value of this eigenvalue

by nβ; and the subtraction of γI reduces the value of all eigenvalues of L by γ. This result is due

to the fact that the matrices L, 11T , and I are simultaneously diagonalisable by the matrix V,

being the matrix of column eigenvectors of L .

The quantity β is a free variable, controlling the eigenvalue of the consensus mode, which

when greater than λ2
n makes the eigenvalue associated with the Fiedler vector, λ2−γ, the smallest

eigenvalue of X. Then, maximising the variable γ, under the restriction that λ2 −γ> 0, induces

maximisation of λ2.

Note that the feasibility region can also be included in a linear matrix inequality (LMI), using

a block diagonal formulation. Then the optimisation problem can be formulated as the eigenvalue

problem (EVP) [104]:

maximise
w

γ

subject to Y=


L(w)+β11T −γI 0 0

0 diag(w) 0

0 0 diag(κ)−diag(L(w))

º 0,(4.4)

β= const.> miniκi

n−1

The pressing open problem is to find a strategy to perform such an optimisation on-line and

in a distributed manner, as opposed to the centralised optimisation strategies employed for the

efficient solution of SDPs [105, 106, 107]. Then, edge weights can be modified continuously to

converge onto the optimal distribution by agents lacking knowledge of the entire network, solely

through communication with their neighbours.

To this end, we present two continuous-time update laws for the adaptation of edge weights.

The first weight update law is based on the method of steepest descent where the inequality
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constraints are enforced through the use of logarithmic barrier functions [108]. The second

method converges on the optimal edge weights through the satisfaction of the Karush-Kuhn-

Tucker (KKT) conditions [109, 110]. Each method has its own advantages and disadvantages: the

logarithmic barrier method guarantees that edge weights remain feasible for all time if initialised

in the feasible region, but is undefined if the edge weights are forced into the infeasible region by

an external factor1; satisfaction of the KKT system gives no such guarantee on the feasibility of

the edge weights in the transient response, but is more robust to both initialisation outside of the

feasible region, and to perturbations which may force edge weights into an infeasible regime.

4.2 Steepest Descent with Adaptive Logarithmic Barriers

Initially, we will assume that the algebraic connectivity and its partial derivative with respect

to the edge weights are known perfectly to all agents, before removing this assumption later in

Section 4.3. When λ2(L) is not simple, and the sensitivity of the algebraic connectivity with respect

to the edge weights ∂λ2
∂wi, j

is not well defined, we instead take the minimum of the sub-differential.

This strong assumption will be relaxed later, in subsequent chapters.

To find an on-line solution to the constrained optimisation problem, (4.2), we instead per-

form an unconstrained optimisation by steepest descent on a modified objective function F(w)

incorporating the inequality constraints into the objective function through the addition of loga-

rithmic barrier functions. Typically, the value of a barrier function, say Φ(·), rapidly and smoothly

approaches +∞ as an inequality constraint is encroached upon, and is evaluated at +∞ when

breached. A logarithmic function may be employed to achieve this purpose as discussed in [108]:

for a generic inequality, say g(w)≤ 0, such a logarithmic barrier function may be defined as:

(4.5) Φ(w, q)=
− 1

q log(−g(w)) if g(w)< 0

+∞ otherwise

where the variable q > 0 controls the severity of the barrier terms. Incorporating the inequality

constraints as expressed in (5.64), the modified objective function we wish to minimise then

becomes:

F(w, q)=−λ2(L)+Φ1(w, q)+Φ2(w, q)(4.6)

where the two logarithmic barrier functions are given by:

Φ1(w, q)=−1
q

m∑
i=1

log(wi), w≥ 0, else,Φ1 =∞(4.7)

Φ2(w, q)=−1
q

n∑
i=1

log(κi − l i,i), l i,i ≤ κi, ∀i, else,Φ2 =∞(4.8)

1For example, the maximal allowable weighted degree κi of a node could fall due an external disturbance.
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Φ1 enforces the non-negativity weight constraints, and Φ2 enforces the constraint on the max-

imum allowable weighted degrees. We will first state some simple results that hold for any

q > 0.

Lemma 4.1. F(w, q) is finite valued for w ∈ int(W ) and evaluates to +∞ for w ∈W c, the closure

of the complement of the feasible set.

Proof. For w ∈W , λ2(L) is finite. As are Φ1(w, q), Φ2(w, q),∀w ∈ int(W ). Thus F(w, q) is finite for

all w ∈ int(W ). For w 6∈ int(W ), then at least one barrier function must evaluate to +∞ from the

definition of logarithmic barrier functions given in (4.7)-(4.8).

Lemma 4.2. F(w) is strictly convex in int(W ).

Proof. It is known that λ2(L) is a concave function of edge weights; −λ2(L) is convex. Also, the

sum of all logarithmic barrier functions is strictly convex, over the region int(W ), where second

order derivatives are properly defined. Thus the objective function, a sum of convex and strictly

convex functions, must be strictly convex.

Theorem 4.1. For any fixed q > 0, there exists a unique global minimum of F(w, q) with minimiser

w∗(q) ∈ int(W ).

Proof. From Lemma 4.1, the objective function can be lower bounded by some finite value, say

z(q), which is the largest scalar satisfying z(q)≤ F(w, q), ∀w. Then z(q) is a minimum of F(w, q),

and the minimiser is in int(W ). By Fermat’s theorem [111], any extremum of a differentiable

function is a critical point; the minimiser w∗(q) : F(w∗, q)= z(q) is then a critical point such that
∂
∂w F(w∗, q)= 0. And by strict convexity of the objective function, Lemma 4.2, any minimum of

the function is indeed global and unique.

Now, a simple gradient descent law can be applied to the edge weights so that they adapt

towards this global minimum for any positive constant q and positive control constants a and c1.

For example, and without loss of generality, we choose:

ẅ=−ka
∂

∂w
F(w, q)− c1ẇ, a > 0, c1 > 0(4.9)

which indeed has one stationary point as the unique minimiser,

w=w∗(q) s.t. ẅ= ẇ= 0 yields
∂

∂w
F(w∗, q)= 0(4.10)

Note 4.1. Note that we use second order dynamics here, treating the weight vector w as a point

mass in the feasible region W , forced down the slope of the potential well of the objective function in

the direction of steepest descent. Energy in the system is dissipated through the damping coefficient

c1, which effects a drag on the point mass. It would also be entirely reasonable to use first order

dynamics, but it was found that second order dynamics performed better (both converging faster
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and giving greater flexibility in tuning the control constants) in simulation. The use of second

order dynamics here can be seen to be an application of the heavy ball with friction method [112,

113, 114], which can offer significant acceleration over steepest descent optimisation methods

[115].

Before proving the stability of the weight update law (4.9), we investigate how the location

of the minimiser, w∗(q), changes as the strength of the logarithmic barrier functions is altered,

through varying q.

4.2.1 The Location of w∗(q)

The location of the minimiser w∗(q) may be calculated directly from (4.10). Finding the partial

derivative of the objective function,

F(w, q)=−λ2(L)− 1
q

(
m∑

i=1
log(wi)+

n∑
i=1

log(κi − l i,i)

)
(4.11)

with respect to the ith edge weight, yields:

∂

∂wi
F(w)=− ∂

∂wi
λ2(L)− 1

q

m∑
j=1

∂

∂wi
log(w j)− 1

q

n∑
j=1

∂

∂wi
log(κ j − l j, j)

=− ∂

∂wi
λ2(L)− 1

q

(
1

wi
−

n∑
j=1

∂
∂wi

l j, j

κ j − l j, j

)
(4.12)

It can be seen that in (4.12), the barrier functions are entirely local to each edge; the only

information required by each edge is its own weight, and the current weighted degree and

maximum degree of its two incident nodes. Equation (4.12) also reveals that the minimiser w∗(q)

must be such that the gradient of λ2(L) is perfectly balanced by the gradients of the barrier

functions, as can be schematically seen in Figure 4.1, so that for all wi:

(4.13)
∂F(w)
∂wi

∣∣∣∣
w∗

=− ∂

∂wi
λ2(L)− 1

q

(
1

wi
−

n∑
j=1

∂
∂wi

l j, j

κ j − l j, j

)
= 0

This relation fully determines the location of the stationary point w∗ dependent upon q, the

severity of the barrier functions.

At this point, it is prudent to characterise how the distance from w∗ to the asymptote

representing the limiting inequality constraint changes as a function of q.

Lemma 4.3. As q →∞, the stationary point w∗(q) asymptotically converges onto an asymptote of

the barrier functions,
∑

iΦi(w).

Proof. We have already shown that w∗ is the argument at which the gradient of −λ2(L) exactly

balances the gradient of the sum of all barrier functions. This is equivalent to saying that w∗ is
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the argument at which λ2(L) is tangent to the sum of all barrier functions and some constant c

such that the tangential point exists,
∑

iΦi(w)+ c, see Figure 4.1.

Then, it is clear to see that there can be only one w∗ and this w∗ must always exist as λ2(L)

is concave and
∑

iΦ(w) is a smooth, strictly convex function with gradient spanning the entire

vector space Rm.

The gradient of the barrier functions with respect to wi at any given point is inversely

proportional to the value of q,

(4.14)
∂

∂wi

∑
j
Φ j(w)= 1

q

(
n∑

j=1

∂
∂wi

l j, j

κ j − l j, j
− 1

wi

)

thus, for any positive gradient ∇λ2(L)> 0, as q−1 becomes small, we require

(4.15) ∀i,∃ j :
∂
∂wi

l j, j

κ j − l j, j
→∞

That is each edge weight must tend towards a limit enforced by at least one of the inequality

constraints l j, j ≤ κ j, for which it is at least partly responsible, ∂l j, j
∂wi

6= 0. Each edge weight tends

to the bound of at least one asymptote, and ∃ j : l j, j → κ j as q →∞; at least one node must be a

choking point for each weight. This is also apparent as λ2(L) is a non-decreasing function of edge

weights.

Lemma 4.4. As q →∞ the stationary point w∗ tends towards wopt, the maximiser of λ2(L(w)),

∀w ∈ intW .

Proof. From Theorem 4.1, we know that the stationary point w∗ is the unique global minimiser of

F(w, q). Considering the case when q−1 becomes very small, the objective function F(w) becomes

∑
Φ(w, q)+ c

λ2(L)

w w∗ l i,i = κi

Figure 4.1: Graphical representation of the one-dimensional case, illustrating w∗ as the argument
at the tangent of the sum of barrier functions and λ2(L). As the barrier function becomes vertically
compressed by the increase of q, w∗ must move towards the asymptote at positive w.
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dominated by the term −λ2(L(w)) on the interior of the feasible set. Yet on the boundary of

the feasible set, w ∈ ∂W , the barrier terms do not diminish as they evaluate to +∞. Therefore,

for diminishingly small q−1 the global minimum of the objective function F(w, q) tends to the

minimum of −λ2(L(w)) ∀w ∈ int(W ). That is, the minimiser of F(w, q), w∗(q), tends towards

the maximiser, wopt, of λ2(L(w)) subject to strictly satisfying the non-negativity and bandwidth

constraints, l i,i ≤ κi, as q becomes large.

4.2.2 Stability of the weight adaptation law with fixed q

Now that the location of the minimiser w∗ has been established in (4.13), a Lyapunov stability

analysis may be carried out to prove the convergence of w towards the minimiser w∗.

Theorem 4.2. The adaptation algorithm (4.9) guarantees that

(4.16) lim
t→∞w=w∗

Proof. The objective function we wish to minimise can be seen as a potential well, with a global

minimum of F(w∗), located at w=w∗. We can then define a Lyapunov function for the system

governed by Equation (4.9) in terms of the displacement from the minimiser. Defining the edge

weight displacement (error from the minimiser) ψ = w−w∗, so that ψ̇ = ẇ, ψ̈ = ẅ, a valid

Lyapunov function is:

(4.17) V (ψ,ψ̇)= ka(F(ψ+w∗)−F(w∗))+ 1
2
||ψ̇||22

which is positive definite and radially unbounded. Differentiating with respect to time we find:

(4.18)

V̇ (ψ,ψ̇)= ψ̇T · ∂V (ψ,ψ̇)
∂ψ

+ψ̈T · ∂V (ψ,ψ̇)
∂ψ̇

= kaψ̇
T ·∇F(ψ+w∗)+ψ̈T ·ψ̇

= kaψ̇
T ·∇F(ψ+w∗)−kaψ̇

T ·∇F(w)− c1ψ̇
T ·ẇ

=−c1||ψ̇||22

which is negative semi-definite, for c1 > 0. Applying the Krasovskii-Lasalle principle [116], we

observe the set,

S = {(ψ,ψ̇) : V̇ (ψ,ψ̇)= 0}= {(ψ,ψ̇) : ψ̇= 0}

contains no trajectories of the system aside from the trivial trajectory (ψ,ψ̇)= 0. If at some point

in time ψ̇= 0 and ψ 6= 0 (w 6=w∗) then by (4.9), ψ̈ 6= 0 and the trajectory will leave the set S.

This satisfies all conditions of the Krasovskii-Lasalle principle, hence the system is asymptot-

ically stable on ψ= 0, w=w∗.
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Figure 4.2: A small, undirected graph with 6 nodes and 7 edges.

Example 4.1. Now that convergence of the weight adaptation law has been proven for fixed q, we

present a simple example on a small, randomly chosen, undirected graph, illustrated in Figure 4.2,

with edges colour-coded.

Arbitrarily chosen weighted degree constraints are enforced on the nodes:

κ= [2,3,2,4,5,2]T

The static barrier algorithm is run, discretised for the purposes of simulation using the forward

Euler method, with a time step of 1×10−2, and the results are shown in Figure 4.3, with the effect

of increasing the parameter q on the algebraic connectivity in the steady state shown in Figure 4.4.

As q increases, the algebraic connectivity of the graph at w∗ tends towards the optimal value,

λ2(wopt)= 0.8, verified using the SDP formulation, (4.4), [77]. The trajectory that w∗ follows as q

increases, originates at the analytic centre of the optimisation problem, constraining the weights to

the feasible region W , and follows the path of centres towards the optimal solution of the problem

as q →∞, as can be seen in Figure 4.4.To illustrate the effect of changing the control parameters, the simulation is run again, in

Figure 4.5, with a lower damping value of c1 = 0.5. All other simulation parameters remain

constant at ka = 1, q = 10.
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Figure 4.3: Edge weights are modified in time using steepest descent with static logarithmic
barriers. The parameters for this simulation are given: ka = 1, c1 = 2, q = 10.
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Figure 4.4: Values of λ2 at t = 200 (when w has settled to w∗) for different values of q. Again,
ka = 1, c1 = 2.
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Figure 4.5: Running the simulation with a lower damping parameter on the edge weights, we see
that undesirable oscillations are present. It can be seen that the frequency of each edge weight
oscillation is different.
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4.2.3 Adaptive Logarithmic Barriers

In Lemma 4.4, it was shown that for w∗ to approach the solution of the optimisation problem,

wopt, we require that q →∞. However, it can be impractical simply to set q very large initially.

For example, in the numerical implementation of the algorithm, if q is very large, such that

the barriers are excessively steep, and ẇ is sufficiently large, the edge weights can move in one

time-step outside of the feasible region, where the gradient of the objective function is no longer

properly defined. To overcome this problem, we propose to adapt the severity of the penalty from

the barrier functions, increasing q as edge weights approach the critical point for any given q,

w→w∗(q); equivalently, ∇wF(w, q)→ 0.

Specifically, we propose the following adaptive method which increases the severity of the

logarithmic barriers, as the global minimum for given q is approached. Namely, we choose

(4.19) q̈ = kb

||∇F||2 +kd
− c2 q̇, q̇(0)= 0, q(0)= 1, kb,kd, c2 > 0

where the constant parameter, kd, limits q̈ by removing the singularity when the gradient of the

objective function becomes zero. The control parameters kb and c2 control the strength of the

driving force on q and its damping respectively. Note that (4.19) guarantees that, for positive

control parameters kb, c2 and kd, q(t) is a monotonically increasing function that grows without

bound. Intuitively, (4.19) can be seen as a dynamical system describing a mass resting on a

surface with viscous friction and a strictly positive, time-varying external force applied. Since

there is no mechanism to restore the position of the mass to a previously visited location, it is

apparent that q(t) is a monotonically increasing function diverging to +∞.

Lemma 4.5. The adapted value q(t) defined by (4.19) over the interval [0,∞) is a monotonically

increasing function diverging to +∞ as t →+∞.

Proof. It is sufficient to show that q̇(t) > 0, ∀t ∈ [0,∞) and that q(t) cannot be bounded from

above. For the first part of the claim, we use the substitution q̇(t)= r(t), and p(t)= kb
||∇wF||2+kd

:

ṙ(t)+ c2r(t)= p(t)> 0

Taking the Laplace transform,

R(s)= 1
s+ c2

r(0)+ 1
s+ c2

P(s)

r(t)= r(0)e−c2 t +{
e−c2 t}∗{

p(t)
}

As the convolution of two non-negative functions is also non-negative, we can write:

(4.20) r(t)> r(0)e−c2 t > 0 ∀r(0)≥ 0, t ∈ [0,∞)

hence q(t) is monotonically increasing. Now, for the purpose of contradiction, assume that q(t)

were bounded by some value qmax. As q(t) is a monotonically increasing function this would
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imply q(t) → qmax and q̇(t) → 0 as t →∞ . By the stability argument given in Theorem 4.2 for

fixed q, we reason that in the limit, ||∇F||2 → 0, thus q̈ becomes large and positive. Therefore,

q̇(t)��→0 contradicting the initial assumption that q(t) is bounded.

By combining the weight adaptation by direction of steepest descent, as described in (4.9) so

that w→w∗, with the adaptive logarithmic barrier severity given in (4.19), so that w∗ →wopt,

we can formulate an adaptive weight update law that causes edge weights to converge on the

solution to the optimisation problem.

Theorem 4.3. The adaptive algorithm for w given by (4.9) with the adaptive barrier weight q(t)

given by (4.19) guarantees that,

(4.21) lim
t→∞w=wopt

Proof. We can use a similar Lyapunov function to prove asymptotic stability onto the optimal

solution to the problem, wopt, for the case where the barrier weight q(t) is adapted according to

(4.19). We redefine the error ψ to be the difference between the current edge weights and the

optimal edge weights ψ=w−wopt. The optimal edge weights are simply wopt = limq→∞w∗, in

accordance with Lemma 4.4. To keep with the normal definition of Lyapunov functions, we set

χ := 1
q , so that asymptotic convergence onto wopt occurs for χ→ 0. We consider the candidate

Lyapunov function defined as:

V (ψ,ψ̇,χ)= ka(F(ψ+wopt)−
−λ2(wopt)︷ ︸︸ ︷
F(wopt))+ 1

2
(||ψ̇||2)2 −kaχ

φ︷ ︸︸ ︷
min
γ∈W

{(
Φ1(γ)+Φ2(γ)

)}
(4.22)

= ka

(
λ2(wopt)−λ2(ψ+wopt)+χ

(
Φ1(ψ+wopt)+Φ2(ψ+wopt)−φ

))+ 1
2

(||ψ̇||2)2(4.23)

which is positive definite2 for χ≥ 0 and V (0)= 0. Differentiating with respect to time, we find:

V̇ (ψ,ψ̇,χ)= ψ̇T · ∂V (ψ,ψ̇,χ)
∂ψ

+ψ̈T · ∂V (ψ,ψ̇,χ)
∂ψ̇

+ χ̇∂V (ψ,ψ̇,χ)
∂χ

= kaψ̇
T ·∇F(ψ+wopt)−kaψ̇

T ·∇F(ψ+wopt)− c1(||ψ̇||2)2

· · ·+kaχ̇
(
Φ1(s+wopt)+Φ2(s+wopt)−φ

)
=−c1(||ψ̇||2)2 +kaχ̇

(
Φ1(ψ+wopt)+Φ2(ψ+wopt)−φ

)
(4.24)

From our conclusions that q(t) is a monotonically increasing q̇ > 0, non-negative function,

where q̇��→0, it is clear that χ̇≤ 0:

dχ
dt

= dχ
dq

dq
dt

=− 1
q2 q̇ ≤ 0, ∀t ≥ 0(4.25)

We have also chosen φ such that
(
Φ1(ψ+wopt)+Φ2(ψ+wopt)−φ

)≥ 0, ∀ψ, thus V̇ is negative

semi-definite.
2Subtraction of the (possibly negative) constant φ ensures the positive definiteness of V .
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Again, we can appeal to the Krasovskii-Lasalle priniciple, as the system is autonomous.

Specifically, we consider the set where the derivative of the Lyapunov function is zero:

S = {
(ψ,ψ̇,χ) : V̇ (ψ,ψ̇,χ)= 0

}
≡ {

(ψ,ψ̇,χ) : ψ̇= 0,χ= 0
}

(4.26)

We observe that S contains no trajectories of the system save the trivial trajectory (ψ,ψ̇,χ)= 0.

As before, ψ̈ 6= 0, ∀ψ 6= 0, so any point defined by ψ̇= 0, χ= 0, ψ 6= 0 leaves the set S, fulfilling

the conditions of the Krasovskii-Lasalle principle. Therefore, the system is asymptotically stable

on ψ= 0, χ= 0, w=wopt.

Example 4.2. We now numerically implement the adaptive barrier algorithm using the same

example graph and degree constraints as illustrated in Example 4.1; results are presented in

Figures 4.6 and 4.7. Again, for the simulation, the continuous time equations are discretised using

the forward Euler method and time step of 1×10−2. An interesting feature to note is that the

weight w7 has gone to zero, therefore the algorithm is suggesting that the edge {5,6} is redundant

and can be removed from the network with no loss to algebraic connectivity. Figure 4.8 shows

the graph and its optimal edge weights; it is evident that nodes 2, 3, 4, and 6 are the limiting

nodes (bottlenecks) due to bandwidth constraints. Such bounds would need to be relaxed for faster

average consensus under a linear regime.
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Figure 4.6: Edge weights change in time with dynamics dictated by the adaptive logarithmic
barrier algorithm. Parameters for this simulation are: ka = kb = 1, c1 = c2 = 2, kd = 0.01, q(0)= 10.
At t = 1000: w≈ [1.281, ,1.085,0.633,1.365,0.920,1.992,0.004]T , χ≈ 2.38×10−5.
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Figure 4.7: Evolution of the algebraic connectivity of the graph in time as weights are adapted.
The trajectory until t = 200 is shown, with λ2 at t = 200 being 0.7974 to 4 d.p. At t = 1000 the
connectivity has progressed to 0.7997 to 4 d.p. Algebraic connectivity approaches the optimal
value much more rapidly than the slowest edge weights, indicating that some edges play a far
more vital role in determining connectivity of the network.
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Figure 4.8: The state of the weighted graph at t = 1000 (near optimal). Line widths are propor-
tional to edge weights, the radius of the outer circle on each node is proportional to the maximum
allowable weighted degree, and the radius of the inner, filled circle is proportional to the current
weighted degree. Completely filled circles indicate that the node is a throttle on the connectivity
of the network.
It can be seen in Figure 4.8 that each edge has at least one incident node that is a throttle in
accordance with Lemma 4.3. It can also be clearly be seen that the edge weight w7 has tended
to zero implying the edge {5,6} is redundant. Furthermore, it is evident that node 5 has a great
deal of spare capacity, while its neighbouring nodes are all bottlenecked. In a scenario where we
could design the maximum allowable weighted degree at each node, it would prove beneficial to
increase weighted degree at nodes 3,4 and 6, at the expense of node 5.
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To compare the effect of changing the parameters kb and c2, we run the same simulation again

first with ka = 1,kb = 0.2, c1 = c2 = 2,kd = 0.01 and q(0)= 10, and secondly with ka = 1,kb = 1, c1 =
2, c2 = 0.5,kd = 0.01 and q(0)= 10. All other simulation parameters remain constant.
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Figure 4.9: It can be seen that reducing the control parameter kb has the effect of slowing the
rate at which q grows, and hence edge weights approach the optimal values more slowly.
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Figure 4.10: By reducing the control parameter c2, damping on the severity of the logarithmic
barriers is reduced, and thus q may grow much more quickly. This is reflected in the edge weights
approaching optimal values more rapidly. However, for the same reason that q cannot be set
immediately very high in the static logarithmic barrier case, making c2 too small can result in
numerical problems, such as edge weights leaving the feasible region.
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4.3 Distributed implementation

It can be seen in Equations (4.9) and (4.19) that in the adaptation law, not all variables are local

to each edge and node. Specifically the partial derivative of the algebraic connectivity, ∂λ2
∂wi

, is a

function of all edge weights in the network, and this variable appears as part of ∂
∂w F(w,q) in

Equation (4.9), and || ∂
∂w F|| in Equation (4.19), which determines, q, the severity of the logarithmic

barriers.

Therefore, to implement this algorithm in a fully decentralised manner, decentralised esti-

mates of the derivative of the algebraic connectivity and the severity of the logarithmic barriers

q must be made. One possible solution so that a decentralised estimate of || ∂
∂w F|| need not also

be made, is to associate with each edge {i, j} an individual q{i, j}, which grows as a function of the

local derivative of |∂F(w,q)
∂w{ i, j} |. As such, we now have:

(4.27) q̈{i, j} =
kb∣∣∣∂F(w,q)

∂w{i, j}

∣∣∣+kd

− c2 q̇{i, j}, q̇{i, j}(0)= 0, q{i, j}(0)> 0, kb,kd, c2 > 0

with ∂F(w,q)
∂w{i, j}

, as given previously in Equation (4.12). These local q{i, j} dynamics can be seen as

a local analogue to Equation (4.19). The only term in ∂F(w,q)
∂w{i, j}

, in (4.9) and (4.27) which remains

a function of all edge weights, and hence non-local, is the partial derivative of the algebraic

connectivity with respect to each edge weight. Previously it was shown in Section 3.3.1 and its

subsections, that a local estimate of this quantity can be made using the decentralised algebraic

connectivity estimator of [29]. Henceforth, we can implement this decentralised algebraic con-

nectivity estimator, replacing the function ∂λ2
∂w{i, j}

, with the local estimate (ai−a j)2

nya◦2 ,i
from (3.20) and

the fully decentralised system (3.15). Note that as we are only interested in the direction of the

gradient of λ2, the denominator of the estimate (3.20) may be omitted. Substituting (3.15) and

(3.20), into (4.27) and (4.9), we arrive at the complete set of fully decentralised equations:

(4.28)

ẅ{i, j} = ka

(
(ai −a j)2 + 1

q{i, j}

(
1

w{i, j}
− 1
κi −∑

k∈Ni w{i,k}
− 1
κ j −∑

k∈N j w{ j,k}

))
− c1ẇ{i, j}

q̈{i, j} =
kb∣∣∣∣(ai −a j)2 + 1

q{i, j}

(
1

w{i, j}
− 1

κi−∑
k∈Ni w{i,k}

− 1
κ j−∑

k∈N j w{ j,k}

)∣∣∣∣+kd

− c2 q̇{i, j}

ȧi =−k1 ya,i +k2
∑

j∈Ni

w{i, j}(a j −ai)+k3(1− ya◦2,i)ai

ẏa,i = kγ(ai − ya,i)+kP
∑

j∈Ni

w{i, j}(ya, j − ya,i)+kI
∑

j∈Ni

w{i, j}(za, j − za,i)

ża,i =−kI
∑

j∈Ni

w{i, j}(ya, j − ya,i)

ẏa◦2,i = kγ(a2
i − ya◦2,i)+kP

∑
j∈Ni

w{i, j}(ya◦2, j − ya◦2,i)+kI
∑

j∈Ni

w{i, j}(za◦2, j − za◦2,i)

ża◦2,i =−kI
∑

j∈Ni

w{i, j}(ya◦2, j − ya◦2,i)
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Example 4.3. In order to demonstrate the efficacy of the fully decentralised algebraic connectivity

maximisation system (4.28), we seek to adapt edge weights in a random network of n = 20 nodes,

where the weighted degree of each node may not exceed the total number of neighbours that each

node has: κi =∑
j∈Ni 1, and no edge weight may be negative. We initially choose each edge weight to

be equal to 1−ε, where ε<< 1, so that the initial edge weights are in the interior of the feasible set,

but total edge weight in the network may only increase by mε, which is small. Thus, we can be sure

that any increase in the algebraic connectivity of the network must be due to better distribution

of edge weight, rather than the absolute increase of their total value. Again, for this simulation

discretisation is performed using the forward Euler method, with a time step of 2×10−3.

When all edge weights are equal to 1, it is found that the algebraic connectivity λ2(t = 0) ≈
0.3344. Edge weights are then adapted according to the system governed by (4.28), and control

gains are chosen so that the PI consensus estimator layer (kP = 20, kI = 20, kγ = 5) converges

approximately 5 times faster than the algebraic connectivity estimator (k1 = 5, k2 = 1, k3 = 4),

and the algebraic connectivity estimator converges more quickly than the weight adaptation layer

(ka = 1, kb = 1, c1 = 1, c2 = 1, kd = 1×10−6).

This gives us sufficient separation in time scale between the layers.
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Figure 4.11: Edge weights are adapted according to (4.28) in an entirely decentralised manner to
maximise the algebraic connectivity of the network under the condition that no edge weights may
be negative, and the weighted degree of each node may not be greater than its (unweighted) degree.
In the diagrams showing the initial and end state of the network, node diameter is proportional
to maximum allowed weighted degree, κi, and edge thickness and colour is proportional to weight,
higher weights are redder and thicker.

As edge weights are adapted, shown in Figure 4.11, the algebraic connectivity initially decreases

until the estimator layers have properly converged, whereupon it increases rapidly, as the nadir

of the potential well of the objective function for a given set of qi, j is reached. Finally, as the qi, j

increase and the logarithmic barriers enforcing the feasible set become steeper, the edge weights

slowly converge to their optimal values, see Figure 4.11.
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It should be noticed that the algebraic connectivity converges more rapidly than the slowest

converging edges due to weak sensitivity of λ2 with respect to some edges. After 5000 seconds of

simulated time, the algebraic connectivity has reached a value of λ2(5000)≈ 0.3707, which is over

99.9% of the result for optimal λ2 found using the SDP method described in [77]: λ∗
2 ≈ 0.3708. At

this time, some of the edges have yet to converge, but it is known that three edges will tend to zero

value, and could be removed from the network at no detriment to the algebraic connectivity.

4.4 Weight adaptation to satisfy the KKT conditions

One of the major disadvantages of the previously described weight adaptation law is that the

gradients of the logarithmic barrier functions are not defined outside of the feasible set of edge

weights. This means that if a perturbation forces the edge weights outside of the feasible set,

the system cannot recover. A subtler disadvantage is that because all qi(t) are monotonically

increasing functions, the steepness of the barrier functions can only become more severe. This

means that there is a gradual stiffening of the system over time, and this means that without

a method for relaxing the barrier functions when topology changes in the network are rapid3,

we may run into a similar problem to setting the values of qi too large initially. To combat these

problems we will now investigate a second, complementary method for adapting the edge weights

on-line. The premise of this method is to design a dynamical system so that the stable equilibrium

point of the system satisfies the Karush-Kuhn-Tucker conditions, thus the stable equilibrium of

the system is the solution to the optimisation problem.

Recall that the optimisation problem, (4.2), is a convex, constrained optimisation problem of

the form:

(4.29)
minimize

w
f (w)

subject to g i(w)≤ 0∀i ∈ 1, . . . , p

where f (w)=−λ2(L(w)), and there are p = m+n affine inequality constraints, g i(w). The first

m constraints enforce the non-negativity of edge weights: g i(w) =−wi,∀i ∈ 1. . .m. The next n

constraints enforce the upper bound on the weighted degree of nodes: gm+i(w)= (∑
j∈Ni w{i, j}

)−
κi,∀i ∈ 1. . .n.

As an alternative to the adaptation law based on the use of logarithmic barrier functions

described in Section 4.2, here we consider the weight adaptation method based on the set of

ordinary differential equations,

ẇi =−∂ f (w)
∂wi

− 1
2

∑
j

∂g j(w)
∂wi

ν2
j(4.30,a)

ν̇ j = g j(w)ν j, ∀i ∈ 1, . . . ,m, j ∈ 1, . . . ,m+n(4.30,b)

3It may be interesting to explore this avenue, introducing a mechanism by which qi may decrease if a rapid
change in the geometry of the optimisation problem is detected.
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This system is designed so that the stable equilibrium point satisfies the first-order necessary

Karush-Kuhn-Tucker (KKT) conditions [109, 110, 105]. In this equation, the variables 1
2ν

2
j behave

as KKT multipliers, the dual variables, where the edge weights wi are the primal variables.

The first-order necessary KKT conditions for a local minimum w∗ are simply:

• Stationarity: ∇ f (w∗)+ 1
2
∑

j ∇g j(w∗)ν∗2
j = 0 which is equivalent to the stationarity of the

primal variables ẇ= 0 in Equation (4.30,a).

• Dual Feasibility: 1
2ν

∗2
j ≥ 0 for all j, which is trivially satisfied in our case as all ν j are real.

• Primal Feasibility: g j(w∗)≤ 0 for all j. If we assume that the primal variables are infeasible,

i.e. there is some g j(w) > 0, then ν j will not be stationary so long as ν j 6= 0. (In the case

that ν∗j = 0, g j(w∗)> 0, this stationary point is unstable.)

• Complementary slackness: g j(w∗) · 1
2ν

∗2
j = 0 for all j. This is equivalent to the condition

that g j(w∗)ν∗j = 0 which is simply stationarity of ν j, for all j in Equation (4.30,b).

Substituting the appropriate objective function and inequality constraints into (4.30,a)-

(4.30,b), we arrive at the weight adaptation law for solving the optimisation problem posed in

(4.2):

ẇ{i, j} =
∂λ2(w)
∂w{i, j}

+ 1
2
µ2

{i, j} −
1
2
ν2

i −
1
2
ν2

j , ∀{i, j} ∈ E(4.31)

µ̇{i, j} =−w{i, j}µ{i, j}, ∀{i, j} ∈ E(4.32)

ν̇i =
(( ∑

j∈Ni

w{i, j}

)
−κi

)
νi, ∀i ∈ V(4.33)

Note 4.2. For clarity we have chosen to split the m+n KKT multipliers, previously denoted by νi,

into the m multipliers governing the non-negativity of edge weights, labelling each with the edge

to which it is associated, i.e. µ{i, j}, and the n multipliers governing the weighted degree at each

node, labelled each according to its associated node, νi.

This set of coupled scalar equations can be represented in a more compact matrix differential

equation form, using the unoriented incidence matrix M (introduced previously in Chapter 2)

which happens to be equal to ∇wdiag(L), and componentwise multiplication and exponentiation

of vectors. Componentwise multiplication and exponentiation of vectors is designated using

Hadamard notation: a = b ◦c ⇔ ai = bi ci, ∀i, a = b◦c ⇔ ai = (bi)c, ∀i. The edge weights w{i, j}

and the variables µ{i, j} are collected in vectors according to an arbitrary labelling function, as

described previously in Chapter 2, Definition 2.7. The resulting set of equations in vector form

then becomes:
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ẇ= ∂λ2(w)
∂w

+ 1
2

(
µ◦2 −Mν◦2)

(4.34)

µ̇=−w◦µ(4.35)

ν̇= (M>w−k)◦ν(4.36)

This matrix representation of the system of coupled differential equations will prove to be

useful in further analysis.

Lemma 4.6. For the optimisation problem defined in (4.2) the first order necessary KKT conditions

are also sufficient.

Proof. Proof follows from the fact that the primal problem is convex and strictly feasible, thus

Slater’s condition holds. See [110] for details.

Theorem 4.4. The equilibrium point [w>
opt,µ

>
opt,ν

>
opt]

> is locally exponentially stable if ∇2λ2(wopt)<
0.

Proof. Consider the generic convex minimisation problem (4.29). If the inequality constraints

are such that g i(x)≤ 0, ∀i,x ∈X , and the primal feasible set X is convex and compact, f (x) is

strictly convex, there exists a unique optimal point xopt. At this point some r1 ≥ 1 constraints

will be tight (as f (x) is monotonically decreasing we can be sure that at least one inequality will

be tight), and some r2 ≥ 1 inequality constraints may be slack (there must be at least one slack

inequality; by contradiction, if all were tight then wopt = 0 and thus λ2 = 0 which is infeasible).

We can divide these tight and slack inequalities into strict inequalities p j(x)< 0 and equality

constraints h j(x)= 0 by redefining:

∀i s.t. g i(xopt)= 0,h j(x), g i(x), j = 1, . . . , r1(4.37)

∀i s.t. g i(xopt)< 0, p j(x), g i(x), j = 1, . . . , r2(4.38)

Now the equivalent optimisation problem can be formulated:

minimize
x

f (x)(4.39)

subject to hi(x)= 0,∀i = 1. . . r1

pi(x)< 0,∀i = 1. . . r2,

where r1 + r2 = m+1

The solution to this optimisation problem can be obtained from the following set of ODEs:

ẋ=−∂ f (x)
∂x

− 1
2

∑
i

∂hi(x)
∂x

α2
i −

1
2

∑
i

∂pi(x)
∂x

β2
i(4.40)

α̇=h(x)◦α, α(t = 0)> 0(4.41)

β̇=p(x)◦β, β(t = 0)> 0(4.42)
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Linearisation of the system about the optimal point where, x̃= x−xopt, α̃=α−αopt, β̃=β−βopt,
is: 

˙̃x
˙̃α
˙̃β

≈J0


x̃
α̃

β̃

(4.43)

J0 =


−∇2 f (x)− 1

2
∑

iα
2
i ∇2hi(x)− 1

2
∑

iβ
2
i ∇2 pi(x) −(diag{α}∇h(x))> −(diag{β}∇p(x))>

diag{α}∇h(x) diag{h(x)} 0
diag{β}∇p(x) 0 diag{p(x)}

(4.44)

evaluated at x= xopt, α=αopt, β=βopt, which gives:

J0 =


−∇2 f (xopt)− 1

2
∑

iα
2
opt,i∇2hi(xopt) −(diag{αopt}∇h(xopt))> 0

diag{αopt}∇h(xopt) 0 0
0 0 diag{p(xopt)}

=
[

J1 0
0 J2

](4.45)

as βopt = 0 and h(xopt)= 0.

It is evident that this Jacobian matrix has a block diagonal structure, indicating the de-

coupling of the dual variables whose associated inequality constraints are slack at the optimal

point. Looking first at the J2 block, in the vicinity of the optimal point, the square root of the

(redundant) slack dual variables βi will decay to zero exponentially fast with rate constants

pi(xopt)< 0. That is, the ‘more slack’ the constraint is, the faster its dual variable will decay away.

The J1 block is more interesting and has the form:

J1 =
[

A −B
B> 0

]
(4.46)

A=−∇2 f (xopt)− 1
2

∑
i
α2

opt,i∇2hi(xopt)

B= (diag{αopt}∇h(xopt))>

In the vicinity of the optimal point, the primal variables x will converge to xopt exponentially fast

provided A is negative definite. This follows from the following Lemma.

Lemma 4.7. The matrix J1 =
[

A −B
B> 0

]
has eigenvalues with negative real part provided the

symmetric part of A is negative definite and B is full column rank.

Proof.

(4.47) det{J1}= det{A}det{B>A−1B}

It can be seen that det{A} 6= 0 as A is nonsingular, and thus A−1 exists. Furthermore, det{B>A−1B}

is only full rank if B is full column rank, i.e. B>B is invertible. Therefore, det{J1} 6= 0; J1 has no

zero eigenvalues.
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Considering the eigenvector equation J1vi =λivi, with vi , [xi
>,yi

>]>, we have:[
A −B

B> 0

][
xi

yi

]
=λi

[
xi

yi

]
(4.48)

Axi −Byi =λixi(4.49)

B>xi =λiyi(4.50)

Looking solely at Equation (4.50), we can see that if xi = 0, then either λi = 0, which we have

previously shown not to be true, or yi = 0, so that vi = 0 which is simply the trivial solution.

Therefore, we can conclude that for all eigenvectors of J1, xi 6= 0.

Now we drop the subscripts and assume that v is a unit eigenvector so that

λ= v∗J1v(4.51)

= [x∗,y∗]

[
A −B

B> 0

][
x
y

]
(4.52)

= x∗Ax−x∗By+y∗B>x(4.53)

= x∗Ax−x∗By+ (y∗B>x)>(4.54)

= x∗Ax−x∗By+x>By(4.55)

= x∗Ax−x∗By+x∗By(4.56)

= x∗Ax−2ℑ(x∗By) · i, i =
p
−1(4.57)

As x 6= 0 and the symmetric part of A is negative definite, ℜ(x∗Ax)< 0. This is the only contribu-

tion to the real part of the eigenvalue, thus J1 is a stable matrix.

Note 4.3. If f (x) and all hi(x) are convex, then it is apparent that A is negative definite only if

f (x) or any hi(x) is strictly convex near xopt. As all inequality constraints in this example are

affine, the condition that f (x) or any hi(x) is strictly convex near xopt simplifies to the necessary

and sufficient condition that ∇2λ2(wopt)< 0.

4.4.1 Enforcing Strict Convexity

In Note 4.3, it was discussed that we require λ2(w) to be strictly concave in the vicinity of the

optimal point for exponential convergence. However, −λ2(w) is not necessarily strictly convex.

To account for this we choose to minimise a modified function f (x) = (ζ−λ2(w))2, where ζ is a

constant, greater than λ2(wopt), so that the modified function is positive. It is apparent that

minimising (ζ−λ2(w))2 is equivalent to maximising λ2 when ζ−λ2 > 0, so the two optimisation

problems are equivalent.

In the following Lemma, we show that as ζ−λ2(w) is positive and convex (near wopt), then its

square will be strictly convex in the vicinity of the optimal point if that optimal point is distinct.
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Lemma 4.8. If f (x) is (not necessarily strictly) convex and positive, then f (x)2 is strictly convex

over non-flat regions.

Proof. f (x) is convex so Jensen’s inequality holds:

(4.58) f (θx1 + (1−θ)x2)≤ θ f (x1)+ (1−θ) f (x2), ∀θ ∈ (0,1)

Squaring both sides, so long as f (x) is non-negative, we can be sure that

(4.59) f (θx1 + (1−θ)x2)2 ≤ θ2 f (x1)2 +2θ(1−θ) f (x1) f (x2)+ (1−θ)2 f (x2)2, ∀θ ∈ (0,1)

But to prove that f (x)2 is strictly convex, we need to show that:

(4.60) f (θx1 + (1−θ)x2)2 < θ f (x1)2 + (1−θ) f (x2)2, ∀θ ∈ (0,1)

By considering the right-hand side of (4.59) and (4.60), strict convexity follows if the following

inequality holds:

θ2 f (x1)2 +2θ(1−θ) f (x1) f (x2)+ (1−θ)2 f (x2)2 < θ f (x1)2 + (1−θ) f (x2)2(4.61)

(θ2 −θ) f (x1)2 +2θ(1−θ) f (x1) f (x2)+ ((1−θ)2 − (1−θ)) f (x2)2 < 0(4.62)

θ(θ−1)( f (x1)− f (x2))2 < 0(4.63)

which clearly holds in the interval so long as f (x1) 6= f (x2).

Note 4.4. If f (x1) = f (x2), then there may be a manifold of optimal edge weights. In this case,

(ζ−λ2(w))2 will not be strictly convex in this region. Instead, the set of optimal points will be

a neutrally stable manifold for the set of ODEs, but local convergence to this manifold will be

exponentially fast.

Substituting in the altered objective function f (x)= (ζ−λ2(w))2 in Equation (4.29), we arrive

at the modified weight adaptation law which guarantees that the equilibrium point is locally

exponentially stable.

ẇ{i, j} =−∂(ζ−λ2(w))2

∂w{i, j}
+ 1

2

(
µ2

{i, j} +ν2
i +ν2

j

)
= 2(ζ−λ2(w))

∂λ2(w)
∂w{i, j}

+ 1
2

(
µ2

{i, j} +ν2
i +ν2

j

)
(4.64)

µ̇{i, j} =−w{i, j}µ{i, j}, µ{i, j}(0)> 0(4.65)

ν̇i =
( ∑

j∈Ni

wi, j −κi

)
νi, νi(0)> 0(4.66)
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where the collection of all ODEs for each node and edge may be written in the more compact

form:

ẇ= 2(ζ−λ2(w))
∂λ2(w)
∂w

+ 1
2

(
µ◦2 +Mν◦2)

(4.67)

µ̇=−w◦µ(4.68)

ν̇= (M>w−k)◦ν(4.69)

Observing the set of ODEs, Equations (4.64) to (4.66), it is clear to see that these are not fully

distributed. The function λ2(w) and its partial derivatives with respect to the edge weights are

global functions of all the edge weights. Thus to achieve a fully distributed strategy, we must make

distributed estimates of these functions. This is achieved again using the distributed algebraic

connectivity estimator from [29], as in Section 4.3, though we omit the full set of decentralised

equations for brevity.

Example 4.4. We now implement the KKT satisfaction weight adaptation system, as described in

(4.64) – (4.66), on the same weighted graph presented earlier in Figure 4.2, in order to maximise

the algebraic connectivity under the same set of constraints. Again, the distributed algebraic

connectivity estimator of [29], and presented in Chapter 3, is utilised with the same control

parameters: k1 = 6, k2 = 1, k3 = 5, kP = 20, kI = 10, kγ = 5, as in Examples 4.1 and 4.2. For

this example, it is chosen that νi(0) = 1,µ{i, j}(0) = 1,w{i, j}(0) = 1,ζ = 2. For this simulation, the

continuous time differential equations are again discretised using the forward Euler method with

a time step of 1×10−2.
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Figure 4.12: Edge weights are adapted using the second presented adaptation system (4.64) –
(4.66): that designed to satisfy the first order necessary KKT conditions for the solution to the
optimisation problem.
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The local exponential convergence of this method allows the optimal solution to be approached

more rapidly than in the adaptive logarithmic barrier method, which shows only local asymptotic

convergence. However, during the transient period before the dual variables µ{i, j} and νi have

properly settled, rapid oscillations occur, and this behaviour may be undesirable. In the next

section we will address how to improve the transient performance of the convergence of these dual

variables. Nevertheless, edge weights do eventually converge onto the optimal values, as can be

seen by comparing Figure 4.6 to Figure 4.12.

4.4.2 Improving Performance Using the Ramp Function

Using the original KKT satisfaction weight adaptation rule, Equations (4.30,a) and (4.30,b), we

have a choice to make on setting the initial values of the dual variables, ν j. One issue which

may be run into in implementation is that the dual variables νi decay away exponentially fast

when the constraints are slack, g i(w), even when they may not be slack at the optimal point,

g i(w∗)= 0. In practice, this means that initialising edge weights in the interior of the feasible

region means that dual variables may have decayed to very small quantities in the transient

period required for edge weights to reach the boundary of the feasible set. Thus, it may take an

equally long period of time for the dual variables to grow back in magnitude to appropriate levels

to satisfy the stationarity condition: ∇ f (w∗)+ 1
2
∑

j ∇g j(w∗)ν∗2
j = 0.

One solution is to add an extra growth factor to the dual variables when the primal feasibility

condition g i(w) ≤ 0 is breached. This can be achieved through the use of the ramp function

ramp(x) defined as:

ramp(x)=
x if x > 0

0 if x ≤ 0
(4.70)

Modifying the original KKT satisfaction weight adaptation rule ((4.30,a) and (4.30,b)) we

have:

ẇi =−∂ f (w)
∂wi

− 1
2

∑
j

∂g j(w)
∂wi

ν2
j(4.70,a)

ν̇ j = g j(w)ν j +ramp
(
g j(w)

)
, ∀i ∈ 1, . . . ,m, j ∈ 1, . . . ,m+n(4.70,b)

Now, when the feasibility constraint is breached g j(w)> 0, the variables ν j grow with a rate inde-

pendent from the current value of ν j (which may be small for the reasons discussed previously).

This alteration also means that the variables ν j may be initialised with a value of zero, ν j(0)= 0,

and thus the dual variables initially will cause no effect for edges initialised in the interior of the

feasible set, and until the adaptation of edge weights cause the boundary of the feasible set to be

reached.

Example 4.5. To illustrate the effect of the addition of the ramp function to the dynamics of the

dual variables, we again run the same simulation as described in Example 4.4, with the same
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control parameters and time step. Now however, edge weight and dual variable dynamics are

described by the following equations:

ẇ{i, j} = 2(ζ−λ2(w))
∂λ2(w)
∂w{i, j}

+ 1
2

(
µ2

{i, j} +ν2
i +ν2

j

)
(4.71)

µ̇{i, j} =−w{i, j}µ{i, j} +ramp
(−w{i, j}

)
, µ{i, j}(0)= 0(4.72)

ν̇i =
( ∑

j∈Ni

wi, j −κi

)
νi +ramp

( ∑
j∈Ni

wi, j −κi

)
, νi(0)= 0(4.73)
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Figure 4.13: With the addition of the ramp term, the transient response of the edge weights
is significantly improved. High frequency oscillations do remain, but these oscillations are
quickly damped out, and the optimal edge weights are approached very rapidly compared both to
the original KKT method, and the previously described logaritmic barrier method. All control
parameters remain the same as in Example 4.4, but now νi(0)= 0, and µ{i, j}(0)= 0.

The addition of the ramp term significantly improves the transient performance of the edge

weights, reducing high frequency oscillation amplitude, and making these undesirable oscillations

decay away faster. Furthermore, the edge weights converge much more rapidly on the optimal

values, when all other control parameters remain constant. It can be seen that the addition of

the ramp term maintains the local exponential stability of the equilibrium. Firstly, it can be

seen that position of the equilibrium is not changed, the complementary slackness condition still

governs the stationarity of the variables ν j. For ν̇ j = 0, either g j(w∗)= 0 or ν j = 0 and g j(w∗)≤ 0.

Secondly, we proved in Theorem 4.4 that the equilibrium point of the original system is locally

exponentially stable. The effect of the ramp term is to act like a one sided spring, pushing the

dual variables back in a direction that ensures that g j(w) ≤ 0; this acts as another avenue for

losing potential energy, and hence the oscillations are damped.
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4.5 Summary

In this Chapter, two edge weight adaptation methods were proposed so that a network may

self-organise its edge weights in order to maximise its algebraic connectivity: the second smallest

eigenvalue of the graph Laplacian. As we saw in Chapter 2, this eigenvalue can serve as a

measure of consensus speed in a network, and also as a measure of how strongly connected a

network is: the algebraic connectivity provides a lower bound on the minimum cut of a weighted

graph.

The first method proposed utilised logarithmic barriers to enforce the constraints on the

edge weights. These barriers were then adapted as the local minimum of the potential well was

reached, so that this minimum converged upon the solution to the optimisation problem. Edge

weights followed a second-order gradient descent algorithm in this potential well. The nature

of this method meant that if a feasible set of edge weights was chosen at initialisation, the

trajectories of edge weights would remain feasible for all time, barring any discontinuous change

in the feasible region. However, the method is not well-defined outside of the feasible region.

Thus, if any perturbation were to move the edge weights into an infeasible regime, the method

would fail.

This problem was addressed in the second method: a first order system designed so that the

sole stable stationary point of the system satisfied the KKT conditions. Unlike the first method,

this system is well defined outside of the feasible region, and does not suffer from the stiffening

caused by monotonically increasing severity of barrier functions. However, with this method,

there is no guarantee that edge weights will be feasible in the transient to the solution. As such,

both methods can be used to complement each other, depending upon the specific requirements of

an application.

The stability of each of the methods, assuming knowledge of the objective function and its

partial derivatives, was proven in this Chapter. However, for fully decentralised optimisation,

both methods, themselves, require decentralised estimates of the objective function (the algebraic

connectivity) and its partial derivatives with respect to edge weights. For this, the decentralised

algebraic connecitivity estimator presented in [29], and described in Chapter 3, was utilised.

It is required that this estimator converge faster than the weight adaptation layer so that the

estimates made can be treated as sufficiently accurate. The algebraic connectivity estimator

itself relies on two average consensus systems, which must converge sufficiently faster than

the algebraic connectivity estimator. Thus, for fully decentralised optimisation of the network’s

algebraic connectivity, a three-timescale multi-layer networked system is proposed. Each of the

layers, themselves, is proven to be stable in isolation given true values for the estimates made

in faster subsystems. However, stability of the joint system remains without rigorous proof. Of

particular interest is the question of what separation in time-scale is sufficient for the stability of

the joint decentralised optimisation system.

In the next Chapter, we look closely at this problem of separation of time-scales between the
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estimation and optimisation layers. First, we extend the algebraic connectivity estimator [29], so

that the spectral radius of the network may also be estimated, allowing the solution of further

interesting and useful network optimisation problems: including improving synchronisability, and

increasing robustness to time-delay in linear consensus. We then proceed to provide a rigorous

proof for the existence of a sufficient time-scale separation, under some moderate assumptions,

using techniques from singular perturbation theory.
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5
DECENTRALISED ESTIMATION AND CONTROL OF THE SPECTRAL

RADIUS

Previously we have looked at decentralised estimation and control of the algebraic connec-

tivity λ2, the smallest non-trivial eigenvalue of the graph Laplacian, using the method

presented in [29]. Further to this, the largest eigenvalue of the graph Laplacian, the spec-

tral radius λn, is also of critical importance in a number of applications: in the synchronisation of

nonlinear oscillators, the synchronisability ratio λn
λ2

must be less than a certain system dependent

threshold1, for local transversal stability of the synchronous solution to be achievable for any

coupling strength [12, 13]; in discrete time linear averaging the quantity max{|1−λ2|, |1−λn|} is

the exponent of the rate at which consensus is reached [77]; under simple linear consensus with

time-delay, the largest delay that can be tolerated is inversely proportional to λn [45]. As such, it

is important for a network of locally communicating and cooperating autonomous agents to be

able to make local estimates of the spectral radius to best achieve the desired performance of the

network.

In this Chapter, we show that the algebraic connectivity estimator presented in [29] can be

modified to obtain a decentralised estimator for the spectral radius. We then go on to perform

a detailed time scale separation analysis between the estimator system and the PI average

consensus subsystems, firstly showing that there exists a sufficient time scale separation for

exponential nearly global stability, then continuing the analysis to provide a sufficient condition

for local stability using tools from singular perturbation theory. We conclude the Chapter with

some simple motivating examples, utilising the weight adaptation laws presented in Chapter 4.

1This value is determined by the Master Stability Function, see Chapter 2, Section 2.3.4.

71



CHAPTER 5. DECENTRALISED ESTIMATION AND CONTROL OF THE SPECTRAL RADIUS

5.1 Estimation of the Spectral Radius

To estimate the spectral radius we propose to use the following reduced system:

ḃ=−k1

n
11>b+k2Lb−k3

(
b>b

n
−1

)
b(5.1)

Here, the vector b serves as an estimate for the eigenvector associated with the spectral radius.

The control variables k1, k2, and k3 each control the strength of a particular term: the first

term acts to deflate the consensus mode of the system; the second term forces the vector b away

from the origin, with the mode associated with λn dominating; and the final term provides a

restorative force when b>b > n so that b does not grow without bound under the action of the

second term.

Comparing this system to that used in [29] (and described in (3.7), Chapter 3, Section 3.3.1)

for estimation of the algebraic connectivity, we can notice a number of similarities. The action of

the first term again deflates on the consensus mode, and the third term again acts to normalise

the vector by providing a restorative force so that the vector b remains bounded, whilst forcing

the system away from the trivial stationary point at the origin. However, instead of the action

from the second term, dependent on L, being used to drive the system towards consensus so that

the slowest mode dominates (that associated with λ2), in (5.1) the second term on the right-hand

side provides a diverging force so that the fastest mode (associated with λn) dominates. Taking a

local view of the system, every node follows the update law,

(5.2) ḃi =−k1〈b〉−k2
∑

j∈Ni

w{i, j}(b j −bi)−k3(〈b◦2〉−1)bi

using the means 〈b〉 = 1
n

∑
i bi and 〈b◦2〉 = 1

n
∑

i b2
i , which are global functions. As in the algebraic

connectivity estimator, to carry out a decentralised estimation these means will need to be

estimated using local update strategies, and PI average consensus estimators [100] will be

employed to achieve this, as done in Section 3.3.1.1 and [29]. Firstly, however, we will analyse

the properties of the ideal system (5.1) (that with perfect estimation of the means 〈b〉 and 〈b◦2〉),
before coupling the PI consensus subsystems, and performing a time-scale analysis of the full

system. We show that under suitable conditions on the control parameters, k1 > k3 > 0, k2 > 0,

the sole stable equilibrium manifold is that associated with the spectral radius, and that this

equilibrium is almost-globally exponentially stable. The location of this equilibrium can be used

to infer the spectral radius of the graph Laplacian, and furthermore, under the condition that the

spectral radius is distinct so that its partial derivative with respect to the edge weights is well

defined, the partial derivatives ∂λn
∂wi, j

can also be determined.

Finally, we couple the spectral radius estimator to the edge weight adaptation law presented

in Chapter 4, and show that under certain assumptions, there exists a sufficient time-scale sepa-

ration to guarantee convergence between the edge weight adaptation subsystem, the eigenvalue

estimation subsystem, and the PI average consensus subsystems. This is accomplished using

results from singular perturbation theory [117, 118, 119].
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5.2 Stability of the Reduced System

5.2.1 Location of the Equilibria

Before analysing the stability of the equilibria of the reduced system, (5.1), it is first useful to

locate and classify the equilibria, and characterise their nature2. Taking the orthogonal matrix

V= [ 1p
n 1,v2, . . . ,vn] which diagonalises the graph Laplacian Λ=V>LV as a change of basis, the

system may be easily diagonalised using the transformation bd =V>b, yielding:

ḃd =
(
−k1

[
1 0>

0 0

]
+k2Λ+k3I

)
bd − k3

n
bdb>

d bd(5.3)

Each mode can be taken in turn, so that for the consensus mode bd,1, we have:

ḃd,1 =
(
k3 −k1 − k3

n
b>

d bd

)
bd,1(5.4)

which has stationary points at b∗
d,1 = 0 or when b∗>

d b∗
d = n(k3−k1)

k3
. Clearly, if k1 > k3, then this

second equilibrium point does not exist, and the first equilibrium point is globally exponentially

stable; the consensus mode will deflate.

Other modes follow equations of the form:

ḃd,i =
(
k3 +k2λi − k3

n
b>

d bd

)
bd,i(5.5)

for i = 2, . . . ,n

At a stationary point, for each of the non-consensus modes, either b∗
d,i = 0, or b∗>

d b∗
d =

n(k3+k2λi)
k3

. Thus, there is one equilibrium point located at the origin b∗
d = 0, and for each unique

eigenvalue λi there is also an associated equilibrium space such that b∗>
d b∗

d = n(k3+k2λi)
k3

, with

zero elements bd, j = 0 for all λ j 6=λi.

In the special case that λi has unitary multiplicity (λi is a distinct eigenvalue), the associated

equilibrium for this mode is a set of two points equidistant from the origin (a 0-sphere) given by:

b∗
d,i =±

√
n(k3 +k2λi)

k3
(5.6)

b∗
d, j = 0, ∀ j 6= i(5.7)

In the general case that the eigenvalue is not distinct λi = ·· · = λi+p, having algebraic

multiplicity p+1, then the associated equilibrium set of the corresponding mode is a p-sphere of

radius
√

n(k3+k2λi)
k3

defined by the set of solutions:

∑
k∈{i,...,i+p}

b∗2
d,k =

n(k3 +k2λi)
k3

(5.8)

b∗
d, j = 0, ∀ j ∉ {i, . . . , i+ p}(5.9)

2It will become apparent that not all equilibrium sets need be points, or sets of points, but may be continua in
higher dimensional manifolds.
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CHAPTER 5. DECENTRALISED ESTIMATION AND CONTROL OF THE SPECTRAL RADIUS

For example, for an eigenvalue of algebraic multiplicity two, then the associated equilibrium

set is simply a circle in the space spanned by its eigenvectors. When the algebraic multiplicity of

an eigenvalue is three, then the equilibrium manifold is the surface of sphere, and so on.

5.2.2 Stability of the Equilibria

Now that the equilibrium manifolds of the ideal spectral radius estimator have been located,

we can ascertain the local stability of each through linearisation. Importantly, it can be shown

that under the condition that the control parameters satisfy k1 > k3 > 0, k2 > 0, the only stable

equilibrium is that associated with the spectral radius of the graph Laplacian. To deduce global

stability results from the linearisation results, we use the fact the estimator is a gradient system,

as stated in the following Lemma:

Lemma 5.1. The system defined in Equation (5.1) is bounded, contains no periodic orbits, and

there exists at least one stable equilibrium.

Proof. We notice that the diagonalised system, Equation (5.3), is a real analytic gradient system

ḃd =−∇V (bd), where

V (bd)= 1
2

k1b2
d,1 −

1
2

k2

n∑
i=2

λib2
d,i −

1
2

k3

n∑
i=1

b2
d,i +

k3

4n

n∑
i=1

n∑
j=1

b2
d,ib

2
d, j(5.10)

As such, we can be sure that the system contains no periodic orbits, see [120] for further details.

Further to this, we can immediately see that the system is bounded, as for large bd the positive

quartic terms will dominate in (5.10) (assuming that k3 > 0). The Lyapunov-like potential function

V (bd) is quartic, thus, by continuity, there must exist a global minimum of the function, and this

critical point will be a stable equilibrium.

Now that it has been shown that at least one stable equilibrium set exists, we can use

linearisation to characterise the stability of each equilibrium set, and show that under appropriate

constraints on the control parameters, only the equilibrium set associated with the spectral radius

is stable. Thus, any trajectory not starting at an equilibrium must converge onto this set, and

moreover, convergence will be locally exponentially fast.

Theorem 5.1. If λn is a distinct eigenvalue, and the control parameters satisfy k1 > k3 > 0, k2 > 0,

the equilibrium set associated with λn, which consists of two distinct points,

b∗ =±vn

√
n(k3 +k2λn)

k3
(5.11)

is the sole stable equilibrium set. Moreover, any trajectory that does not originate at an equilibrium

will locally exponentially tend to one of these two points with a constant rate of convergence given

by:

c2 =−k2(λn −λn−1)(5.12)
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Moreover, if λn is not distinct, λn−p = ·· · = λn, having algebraic multiplicity p+1, then the sole

stable equilibrium manifold is given by the p-sphere:

b∗ =
n∑

i=n−p
αivi,

n∑
i=n−p

α2
i =

n(k3 +k2λn)
k3

(5.13)

Proof. Taking a small perturbation b̃d = b∗
d −bd, the system defined in Equation (5.3) can be

linearised about the equilibrium b∗
d, yielding:

˙̃bd ≈
(
−k1

[
1 0>

0 0

]
+k2Λ+k3I− k3

n
(
2b∗

db∗>
d + (b∗>

d b∗
d)I

))
b̃d(5.14)

In the simplest case where all eigenvalues of the graph Laplacian are distinct, and thus the

equilibria associated with each eigenvalue is a set of two distinct points (a 0-sphere), the equi-

librium bd,i associated to each mode of the linearised equation (5.14) will have one nonzero

element only at the ith position. Thus, the only non-diagonal term in Equation (5.14), 2b∗
db∗>

d ,

will simplify to a diagonal matrix with the value 2b∗2
d,i located at the (i, i) element, and zeros

elsewhere. Therefore, the linearised system is diagonal, and eigenvalues may be simply read off,

noting that b∗>
d b∗

d = b∗2
d,i = n(k3+k2λi)

k3
.

At the 1st equilibrium point (at the origin, bd = 0), the eigenvalues are:

{−k1 +k3,k3 +k2λ2, . . . ,k3 +k2λn}(5.15)

The eigenvalues at the ith equilibrium (i ∈ {2, . . . ,n}) are:{−k1 −k2λi,k2(λ j −λi)∀ j 6= i,−2(k3 +k2λi)
}

(5.16)

It can be seen that if k1 > k3, with k1,k2,k3 > 0, then all eigenvalues are negative only at the

nth equilibrium. Again, we stress that this corresponds to an equilibrium set of two distinct points

under the condition that λn is distinct, and thus each of these two points will be an exponentially

stable equilibrium point. For all other equilibria, there is at least one positive eigenvalue and

the points will be unstable. Therefore, in the case that all eigenvalues are distinct, almost any

trajectory will converge exponentially onto one of the two points in the nth equilibrium set.

When eigenvalues are not distinct, the analysis becomes somewhat more complicated. Con-

sider the nontrivial eigenvalue λi = ·· · = λi+p 6= 0 having multiplicity p+1, then the matrix

2b∗
db∗>

d in the linearised system (5.14), about any point on the p-sphere equilibrium, will not be

diagonal. It will however, be block diagonal, with all elements being zero except for the square

block between the (i, i) and (i+ p, i+ p) elements. Therefore, it is still simple to determine the

n− (p+1) eigenvalues which are not affected by this block:{−k1 −k2λi,k2(λ j −λi)∀ j ∉ {i, . . . , i+ p}
}

(5.17)

Thus, if there is any eigenvalue λ j larger than λi, the associated p-sphere equilibrium will be

unstable in at least one direction. By the fact that the system is a bounded gradient system,
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there must be at least one stable equilibrium, and through elimination we deduce that this is the

equilibrium associated with the spectral radius λn.

We therefore conclude that for a Laplacian where λn has multiplicity p+1, i.e. λn−p = ·· · =λn,

from any initial condition that is not in the equilibrium set, the trajectory will converge to the

p-sphere equilibrium defined by:

∑
i∈{n−p,...,n}

b∗2
d,i =

n(k3 +k2λn)
k3

(5.18)

b∗
d, j = 0, ∀ j ∉ {n− p, . . . ,n}(5.19)

Reversing the diagonal transformation, we find the stable equilibrium set for the system described

by Equation (5.1):

b∗ =
n∑

i=n−p
αivi,

n∑
i=n−p

α2
i =

n(k3 +k2λn)
k3

(5.20)

In the special case where λn is distinct, then b∗ simplifies to:

b∗ =±vn

√
n(k3 +k2λn)

k3
(5.21)

5.2.3 Use as an estimator

From this stable equilibrium, we see that b is an estimate for the eigenvector associated with

λn. In the case that λn is distinct (Assumption 5.1 holds) then b almost surely converges to the

associated eigenvector, while when λn is not distinct then b almost surely converges onto a vector

in the associated eigenspace3.

Whether distinct or not, the magnitude of b∗ is dependent on λn so by rearranging Equa-

tion (5.20) we have:

||b∗||22 =
n(k3 +k2λn)

k3
(5.22)

λn = k3

k2

( ||b∗||22
n

−1

)
(5.23)

and an estimate of λn can be obtained as:

λ̂n = k3

k2

( ||b||22
n

−1

)
(5.24)

3Under the assumption that the probability distribution on the set of initial conditions contains no delta functions.
For example, if the probability distribution on the initial condition were such that the intial condition b0 = 0 were
selected with some non-infinitesimal probability, then the estimator would then not converge almost surely onto the
stable equilibrium set, as 0 (though unstable) is a stationary point
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Estimates of the partial derivatives with repect to the edge weights ∂λn
∂w{i, j}

may also be obtained

using this estimator. Taking the eigenvalue equation for eigenvalue λ(w), with associated unit

eigenvector v̂(w), and taking the derivative with respect to the edge weight yields:

λv̂(w)=L(w)v̂(w)(5.25)

λ= v̂>Lv̂(5.26)

∂λ

∂w{i, j}
= ∂v̂>

∂w{i, j}
Lv̂+ v̂> ∂L

∂w{i, j}
v̂+ v̂>L

∂v̂
∂w{i, j}

(5.27)

As L is symmetric, this ensures that, for the unit eigenvector v̂:

∂v̂>

∂w{i, j}
Lv̂+ v̂>L

∂v̂
∂w{i, j}

=λ
∂(v̂>v̂)
∂w{i, j}

= 0(5.28)

Therefore,

∂λ

∂w{i, j}
= v̂> ∂L

∂w{i, j}
v̂= (v̂i − v̂ j)2(5.29)

Using Equation (5.29) and b
||b||2 as an estimate of the unit eigenvector vn, an estimate of the

partial derivative can be obtained as,

(5.30)
�∂λn

∂wi, j
= (bi −b j)2

||b||22
extending to λn the approach to estimate algebraic connectivity sensitivities described in Sec-

tion 3.3.1.2 and presented in [29].

5.3 Decentralised Spectral Radius Estimator

As for the algebraic connectivity estimator, the spectral radius estimator (5.1, 5.24) requires

access to the following global functions: the mean of the components of the estimator vector

〈b〉, and the mean of the components squared 〈b◦2〉. Again, a solution to fully decentralise the

estimator is to use local estimates for these means as provided by PI average consensus, as done

in Chapter 3 and [100].

In [100] and presented previously in Chapter 3, Section 3.3.1.1, it is shown that the arithmetic

mean of a vector, say u, can be estimated in a distributed way on a network, using the linear

system:

π̇u
i = kγ(ui −πu

i )+kP
∑

j∈Ni

w{i, j}(πu
j −πu

i )+kI
∑

j∈Ni

w{i, j}(ζu
j −ζu

i )

ζ̇u
i =−kI

∑
j∈Ni

w{i, j}(πu
j −πu

i )(5.31)

Here, we use the notation πu
i to designate the ith node’s proportional variable for estimating the

mean of the vector u, with ζu
i being the corresponding integrator variable.
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Note 5.1. This notation is introduced as we will need to use four PI average consensus systems

for estimating the means:

〈a〉 = 1>a
n

, 〈a◦2〉 = a>a
n

, 〈b〉 = 1>b
n

, 〈b◦2〉 = b>b
n

(5.32)

As such, the superscripts for the four PI consensus systems will be: a,a◦2, b, and b◦2, according to

each system. However, for the moment, we will recall some results about the generic PI system,

given in (5.31).

The collection of all agents proportional and integrator variable dynamics can be concisely

written as the matrix differential equation:[
π̇u

ζ̇
u

]
=

[
−kPL(w)−kγI −kIL(w)

kIL(w) 0

][
πu

ζu

]
+kγ

[
u
0

]
(5.33)

It can be shown that the stable equilibrium manifolds (provided kγ,kP ,kI > 0) for these systems

are:

πu,∗ = 11>u
n

(5.34)

ζu,∗ =−kγ
kI

L†(w)u+ 11>ζu(0)
n

(5.35)

where L†(w) is the Moore-Penrose inverse of the graph Laplacian:

L†(w),
(
L(w)− 11>

n

)−1

− 11>

n
(5.36)

Considering as input u and as output πu, there is an uncontrollable and unobservable mode

in the integrator variables for each PI average consensus estimator associated with the consensus

mode, 1>ζu(0), which does not have any effect on any other variables. Deflating the systems in

this mode through simultaneous diagonalisation, and removal of the zero rows/columns, then

results in a distinct equilibrium point. Let V(w) be the matrix of right eigenvectors of L(w) so that

L=V>(w)Λ(w)V(w). Because we know that the unit eigenvector associated with the consensus

mode is simply v1 = 1p
n , we can define an n× (n−1) matrix of the unknown unit eigenvectors

W(w):

(5.37) V(w)=
[

1p
n W(w)

]
and consequently perform the diagonalisation and truncation of the uncontollable/unobservable

mode:

πu
d =V>(w)πu, ζu

d =W>(w)ζu(5.38)
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so that, [
π̇u

d
ζ̇

u
d

]
=

[
−kPΛ(w)−kγI kIΛ

>
r (w)

−kIΛr(w) 0

][
πu

d
ζu

d

]
+kγ

[
V>(w)u

0

]
(5.39)

with Λr(w) being the truncated matrix, with the first row removed:

(5.40) Λr(w)=


0 λ2(w) 0 0 . . .

0 0 λ3(w) 0 . . .

0 0 0
. . .

...
... λn(w)


By Lemma 4.7, in Chapter 4, the system matrix of Equation (5.39) is Hurwitz. Thus, the

distinct, stable equilibrium point in the transformed variables is:

π
u,∗
d =

[1>up
n

0

]
(5.41)

ζ
u,∗
d =−kγ

kI
Λ−1

c,r(w)W>(w)u(5.42)

where the square matrix Λc,r(w) is the further truncated matrix (the first row and the first

column are removed):

(5.43) Λc,r(w)=


λ2(w) 0 0 . . .

0 λ3(w) 0 . . .

0 0
. . .

... λn(w)


Futhermore, it is shown in [100] that this equilibrium is globally exponentially stable uni-

formly in the input vector u.

Taking the ideal spectral radius estimator, as described in (5.1), and substituting into this,

the two PI average consensus subsystems for estimating the functions 〈b〉 and 〈b◦2〉 (5.31), we

arrive at the fully decentralised system:

(5.44)

ḃ=−k1w+k2Lb+k3b−k3b◦y

ẇ= kγb−kγw−kPLw+kILx

ẋ=−kILw

ẏ= kγb◦2 −kγy−kPLy+kILz

ż=−kILy

This set of ordinary differential equations describes the dynamics of the entire network, and

so we call this set the “macroscopic estimator equation”. To illustrate that this system is indeed
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fully decentralised, we may write the equations that the single node i follows, which we will call

the “microscopic estimator equation”:

(5.45)

ḃi =−k1wi +k2
∑

j∈Ni

w{i, j}(b j −bi)−k3 (yi −1)bi

ẇi = kγ(bi −wi)+kP
∑

j∈Ni

w{i, j}(w j −wi)−kI
∑

j∈Ni

w{i, j}(x j − xi)

ẋi = kI
∑

j∈Ni

w{i, j}(w j −wi)

ẏi = kγ(b2
i − yi)+kP

∑
j∈Ni

w{i, j}(yj − yi)−kI
∑

j∈Ni

w{i, j}(z j − zi)

żi = kI
∑

j∈Ni

w{i, j}(yj − yi)

Note 5.2. We are expanding the notation here so that: w , πb, is an estimate of the vector

〈b〉1= 1
n 11>b; x, ζb are the integrator variables for the first PI average estimator; y,πb◦2

, is

an estimate of the vector 〈b◦2〉1= 1
n 1b>b; and z, ζb◦2

, the integrator variables for the second PI

average estimator. This change of notation is performed to remove the previously used superscripts,

which will aid in the clarity of the following sections. However the reuse of the symbol w should

not be confused with the vector of edge weights: dependence of the graph Laplacian matrix on the

edge weights is supressed in the macroscopic equation, and wi and w{i, j} are sufficiently dissimilar

in the microscopic equation.

5.3.1 Sufficient Time Scale Separation via Linearisation

Now that we have substituted estimates for the global functions 〈b〉 and 〈b◦2〉 into the ideal

spectral radius estimator, it is pertinent to ask how fast the estimates need to be so that the

decentralised spectral radius estimator remains stable. To better phrase this question, we

introduce the variable ε, 1
kP

which controlls the relative speed of the spectral radius estimator

and the PI average consensus subsystems:

ḃ=−k1w+k2Lb+k3b−k3b◦y(5.46)

εẇ= kγ
kP

(b−w)−Lw+ kI

kP
Lx(5.47)

εẋ=− kI

kP
Lw(5.48)

εẏ= kγ
kP

(b◦2 −y)−Ly+ kI

kP
Lz(5.49)

εż=− kI

kP
Ly(5.50)

Clearly if the estimators are infinitely fast (ε= 0) then the estimates would converge onto

the true averages instantly, and Equation (5.46) reduces to the ideal spectral radius estimator,
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Equation (5.1). As usual in singular perturbation theory [117], this is referred to as the reduced

system, or the exact slow model.

Now, we know that the PI average consensus systems are exponentially stable on their

equilibrium points (Equation (5.34) and Equation (5.35)) uniformly in their input b, the reduced

system has an exponentially stable equilibrium point, the right-hand sides of Equations (5.46)-

(5.50) are differentiable in b, w, x, y, z, and the equilibrium points are isolated and differentiable

under the further assumption that the graph Laplacian has distinct eigenvalues. Then, due to the

theorem of Tikhonov (Chapter 7, Corollary 2.3 in [117]), there exists a sufficiently small ε∗ > 0,

such that for all ε≤ ε∗, the equilibrium point of the reduced system is an exponentially stable

equilibrium of the slow system.

We can employ linearisation analysis to find a sufficiently small ε in the vicinity of the

equilibrium point. Firstly we perform a substitution to shift the equilibrium point of the PI

average consensus estimators to the origin. The equilibrium points of the PI average consensus

subsystems (5.46-5.50) are thus:

(5.51)

w∗(b)= 11>b
n

x∗(b)=−kγ
kI

L†b

y∗(b)= 1b>b
n

z∗(b)=−kγ
kI

L†(b◦b)

and the equilibrium point of the reduced system is given by,

(5.52) b∗ =±vn

√
n(k3 +k2λn)

k3

so that,

(5.53)

w∗(b∗)= 0

x∗(b∗)=− kγ
kIλn

vn

√
n(k3 +k2λn)

k3

y∗(b∗)= 1
(

k3 +k2λn

k3

)
z∗(b∗)=−nkγ(k3 +k2λn)

k3
L†(vn ◦vn)

Note 5.3. We assume here that the initial condition of the integrator variables are zero, x(0)= 0,

z(0)= 0.
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Taking small perturbations about these points,

(5.54)

δb=b−b∗

δw=w−w∗

δx= x−x∗

δy= y−y∗

δz= z−z∗

results in the following linearised system:

(5.55)



δḃ
εδẇ
εδẋ
εδẏ
εδż

≈

J︷ ︸︸ ︷

k2L−k2λnI −k1I 0 −k3

√
n(k3+k2λn)

k3
diag(vn) 0

kγ
kP

I − kγ
kP

I−L kI
kP

L 0 0
0 − kI

kP
L 0 0 0

2 kγ
kP

√
n(k3+k2λn)

k3
diag(vn) 0 0 − kγ

kP
I−L kI

kP
L

0 0 0 − kI
kP

L 0





δb
δw
δx
δy
δz



This linear dual time-scale system can be analysed using singular perturbation theory for linear

time-invariant systems (Chapter 2, [117]). Specifically, using matrix norms of the blocks in the

Jacobian J of (5.55), a sufficient lower bound can be determined for ε∗. We can transform the

Jacobian into a more structured form using the transformation matrix which utilises the matrix V
which diagonalises the graph Laplacian matrix: Λ=V>LV. Specifically, we transform the matrix

J using the block diagonal matrix Z:

(5.56) Z=



V 0 0 0 0
0 V 0 0 0
0 0 V 0 0
0 0 0 V 0
0 0 0 0 V
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So that,

(5.57)

Z>JZ=



k2Λ−k2λnI −k1I 0 −k3

√
n(k3+k2λn)

k3
Q 0

kγ
kP

I − kγ
kP

I−Λ kI
kP
Λ 0 0

0 − kI
kP
Λ 0 0 0

2 kγ
kP

√
n(k3+k2λn)

k3
Q 0 0 − kγ

kP
I−L kI

kP
Λ

0 0 0 − kI
kP
Λ 0


=

[
A1,1 A1,2

A2,1 A2,2

]
A1,1 = k2Λ−k2λnI

A1,2 =
[
−k1I 0 −k3

√
n(k3+k2λn)

k3
Q 0

]
A2,1 =

[
kγ
kP

I 0 2 kγ
kP

√
n(k3+k2λn)

k3
Q 0

]>

A2,2 =


− kγ

kP
I−Λ kI

kP
Λ 0 0

− kI
kP
Λ 0 0 0

0 0 − kγ
kP

I−L kI
kP
Λ

0 0 − kI
kP
Λ 0


where Q=V>diag(vn)V. Using Lemma 2.2 from Chapter 2 of [117], we can find a sufficient bound

on ε∗:

(5.58) ε∗ = 1

||A−1
2,2||

(
||A0||+ ||A1,2|| ||A−1

2,2A2,1||+2
(
||A0|| ||A1,2|| ||A−1

2,2A2,1||
) 1

2
)

where,

(5.59)

A0 =A1,1 −A1,2A−1
2,2A2,1

=



−k1 −k2λn 0 . . . 0 0

0 k2(λ2 −λn) 0 0 0
... 0

. . . 0
...

0 0 0 k2(λn−1 −λn) 0

0 0 . . . 0 2(k3 +k2λn)


is the linearisation of the reduced system about its stable equilibrium associated with λn.

Upper bounds can be found for the matrix norms of the blocks A1,1, A1,2, A2,1, and A2,2 in

terms of the control parameters and eigenvalues of the graph Laplacian matrix:
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(5.60)

||A−1
2,2||2 ≤max

[
kP

kγ
,

k2
P

k2
Iλ

2
2

(
λ2

(
1+ kI

kP

)
+ kγ

kP

)]
||A0||2 =max

[
k1 +k2λn,2(k3 +k2λn)

]
||A2,1||2 ≤

√√√√4k2
γn(k3 +k2λn)

k2
P k3

+ k2
γ

k2
P
< kγ

kP

(
2

√
n(k3 +k2λn)

k3
+1

)

||A1,2||2 ≤
√

k2
1 +nk3(k3 +k2λn)< k1 +

√
nk3(k3 +k2λn)

These upper bounds can be used in conjunction with the norm inequality ||AB|| ≤ ||A|| ||B|| to

find a lower bound on ε∗ according to Equation (5.58).

5.4 Combination with Weight Adaptation

We are now ready to combine the algebraic connectivity estimator of [29], and the weight

adaptation law presented in Chapter 4, with the spectral radius estimator presented in this

Chapter. This allows us to, for instance, minimise the spectral radius of a weighted undirected

graph whilst maintaining a minimum algebraic connectivity, ensuring that the network remains

sufficiently well connected. This graph eigenvalue optimisation problem can be used for instance

to guarantee a specified robustness to time-delay in simple linear consensus with delay. When

the simple linear consensus protocol is affected by a homogeneous time delay of τ,

ẋ(t)=−L(w)x(t−τ)(5.61)

the spectral radius of the graph Laplacian becomes critically important to the stability of the

system. In a result from [45], it is shown that for the consensus solution to be stable, an upper

bound must hold on the spectral radius λn of the graph Laplacian, and consequently that a

network with lower spectral radius will be stable under longer time-delays. Specifically, it is

found that for consensus to be robust to the time-delay, the spectral radius of the graph Laplacian

must satisfy the following inequality:

λn < π

2τ
(5.62)

The eigenvalue optimisation problem Equations (5.63) and (5.64) also has the effect of

minimising the eigenratio λn
λ2

, also known as the synchronisability ratio, which has important

implications for the ability of coupled oscillators on a network to synchronise [13, 43, 12].

Specifically, we want to find a decentralised and distributed weight adaptation algorithm to

solve the following optimisation problem:
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minimize
w

λn(L(w))(5.63)

subject to λ2(L(w))−κ≥ 0(5.64)

w{i, j} ≥ 0 ∀{i, j} ∈ E

where κ> 0 is some mimimum required bound on the algebraic connectivity, ensuring that the

network remains connected.

According to the second weight adaptation law presented in Chapter 4, this convex optimisa-

tion problem can be solved through each edge weight obeying the following dynamics:

ẇ{i, j} =−∂(λn(w))2

∂w{i, j}
+ 1

2

(
µ2

{i, j} +
∂λ2(w)
∂w{i, j}

ν2
{i, j}

)
(5.65)

=−2λn(w)
∂λn(w)
∂w{i, j}

+ 1
2

(
µ2

{i, j} +
∂λ2(w)
∂w{i, j}

ν2
{i, j}

)
(5.66)

µ̇{i, j} =−w{i, j}µ{i, j}, µ{i, j}(0)> 0(5.67)

ν̇{i, j} = (κ−λ2(w))ν{i, j}, ν{i, j}(0)> 0(5.68)

where the collection of all ODEs for each node and edge may be written in the more compact

form:

(5.69)

ẇ=−2λn(w)
∂λn(w)
∂w

+ 1
2

(
µ◦2 + ∂λ2(w)

∂w
◦ν◦2

)
µ̇=−w◦µ
ν̇= (κ−λ2(w))ν

Note 5.4. The reason for why we are minimising the square of the spectral radius here is made

clear is to enforce strict convexity on the objective function. This is explained in greater detail in

Chapter 4, Section 4.4.1.

The global functions λ2(w),λn(w), and their partial derivatives ∂λ2
∂w and ∂λn

∂w , are estimated in a

decentralised fashion using the algebraic connectivity estimator described previously in Chapter

3 [29] and the spectral radius estimator described earlier in this Chapter. These distributed

estimators allow the following local estimates to be made at each node i:

λ̂2
(i) = k3

k2

(
1−πa◦2

i

)
(5.70)

á∂λ2(w)
∂w{i, j}

(i)

= (ai −a j)2

nπa◦2

i

(5.71)

λ̂n
(i) = k3

k2

(
πb◦2

i −1
)

(5.72)

á∂λn(w)
∂w{i, j}

(i)

= (bi −b j)2

nπb◦2

i

(5.73)
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using the earlier notation for the general PI average consensus estimators. Each edge {i, j} has

access to both the local variables at node i and at node j, thus it is possible to obtain local

estimates of these functions. So as not to bias one parent node over the other, we choose to use

the mean of the consensus variables from i and j when either would do, as we expect consensus

to be reached. Specifically, we have:

λ̂2
(i, j) = k3

k2

1−
πa◦2

i +πa◦2

j

2

(5.74)

á∂λ2(w)
∂w{i, j}

(i, j)

= 2(ai −a j)2

n(πa◦2

i +πa◦2

j )
(5.75)

λ̂n
(i, j) = k3

k2

πb◦2

i +πb◦2

j

2
−1

(5.76)

á∂λn(w)
∂w{i, j}

(i, j)

= 2(bi −b j)2

n(πb◦2

i +πb◦2

j )
(5.77)

Substituting these local estimates into the weight optimisation layer (Equations (5.66) to (5.68)),

we finally accomplish the goal of formulating an entirely distributed adaptive solution to the

optimisation problem described in (5.63) and (5.64). Specifically, writing the equations in scalar

form, we have:

ẇ{i, j} =−2 �λn(w)
(i, j) á∂λn(w)

∂w{i, j}

(i, j)

+ 1
2

àλ2(w)
∂w{i, j}

(i, j) (
νi +ν j

2

)2
+ 1

2
µ2

{i, j}(5.78)

=−4k3

nk2

πb◦2

i +πb◦2

j

2
−1

 (bi −b j)2

(πb◦2

i +πb◦2

j )
+ (ai −a j)2

n(πa◦2

i +πa◦2

j )

(
νi +ν j

2

)2
+ 1

2
µ2

{i, j}

µ̇{i, j} =−w{i, j}µ{i, j}, µ{i, j}(0)> 0(5.79)

ν̇i =
(
κ− �λ2(w)

(i))
νi

=
(
κ− k3

k2

(
1−πa◦2

i

))
νi, νi(0)> 0(5.80)

The system is now entirely decentralised4 and, for clarity, the interactions between the

various subsystems within an individual node is graphically represented in Figure 5.1.

Note 5.5. It can be seen that the parameter n, the number of nodes in the network, appears in

Equation (5.78), and is a global variable; an individual agent with only local information may

not necessarily know the value of n. However, the variable n only acts to scale the estimates of

the partial derivatives, and can therefore be omitted from Equation (5.78) without changing the

direction of steepest descent, only the magnitude, and as such will not affect the location and

4See Note 5.5, regarding knowledge of the global variable n.
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Weight
Optimiser

a j , ∀ j ∈Ni

w{i, j}, ∀ j ∈Ni

L(w)

b j , ∀ j ∈Ni
πb

j , ζb
j , πb◦2

j , ζb◦2

j ∀ j ∈Ni

à∂λn(w)
∂w{i, j}

πa
j , ζa

j , πa◦2

j , ζa◦2

j ∀ j ∈Ni

ai

kP kI kγ

λ2
Estimator

k1 k2 k3

PI
Consensus

ai

Estimators

λ̂2

bi

kP kI kγ

λn
Estimator

k1 k2 k3

PI
Consensus

πb◦2

i , ζb◦2

i

bi

Estimators
πb

i , ζb
i

λ̂n
à∂λ2(w)
∂w{i, j}

πa◦2

i , ζa◦2

i

πa
i , ζa

i

κ

(3.14)

(3.18)

(5.78-5.80)

(3.6)

(3.7,3.8) (3.7,3.8)

(5.2)
(5.24)

(5.30)

Figure 5.1: A simplified flowchart of information flow within a node. Each block is labeled with a
number indicating which equation in the thesis the block represents. There are three time scales
for the ordinary differential equations indicated by the colours: yellow (slow), green (faster), and
blue (fastest). White rounded blocks are simply algebraic equations, and white squares signify
control constants.

stability of the global minimum. To see that n can be omitted from the local update rule without

changing the result of the optimisation, imagine instead we were performing the optimisation:

minimize
w

nλn(L(w))(5.81)

subject to n (λ2(L(w))−κ)≥ 0(5.82)

w{i, j} ≥ 0 ∀{i, j} ∈ E

Clearly the same optimal value wopt solves both optimisation problems, but in this modification to

the original optisation problem, the parameter n, premultiplying the functions Equation (5.81)

and Equation (5.82), will cancel with the reciprocal of n from the partial derivatives. In this case,
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the update of the the dual variable νi then becomes:

(5.83) ν̇i = n
(
κ− k3

k2

(
1−πa◦2

i

))
νi, νi(0)> 0

If we omit the constant factor n from this equation, then the only effect is that νi will adapt

proportionally slower; the stationary points and their stability remain the same. Hence, it is

not necessary to know beforehand the value of n for this optimisation procedure to be fully

decentralised.

In networks where the number of nodes in the network is unlikely to change over time, it would

also be reasonable to run a decentralised algorithm for estimating the number of nodes in the

network before the optimisation procedure, though this is not strictly necessary.
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5.5 Singular Perturbation Analysis

Now that the estimation and optimisation system that solves the problem (5.63,5.64) has been

fully decentralised, we seek to perform a singular perturbation analysis on the multi-layer

system, proving that given sufficient separation in time-scale between the layers of estimation

and optimisation, the joint system is stable on the solution, provided some assumptions hold.

To clarify the separation in time-scales between the different layers, we normalise the

eigenvalue estimators by ε1 = 1
k2

, and the PI average consensus layers by ε2 = 1
kP

. We are

interested in the behaviour of this system as ε1 → 0 and ε2
ε1

→ 0, when the control parameter

ratios k1
k2

, k3
k2

, kγ
kP

and kI
kP

remain fixed. Again, the complete set of equations can be written in

a more compact form, using the oriented and unoriented incidence matrices P and M defined

previously in Chapter 2:

ẇ=−4k3

nk2

(
1
2

Mπb◦2 −1
)
◦ (Pb)◦2 ◦ (Mπb◦2

)◦−1

+ 1
4n

(Pa)◦2 (Mν)◦2 ◦ (Mπa◦2
)◦−1 + 1

2
µ◦2(5.84)

µ̇=−w◦µ(5.85)

ν̇=
(
κ1− k3

k2
(1−πa◦2

)
)
◦ν(5.86)

ε1ȧ=−k1

k2
πa −L(w)a− k3

k2
(πa◦2 −1)◦a(5.87)

ε1ḃ=−k1

k2
πb +L(w)b− k3

k2
(πb◦2 −1)◦b(5.88)

ε2π̇
a =

(
−L(w)− kγ

kP
I
)
πa − kI

kP
L(w)ζa + kγ

kP
a(5.89)

ε2ζ̇
a = kI

kP
L(w)πa(5.90)

ε2π̇
a◦2 =

(
−L(w)− kγ

kP
I
)
πa◦2 − kI

kP
L(w)ζa◦2 + kγ

kP
a◦2(5.91)

ε2ζ̇
a◦2 = kI

kP
L(w)πa◦2

(5.92)

ε2π̇
b =

(
−L(w)− kγ

kP
I
)
πb − kI

kP
L(w)ζb + kγ

kP
b(5.93)

ε2ζ̇
b = kI

kP
L(w)πb(5.94)

ε2π̇
b◦2 =

(
−L(w)− kγ

kP
I
)
πb◦2 − kI

kP
L(w)ζb◦2 + kγ

kP
b◦2(5.95)

ε2ζ̇
b◦2 = kI

kP
L(w)πb◦2

(5.96)
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The system exhibits a three time-scale structure of the form

ẋ= f(x,y1,y2)(5.97)

ε1ẏ1 = g1(x,y1,y2)

ε2ẏ2 = g2(x,y1,y2)

with column vectors x, [w,µ,ν], y1 , [a,b], and y2 , [πa,ζa,πa◦2
,ζa◦2

,πb,ζb,πb◦2
,ζb◦2

].

An important condition for the system to work as intended is the following assumption:

Assumption 5.1. At the optimal edge weights wopt which solve the optimisation problem stated

in (5.63),(5.64), we assume that the eigenvalue λ2(wopt) 6=λ3(wopt) and that λn(wopt) 6=λn−1(wopt)

implying that the algebraic connectivity λ2 and the spectral radius λn are distinct. Furthermore,

any feasible algebraic connectivity is bounded away from zero when κ> 0.

We make this assumption to facilitate the analysis of the subsystems, and argue that this

assumption is required for exponential convergence of edge weights onto the solution in the entire

distributed system. In Section 5.6.2, we illustrate via an example, what can potentially happen

when this assumption does not hold, and demonstrate the performance of the system in this case.

Lemma 5.2. [121]. Under Assumption 5.1, the algebraic connectivity λ2(w), the spectral radius

λn(w) and their associated unit eigenvectors, v2(w) and vn(w), are analytic functions of the edge

weights in the vicinity of the solution, wopt, and hence their partial derivatives are well defined in

this region.

5.5.1 Existence of Sufficient Time Scale Separation

Theorem 1 from Hoppensteadt [119] deals specifically with singularly perturbed systems exhibit-

ing a three time-scale structure, and conditions are given under which the solution of system

(5.98) converges to that of the reduced system:

ẋ= f(x,y1,y2)(5.98)

0= g1(x,y1,y2)

0= g2(x,y1,y2)

as ε1 → 0 and ε2
ε1

→ 0. This corresponds to the weight adaptation law behaving similarly to when

nodes and edges have perfect knowledge of the graph Laplacian eigenvalues and their derivatives.

We now proceed to go through the conditions given in [119] and discuss under which assumptions

they hold.

5.5.2 Transformation to place the stable equilibrium point at the origin

Condition 1 from [119] requires that (i) there exists an equilibrium point for each of the fast

subsystems, (ii) that this equilibrium point is centred on the origin of the faster systems, and
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also (iii) that this equilibrium point is isolated. That is, it is required that:

g1(x,0,0)= 0(5.99)

g2(x,y1,0)= 0(5.100)

To achieve this condition, a change of variables is firstly required. Observing the equilibrium

point of the PI average consensus estimators (Equations (5.34) and (5.35)), we define:

Y2(x,y1)=



πa,∗(y1)

ζa,∗(x,y1)

πa◦2,∗(y1)

ζa◦2,∗(x,y1)

πb,∗(y1)

ζb,∗(x,y1)

πb◦2,∗(y1)

ζb◦2,∗(x,y1)


=



11>a
n

− kγ
kI

L†(w)a+ 11>ζa(0)
n

1a>a
n

− kγ
kI

L†(w)a◦2 + 11>ζa◦2
(0)

n
11>b

n

− kγ
kI

L†(w)b+ 11>ζb(0)
n

1b>b
n

− kγ
kI

L†(w)b◦2 + 11>ζb◦2
(0)

n



(5.101)

Lemma 5.3. The equilibrium point of the PI average consensus estimators, Y2(x,y1), is an analytic

function of x and y1

Proof. It is evident that the equilibria of the proportional variables are analytic, as they are either

linear or quadratic functions in y1. For analyticity of the integrator equilibria, notice that the

Moore-Penrose inverse of the graph Laplacian L†(w)= (L(w)− 11>
n )−1− 11>

n has elements which are

ratios of polynomials in w, with non-zero denominator in the feasible set of w: numerators arise

from the cofactors of L(w)− 11>
n , where elements of L(w) are linear in w, and the denominator is

det{L(w)− 11>
n } 6= 0 if λ2 > 0.

Looking at the stable equilibria of the eigenvalue estimators, (3.12) and (5.21), we define the

equilibrium of the eigenvalue estimation system as:

Y1(x)=
[

a∗(x)

b∗(x)

]
=

+v2(w)
√

n(k3−k2λ2(w))
k3

+vn(w)
√

n(k3+k2λn(w))
k3

(5.102)

which by Lemma 5.2 is a real analytic function in x in the vicinity of x = wopt under Assump-

tion 5.1, provided that k3 6= 0 and k3 > k2λ2(w). Note that here we are restricting our view to

just one equilibrium point of the four possible combinations of stable equilibria, in accordance

with Condition 1 of [119]. However, the same analysis could be performed on each of the distinct

points, yielding the same result for each combination of equilibria.

The equilibrium point of the reduced system is also known and is the constant point

x∗ =


wopt

µ∗ =+p2q◦ 1
2

ν∗ =+1
p

2r

(5.103)
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where q and r are, respectively, the optimal dual variables corresponding to the inequalities

w≥ 0, and the optimal dual variable corresponding to the inequality constraint λ2(w)≥ κ, which

solve the first order necessary KKT conditions of the optimisation problem, given in (5.63) and

(5.64).

As such, we can apply the following change of variables to move the equilibrium points to

the origins of the faster systems. Let x̃ be the deviation of the slow variables from their stable

equilibrium point, and likewise let ỹ1 and ỹ2 be the deviation of the fast and fastest variables,

resectively, from their stable equilibria also. We have:

x̃, x−x∗(5.104)

ỹ1 , y1 −y1
∗(5.105)

ỹ2 , y2 −y2
∗(5.106)

We then must redefine the right-hand-side functions too, to account for these change of variables:

F(x̃, ỹ1, ỹ2)= f(x∗+ x̃, ỹ1 +Y1(x∗+ x̃), ỹ2 +Y2(x∗+ x̃, ỹ1 +Y1(x∗+ x̃)))(5.107)

G1(x̃, ỹ1, ỹ2)= g1(x∗+ x̃, ỹ1 +Y1(x∗+ x̃), ỹ2 +Y2(x∗+ x̃, ỹ1 +Y1(x∗+ x̃)))(5.108)

−ε1

(
∂Y1
∂x

·F(x̃, ỹ1, ỹ2)
)

G2(x̃, ỹ1, ỹ2)= g2(x∗+ x̃, ỹ1 +Y1(x∗+ x̃), ỹ2 +Y2(x∗+ x̃, ỹ1 +Y1(x∗+ x̃)))(5.109)

−ε2

(
∂Y2
∂x

·F(x̃, ỹ1, ỹ2)+ ∂Y2
∂y1

·G1(x̃, ỹ1, ỹ2)
)

So that,

G1(x̃,0,0)= 0(5.110)

G2(x̃, ỹ1,0)= 0(5.111)

and also that Condition 2 in [119], that the equilibrium point of the slow system lies at the origin,

is satisfied:

(5.112) F(0,0,0)= 0

5.5.3 Analyticity of the right hand sides

• Condition 3 in [119] requires that the functions F(.), G1(.), and G2(.) and their derivatives

with respect to the components of x̃, ỹ1, ỹ2 are continuous in a ball of radius R around the

origin.

• Condition 4 is a requirement that the elements of F(.), G1(.), and G2, and the elements of
∂F
∂x , ∂Gi

∂x , ∂Gi
∂yj

are bounded within the ball around the origin.
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• Further to continuity and boundedness, Conditions 5 and 6 specify uniform smoothness con-

ditions on F(.), and G2(.). Specifically, it is required that there is a continuous nonnegative

function v(|ỹ|) with v(0)= 0, defining ỹ= [ỹ1
>, ỹ2

>]> such that,

(5.113) |F(x̃, ỹ)−F(x̃,0)| ≤ v(|ỹ|)

Likewise, there exists a continuous nonnegative function u(|ỹ2|) with u(0)= 0 such that

(5.114) |G1(x̃, ỹ1, ỹ2)−G1(x̃, ỹ1,0)| ≤ u(|ỹ2|)

All of these conditions are immediately satisfied if F(.), G1(.), and G2(.) are analytic functions

of x̃, ỹ1, ỹ2.

Lemma 5.4. F(x̃, ỹ1, ỹ2) is an analytic function in the vicinity of the equilibrium point, provided

Assumption 5.1 holds.

Proof. Looking at Equations (5.84, 5.85, 5.86), it can be seen that f(x,y1,y2) is an analytic

function of its variables, provided πa◦2

i 6= −πa◦2

j ,∀i, j and πb◦2

i 6= −πb◦2

j ,∀i, j. This is apparent as

f(.) is a sum of ratios of polynomials in its variables, and the denominators may only be zero if

πa◦2

i =−πa◦2

j or πb◦2

i =−πb◦2

j . At the equilibrium point, πa◦2,∗ = 1a∗>a∗
n ,a∗ 6= 0, so πa◦2,∗

i =π
a◦2,∗
j 6= 0.

Likewise for the spectral radius estimator πb◦2,∗
i =π

b◦2,∗
j 6= 0

Further to this, observing Equations (5.101) and (5.102), both Y1(x) and Y2(x,y1) are analytic

functions in the vicinity of the equilibrium point under Assumption 5.1. Thus F(.), which is a

composition of analytic functions, is analytic.

Lemma 5.5. G1(x̃, ỹ1, ỹ2) and G2(x̃, ỹ1, ỹ2) are analytic functions in the vicinity of the equilibrium

point, provided Assumption 5.1 holds.

Proof. It can be seen in Equations (5.87-5.96) that both g1(.) and g2(.) are quadratic functions of

their variables, and are thus analytic. Further to this, observing Equations (5.101) and (5.102)

both stationary manifolds Y1(.) and Y2(.) are analytic provided Assumption 5.1 holds. Hence,

the function G1(.) which is a composition of the analytic functions g1(.), Y1(.), Y2(.) and F(.) is

analytic. The same argument can be made for G2(.), which is a composition of the aforementioned

analytic functions, g2(.), and G1(.).

5.5.4 Stability of the boundary layer systems and reduced system

The final two conditions in [119], Conditions 7 and 8, concern the uniform asymptotic stability of

the reduced system and the boundary layer systems. That is, it is required that the origin of the

reduced system:

(5.115) ˙̃x=F(x̃,0,0)
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is uniformly asymptotically stable. And it is also required that the boundary layer systems:

∂ỹ1
∂τ1

=G1(x∗, ỹ1,0)(5.116)

and

∂ỹ2
∂τ2

=G1(x∗,y1
∗, ỹ2)(5.117)

when taking x∗ and y1
∗ as any constant value (in a ball around the origin), and defining τi , t

εi

are also uniformly asymptotically stable.

The fully distributed system has been designed so that the reduced system Equation (5.69) is

locally exponentially stable (Theorem 4.4 in Chapter 4) implying uniform asymptotic stability.

Likewise, each boundary layer system, found by taking slower variables as constant and faster

variables as having already equilibriated, are simply the ideal eigenvalue estimators (3.7), (5.1),

and (5.33), and are thus exponentially stable as proven in Theorem 5.1 and elsewhere [29, 100].

All the conditions from Theorem 1 in [119] hold, and so we may draw the conclusion that there

exists a sufficiently small ε = [ε1,ε2]> such that ε1 → 0 and ε2
ε1

→ 0 as |ε| → 0, so that the equi-

librium point corresponding to the solution of the optimisation problem is locally exponentially

stable. A suitable choice for ε is [ 1
k2

, 1
kP

]> where kP = k2
2. There then exists a kP > 1

ε∗ sufficiently

large so that the equilibrium point of the entire distributed system is locally exponentially stable.

5.6 Examples

5.6.1 Linear consensus with delay

In this example, we start with a small network of n = 8 nodes and m = 11 edges, see Figure 5.2.

Each edge is assigned an initial unitary weight, w{i, j}(0) = 1, so that the initial algebraic con-

nectivity λ2(w(0)) ≈ 0.7611 and the initial spectral radius is λn(w(0)) ≈ 5.8635. Edge weights

are then controlled according to the distributed multi-layer system in (5.84)-(5.96), with the

objective of minimising λn, whilst holding the constraints that all weights are non-negative, and

a mininimum algebraic connectivity of λ2 ≥ 0.5 is maintained. Discretisation of the continuous

time differential equations in this simulation is achieved using the forward Euler method with a

time step of 1×10−2. As the simulation progresses, edge weights evolve over time and eventually

settle to a stationary value, Figure 5.3(a). The edge weights in the network directly affect the

graph Laplacian, resulting in the eigenvalues changing over time, Figure 5.3(b), and for this

particular example eigenvalues at the solution w=wopt are distinct, so that edge weights con-

verge as expected. At the end of the simulation, t = 2000, the algebraic connectivity has settled

to its lower bound as expected λ2(w(2000)) ≈ 0.5000, and the spectral radius has decreased to

λn(w(2000))≈ 3.2211, shrinking to approximately 55% of its initial value. This result agrees with

the optimal value found using a centralised SDP solver, with the relative error in the minimal

spectral radius being less than 0.001%.
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Figure 5.2: The initial network, at time zero, with all edge weights of w{i, j}(0)= 1.
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(a) Edge weights change over time from their initial
value of w(0) = 1, and converge onto the stationary
point wopt.
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(b) As edge weights in the network change, the spec-
trum of the graph Laplacian also changes. As required
by the optimisation problem, the algebraic connectivity
maintains the bound λ2 ≥ 0.5, whilst the spectral radius
λn is minimised.

Figure 5.3: Trajectories of the edge weights and the eigenvalues of the graph Laplacian, as the
simulation progresses. Control parameters in this simulation are: kw = 1.5×10−3,

The simple linear consensus protocol ẋ(t)=−0.01×L(w)x(t−τ) with homogeneous time delay

τ= 40 is run both on the intial and final states of the network, Figure 5.4. From the bound given

in [45], we know that the system is only stable on the consensus mode if λn ≤ 100× π
2×40 ≈ 3.9270.

We see that the in the intial network (at time t = 0), the spectral radius exceeds this bound, and

as a consequence trajectories in Figure 5.4(a) diverge. When the same system is realised on the

near-optimal network, Figure 5.4(b), trajectories now converge as the consensus mode is stable.

5.6.2 Ramifications of Assumption 5.1 not holding

To illustrate the scenario where Assumption 5.1 does not hold, we use a larger network of n = 50,

m = 118, so that there are n−1= 49 non-trivial eigenvalues in the connected graph. As λn(w) is

decreased the spectrum of the graph Laplacian is compressed into a smaller region, increasing

the likelihood that at the optimal edge weights λ2(w) and λn(w) will not be distinct, Figure 5.6(b).
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(a) The spectral radius of the initial network exceeds
the calculated bound λn ≈ 5.8635> 3.9270, and so the
consensus mode is unstable; trajectories diverge.
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(b) At time t = 2000, edge weights in the network have
converged onto values reducing the spectral radius of
the graph Laplacian below the bound λn ≈ 3.2211 <
3.9270; consensus is stable.

Figure 5.4: The simple linear consensus protocol with homogeneous delay of τ= 40 is run, both on
the initial network with homogenous weights L(w(0)= 1), and on the final state of the network
L(w(2000)≈wopt).

Figure 5.5: A larger network, n = 50, m = 118, at time zero, with edge weights each of w{i, j}(0)= 1.

In this example, the spectral radius of the graph Laplacian is again decreased over time, from

an initial value of λn(w(0))≈ 11.1450 to λn(w(4000))≈ 5.2514, whilst the algebraic connectivity

falls from λ2(w(0))≈ 0.6589 to λ2(w(4000))≈ 0.4988. Note that this time at t = 4000, the algebraic

connectivity lies slightly outside of its constraint. This is a result of Assumption 5.1 failing.

At the optimal edge weights wopt, the algebraic connectivity has a multiplicity greater than

unity. Therefore, the algebraic connectivity estimator subsystem does not converge to a specific
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(a) Edge weight trajectories. In this example a num-
ber of edge weights are tending towards a value of
zero.
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(b) Eigenvalue trajectories. Even though at the op-
timal edge weights λn and λ2 are not disitnct, the
system still peforms as intended, minimising λn and
maintaining λ2 ≥ 0.5.

Figure 5.6: The edge weight adaptation strategy is performed on the larger example network.
The time step for this simulation is again 1×10−2.

eigenvector associated with λ2 but converges instead onto its associated eigenspace. The effect of

this is that the algebraic connectivity derivative estimates, ∂λ2
∂w , will be incorrect as the value is

not well defined for non-distinct eigenvalues. This error forces the edge weights off of the optimal

values, and a persistent oscillation in the neighbourhood of the optimum is set up. The magnitude

and frequency of these oscillations can be controlled by the size of the separation in time-scales

between the weight dynamics and the eigenvalue estimation, as this controls how far the edge

weights can overshoot before the eigenvalue estimator re-converges on the correct value for ∂λ2
∂w .

We would however like to compare the values of the extremal eigenvalues to those found using a

centralised solver, specifically using an SDP formulation presented in [77]. The centralised solver

finds optimal eigenvalues of λ2,opt ≈ 0.5000 and λn,opt ≈ 5.2178. Comparing these values to the

extremal eigenvalues at t = 4000, of λ2(w(4000))≈ 0.4988 and λn(w(4000))≈ 5.2514, we can see

that the decentralised method performs admirably despite Assumption 5.1 not holding, finding

edge weights that result in a cost just 0.64% greater than those found using a centralised solver.

In contrast, the decentralised method presented in [98] can only adapt edge weights up to the

point when the extremal eigenvalues become indistinct and the algorithm breaks down, resulting

in a greater disparity between the solution to the optimisation problem and the result from the

decentralised method. It is foreseen that this issue of non-distinct extremal eigenvalues will grow

with increasing network size.
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5.7 Summary

In this Chapter, the decentralised algebraic connectivity estimator from [29] was modified so

that, instead, the largest eigenvalue of the Graph Laplacian matrix, its spectral radius, and its

partial derivatives with respect to the edge weights, could be estimated in a wholly decentralised

fashion. The local exponential stability of this idealised sytem was proven through a linearisation

analysis, and by noticing that the system is a gradient system, both in cases when the eigenvalues

are distinct and when there exist eigenvalues with higher multiplicities. The stable equilibrium

manifold was also characterised by its shape according to the algebraic multiplicity of the spectral

radius.

We then proceeded to implement a fully decentralised implementation of this estimator

system, using two Proportional-Integral (PI) average consensus layers [100]. Stability of the fully

decentralised system was then investigated and proven, and a conservative bound (5.58) given

on the required separation in time-scale between the eigenvalue estimator system, and the two

PI average consensus subsystems on which it relies.

This fully decentralised spectral radius estimator was then utilised in conjuction with one of

the weight adaptation laws presented in Chapter 4, and the decentralised algebraic connectivity

estimator presented in Chapter 3, to solve a network optimisation problem to maximise robustness

to time-delay in a linear consensus system with uniform time-delay. It was then proven using

methods from singular perturbation theory that there exists a sufficient separation in time-

scale for local exponential stability between the three layers of this fully decentralised system

(illustrated in Figure 5.1): the weight adaptation layer, the eigenvalue estimation layer, and the

PI average consensus layer, under the assumption that both the algebraic connectivity and the

spectral radius are distinct in the optimal network. The effects of this assumption not holding

were investigated numerically, showing instead that the system converges to the vicinity of the

solution, with persistent oscillations about the optimal value.

In the following Chapter, we will suggest two further modifications to the eigenvalue estimator

presented in this Chapter, so that two important functions of all the non-zero eigenvalues may

be estimated in a decentralised manner. Specifically, these two functions are the total effective

graph resistance and the reduced Laplacian determinant, which are related to the harmonic and

geometric means of the spectrum of graph Laplacian matrix, respectively.
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6
FUNCTIONS OF ALL NON-TRIVIAL LAPLACIAN EIGENVALUES

Previously we have focussed on optimising the extremal non-trivial eigenvalues of the

graph Laplacian matrix: the smallest non-zero eigenvalue in the Laplacium spectrum, the

algebraic connectivity λ2, and the largest eigenvalue in the Laplacian spectrum, which is

the spectral radius of the graph Laplacian λn. These extremal eigenvalues, and the ratio between

them, have important ramifications on the consensus or synchronisation dynamics that occur on

the network. However, we now turn towards some other spectral functions of the graph Laplacian

matrix, namely the total effective graph resistance[122]1, which is related to the commute times

of random walkers in networks among other problems [123, 124], and the reduced Laplacian

determinant, which counts the number of spanning trees in a graph[125], and so can be used a

measure of network robustness[126, 127].

Unlike the previous spectral functions, the algebraic connectivity and the spectral radius,

the total effective graph resistance and the reduced graph Laplacian determinant are functions

of all n−1 non-trivial eigenvalues of the graph Laplacian. Thus, if we were to use a method to

make decentralised estimates of all non-trivial eigenvalues (this could be achieved, for example,

by successive deflation on the graph Laplacian matrix in the same manner as the consensus

mode is deflated), the amount of calculations and memory that each agent in the network would

be required to undertake would grow linearly with the size of the network; this is clearly not

desirable in a decentralised control application where we assume each individual agent in the

network has access to some small finite amount of memory and computational power. As we

will see, by introducing stochasticity into the network, and utilising the effects of this, we can

excite all non-trivial modes in the network to make estimates of these spectral functions using a

relatively few and constant number of variables in each node.

1Also known as the Kirchoff Index.
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We begin by defining and providing some background on the total effective graph resistance2,

before motivitating the importance of this function by looking at linear consensus under diffusive

coupling when subject to white noise. We then go on to see how we can use the introduction of

white noise to allow the network to make a decentralised estimate of its graph resistance, before

we proceed to find a method for the estimation of the partial derivatives of this function for use

with the weight adaptation strategies presented in Chapter 4. During this process we will also

touch on the reduced Laplacian determinant and find an unexpected connection between this

quantity and the graph resistance.

6.1 Graph Resistance

Arising from an electrical interpretation of a network [122], the total effective graph resistance

is another useful metric for networks [128, 76], particularly in the areas of network robustness

[127, 129], commute times of random walks [123], and power dissipation in electrical circuits. In

particular, it can be shown that if each edge of weight wi, j in a network is replaced with a resistor

of 1
wi, j

Ohms 3, then the resistance distance between two nodes k and l is exactly the voltage

difference measured when the resistance load between k and l is driven by a current source of 1

Ampere [123]. An equivalent definition of the resistance distance is given in [122, 128]:

Definition 6.1 (Resistance Distance, ρ i, j [128]). Applying a potential of vi Volts to node i and a

potential of v j Volts to node j, the resistance distance between i and j, ρ i, j is defined,

(6.1) ρ i, j =
vi −v j

I

where I is the resultant current between nodes i and j. 4

Example 6.1. Take for example the weighted graph as depicted in Figure 6.1, replacing each edge

of weight w{i, j} with a resitor of 1
wi, j

Ohms. The resistance distance between nodes 1 and 4 can be

computed simply using the rules for series and parallel combination of resistors: It can be seen

that the path (2,3,4) consists of two resistors in series, so this path can be simplified using the

series addition of resistors to an effective resistance of 3Ω+1Ω= 4Ω; this leaves two resistances in

parallel between nodes 2 and 4, which can be simplified using parallel combination of resistors,

resulting in an effective resistance of
(1

4 + 1
4
)−1 = 2Ω between nodes 2 and 4; finally the resistance

distance between nodes 1 and 4 can be computed, again using the series addition of resistors, to

find that the resistance distance ρ1,4 = 2Ω+2Ω= 4Ω.

This method for calculating resistance distances will become increasingly laborious for larger

networks with multiple paths between nodes. However, the resistance distance is strongly linked

2We also refer to this quantity simply as the graph resistance, and denote it using the symbol Ω for brevity.
3That is a conductance of wi, j Siemens, agreeing with the notion that a larger edge weight between two nodes

indicates that the nodes are better connected.
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Figure 6.1: Transforming edge weights to resistors, such that each resistor is 1
wi, j

Ohms.

to the graph Laplacian through the following result, also found in [128], which provides a far

more amenable method for computing resistance distances:

(6.2) ρ i, j = (ei −e j)>L†(ei −e j)

Again, L† is the Moore-Penrose pseudoinverse of the graph Laplacian, and ei is the vector of

zeros, save for the value of the ith element being equal to one. Specifically, we have,

(6.3) L† =
(
L+ 11>

n

)−1

− 11>

n

Example 6.2. Again using the simple graph illustrated in Figure 6.1, we find its graph Laplacian,

(6.4) L=


1
2 −1

2 0 0

−1
2

13
12 −1

3 −1
4

0 −1
3

4
3 −1

0 −1
4 −1 5

4


so that the Moore-Penrose pseudoinverse L† can be computed using Equation (6.3),

(6.5) L† =


1.5546875 0.0546875 −0.7890625 −0.8203125

0.0546875 0.5546875 −0.2890625 −0.3203125

−0.7890625 −0.2890625 0.7421875 0.3359375

−0.8203125 −0.3203125 0.3359375 0.8046875


It is then straightforward to calculate any resistance distance with Equation (6.2). For example,

(6.6)

ρ1,4 = (e1 −e4)>L†(e1 −e4)

=L†
1,1 −L†

1,4 −L†
4,1 +L†

4,4

= 1.5546875− (2×−0.8203125)+0.8046875= 4
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Definition 6.2 (Total effective graph resistance, Ω [122]). For undirected graphs, the total

effective graph resistance Ω is defined as the sum of all distinct pairwise resistance distances:

(6.7) Ω= ∑
i< j

ρ i, j = 1
2

∑
i

∑
j
ρ i, j

4

In this manner the total effective resistance quantifies the size of a network in terms of the

sum over all resistance distances. However, unlike the common notion of distance between two

nodes in a graph (the length of the shortest path), the resistance distance also takes into account

the number and quality of back-up paths between nodes, and hence is appropriate for quantifying

the robustness of connection between two nodes.

A surprising result is that the total effective graph resistance can be exactly calculated from

the eigenvalues of the graph Laplacian:

Theorem 6.1 (Relationship between the Laplacian spectrum and Ω [122, 76]). The total effective

graph resistance Ω of a connected undirected graph is equal to n times the sum of the reciprocals

of the non-trivial eigenvalues of the Laplacian spectrum of that graph:

(6.8) Ω= n
n∑

i=2

1
λi

Proof. Starting from the result Equation (6.2), and expanding,

ρ i, j = (ei −e j)>L†(ei −e j)

= L†
i,i +L†

j, j −L†
i, j −L†

j,i(6.9)

Then taking the sum over all distinct pairs,

Ω= ∑
i< j

ρ i, j = (n−1)
∑

i
L†

i,i −2
∑
i< j

L†
i, j(6.10)

= (n−1)
∑

i
L†

i,i −

Equal to 0︷ ︸︸ ︷(
2

∑
i< j

L†
i, j +

∑
i

L†
i,i

)
+∑

i
L†

i,i(6.11)

= n
∑

i
L†

i,i(6.12)

= nTrace{L†}(6.13)

= n
n∑

i=2

1
λi

(6.14)

Using the fact that L† also has row sums of zero, and that the non-zero eigenvalues of L† are

simply the reciprocals of the non-zero eigenvalues of L.
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6.2 Linear Consensus with Additive White Noise

To demonstrate the practical importance of the total effect graph resistance, we can consider the

case of simple linear consensus when all nodes are perturbed by identical and independently

distributed white noise of intensity σ. This system can be represented using the stochastic

differential equation (SDE):

(6.15) dx(t)=−Lx(t)dt+σIndW

where W(t) is a standard n dimensional Wiener process. Defining the expected value µ(t), E[x(t)]

and the covariance matrix Σx(t), E[(x(t)−µ(t))(x(t)−µ(t))>], it can be shown [129] that:

(6.16) µ̇(t)=−Lµ(t)

and

(6.17) Σ̇x(t)=−LΣx(t)−Σx(t)L+σ2In

From the covariance matrix dynamics and the fact that L has a zero eigenvalue, it can be seen

that states will grow without bound over time; the additive noise induces a drift in the consensus,

as seen in Figure 6.2. Thus, although the expected value of the states will tend to the arithmetic

0 20 40 60 80 100
Time (t)

-15

-10
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15
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at

e
(x

)

5

0

-5

Figure 6.2: Starting from an initial state x(0) sampled from the normal distribution with mean of
zero and variance of 10, agents come together under the action of Equation 6.15, with σ= 1

2 . The
arbitrarily chosen network is illustrated inset, and all edge weights are chosen to be constant and
of value 1. It can be seen that although the dispersion decreases from the inital value, the mean
of the group (highlighted in red) drifts over time. Numerical solution of the stochastic differential
equation is achieved using the Euler-Maruyama method with a time step of 1×10−3.

mean of the initial expected values, their variance will grow without bound. Restricting the view
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solely to the disagreement subspace y=Qx where Q1= 0, QQ> = In−1 and Q>Q= In− 1
n 11>, the

same analysis can be performed. Introducing the reduced Laplacian L,Q>LQ, which has the

same eigenvalues as the Laplacian matrix, save for the single zero eigenvalue associated with

the consensus mode, which is removed, we now have:

dy(t)=−Ly(t)dt+σQdW(6.18)

so that

(6.19) Σ̇y(t)=−LΣ(t)−Σ(t)L+σ2In−1

Thus the solution for the stationary covariance matrix can be found by solving the Lyapunov

equation:

L
>
Σy +ΣyL=−σ2I(6.20)

which has a positive definite solution for Σy so long as L is Hurwitz, which is guaranteed if the

graph is connected and weights are non-negative. Thus the variance in the disagreement subspace

no longer grows without bound. It can further be shown [129] that the expected two-norm of the

disagreement vector will tend to a finite value:

(6.21) lim
t→∞E

[||y||22] 1
2 =

√
σ2Ω

2n
Alternatively, the Lyapunov equation becomes trivial to solve if we assume we can diagonalise

the reduced Laplacian using some orthonormal basis V so that V
>

LV=Λ= diag[λ2,λ3, . . . ,λn].

Let y=Vz so that:

dz(t)=−Λz(t)dt+σVQdW(6.22)

Σ̇z(t)=−ΛΣz(t)−Σz(t)Λ+σ2In−1(6.23)

And thus, the stationary covariance matrix satisfies the Lyapunov equation:

ΛΣy +ΣyΛ=−σ2I(6.24)

ΛΣy + (ΛΣy)> =−σ2I(6.25)

Solving this Lyapunov equation for the stationary covariance matrix yields,

Var[zi]= E[(zi −E[zi])2]= σ2

2λi
(6.26)

Cov[zi, z j]= 0(6.27)

but then E[zi]= 0 for all zi so that:

E[(zi)2]= σ2

2λi
(6.28)

E[z>z]= E[y>y]= σ2

2

n∑
i=2

1
λi

(6.29)

= σ2Ω

2n
(6.30)
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Figure 6.3: Using the simulation depicted in Figure 6.2, we plot the disagreement vector y in

black, and the two-norm ||y||2 in blue. The quantity
√

σ2Ω
2n for the chosen graph with σ= 1

2 , n = 10,
and Ω= 72.7436. . . is marked by the red line. Note that ||y||2 tends towards this mark, but never
settles due to the stochastic nature of the process. Again numerical solution of the stochastic
differential equation is achieved using the Euler-Maruyama method with a time step of 1×10−3.

This result, which is illustrated in Figure 6.3, implies that we can formulate a decentralised

estimator for the total effective graph resistance, by tracking an estimated value for the mean of

y>y, similar to the previous method used to estimate λ2 and λn. Specifically from Equation 6.21,

we can estimate the total graph resistance by using the equation:

(6.31) Ω=
2n lim

t→∞E
[||y||22]

σ2

As in previous chapters, the problem now is to decentralise the computation of all the quantities

needed to carry out the estimation of Ω.

6.3 Perturbed linear consensus with mean-shifting

Rather than simply estimating the disagreement vector y by tracking the mean of x (which can be

accomplished with a PI consensus estimator) and taking the difference, we can instead introduce

a negative feedback into the system so that the variance of x will no longer grow without bound.
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We introduce the first system:

dx= (−k1b−k2Lx)dt+dW(6.32)

ḃ= kγ(x−b)−kPLb+kILc(6.33)

ċ=−kILb(6.34)

Comparing this system to (6.15), we have chosen to set σ= 1, we scale the strength of the

consensus term by the control parameter k2 as in the λ2 and λn estimators, and have added a PI

average consensus estimator to track the mean of x, b→ 1〈x〉. Here b is the vector of proportional

variables and c is the vector of integral variables in this PI average consensus estimator, with kγ,

kP , and kI , being as usual the control parameters: respectively, the input gain, the proportional

gain, and the integral gain. The local estimates of the mean of x are fed back into (6.32), scaled

by the control parameter k1 to drive the mean towards zero, and constitutes the mean-shifting

portion of the estimator.

To track the quantity x>x, a second PI consensus estimator is utilised in much the same way as

the second PI estimator is used in the λ2 and λn estimators (Equation (3.15) and Equation (5.45))

to track the norm of the vector. Specifically, we can use the additional equations,

ḋ= kγ(x◦2 −d)−kPLd+kILe(6.35)

ė=−kILe(6.36)

so that d is the vector of proportional variables that estimates 1x>x
n and e is a vector of integrator

variables. Again kγ, kP and kI , are the control parameters for the input gain, the proportional

gain, and the integrator gain.

It is worth pointing out that these two sets of local variables are decoupled from the previous

set of equations, unlike the previous decentralised estimators. Finally, as the total effective graph

resistance is related to E[y>y], and typically the PI consensus estimators converge much faster

than (6.32), so that d→ 1〈x◦2〉 = 1x>x
n , it is sensible to use a low-pass filter on d. For simplicity,

we simply use a first order low-pass filter with gain of kL on d, although it may prove beneficial to

implement a higher order low-pass filter. In particular we choose a simple linear filter dynamics

of the form:

ṗ= kL (d−p)(6.37)

Theorem 6.2 (Decentralised estimation of the total effective graph resistance). Using the de-

centralised system of SDEs described in (6.32) to (6.37), and provided that k1,k2 > 0, with

kγ,kP ,kI >> k1,k2 and kL suitably small, each node can make a decentralised estimate of the

total effective graph resistance by using the equation:

(6.38) Ω̃(i) = 2k2n
(
npi − 1

2k1

)
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Proof. This result is derived again using the diagonalised equation. We assume that the PI

consensus estimators converge much faster than Equation (6.32) (i.e. kγ,kP ,kI >> k1,k2) so that

we can study the reduced system (substituting the stationary value of b→ 1
n 11>x):

(6.39) dx=
(
−k111>

n
−k2L

)
xdt+dW

Transforming to a diagonal form using the orthonormal modal matrix V so that V>LV =Λ =
diag[0,λ2,λ3, . . . ,λn] and using the substitution x=Vξ we arrive at:

(6.40) dξ=
(
−k1

[
1 0
0 0

]
−k2Λ

)
︸ ︷︷ ︸

A

ξdt+V>dW

where A is Hurwitz, so that µξ→ 0 and Σξ is bounded. The covariance matrix follows a determin-

istic trajectory

Σ̇ξ =AΣξ+ΣξA+I(6.41)

implying that the stationary covariance matrix has:

E[ξ2
1]= 1

2k1
(6.42)

E[ξ2
i ]= 1

2k2λi
∀i = 2, . . . ,n(6.43)

E[ξiξ j]= 0∀i 6= j(6.44)

Therefore, in the second PI consensus estimator, given in Equations (6.35) and (6.36):

(6.45) E[d(t)]→ 1
n

(
1

2k1
+

n∑
i=2

1
2k2λi

)
, as t →∞

The variable d(t) is passed to a first order low pass filter, so that p(t)→ E[d(t)]. Substituting and

rearranging, each node can make a decentralised estimate of the total effective graph resistance,

Ω̃(i), by computing:

(6.46) Ω̃(i) = k2n
(
2npi − 1

k1

)
and Ω̃(i) →Ω as t →∞ if kL << 1. It is required that the low pass filter gain kL in Equation (6.37)

is suitably small so that pi tends to E[d(t)], and the high frequency effects of the introduced

noise are filtered out.

Example 6.3. To demonstrate the efficacy of this decentralised estimator, we run the equations

(6.32) to (6.37) on the example graph used in Figures 6.2 and 6.3. The control parameters used

are: k1 = 5, k2 = 1, kγ = 20, kP = 50, kI = 50, and kL = 5×10−4. The numerical solution to the
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stochastic differential equations is found using the Euler-Maruyama method with a time step of

1×10−3.

By direct computation of the eigenvalues of the graph Laplacian, it is known that the total

effective graph resistance of this network is Ω= 72.7436. . . when all edge weights are equal in

value to one. The decentralised estimates of the total effective graph resistance as computed through

Equation (6.38) are plotted in black in Figure 6.4, and the ground truth is marked in red.
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Figure 6.4: Plot showing the trajectories of the decentralised estimates of the total effective graph
resistance, as computed through Equations (6.32) to (6.37) and (6.38). The estimates approach
the region of the solution but never settle down due to the stochastic nature of the estimator.

6.3.1 The quantity E[(xi − x j)2]

As the estimator, decribed in the set of SDEs from (6.32) to (6.37), looks superficially quite similar

to the previous decentralised estimators, the quantity E[(xi − x j)2] may be interesting, as this

was previously related to the partial derivatives (sub-gradients) of the estimated eigenvalues.

As such we can introduce one more low-pass filtered variable which is decoupled from the main

system:

ṙ= kL
(
(Px)◦2 −r

)
(6.47)

The matrix P here is again the standard oriented incidence matrix, so that rq({i, j}) → E[(xi − x j)2],

and kL is a control parameter to act as a first order low pass filter.
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Again, in analysing the whole system, it is convenient to use the diagonalised equations using

the modal matrix of the graph Laplacian V. It has been previously shown that at long times:

E[ξi]= 0∀i(6.48)

E[ξ2
1]= 1

2k1
(6.49)

E[ξ2
i ]= 1

2k2λi
∀i = 2, . . . ,n(6.50)

E[ξiξ j]= 0∀i 6= j(6.51)

That is:

Var[ξ1]= 1
2k1

(6.52)

Var[ξi]= 1
2k2λi

∀i = 2, . . . ,n(6.53)

Cov[ξi,ξ j]= 0∀i 6= j(6.54)

Using this knowledge we can calculate:

E[(xi − x j)2]= E[x2
i −2xix j + x2

j ](6.55)

= E[x2
i ]−2E[xix j]+E[x2

j ](6.56)

= E[(vi,:ξ)2]−2E[(vi,:ξ)(v j,:ξ)]+E[(v j,:ξ)2](6.57)

where vi,: represents the ith row of the matrix V. Taking each of these terms in turn:

E[(vi,:ξ)2]=Var[
n∑

k=1
vi,kξk](6.58)

=
n∑

k=1
v2

i,kVar[ξk](6.59)

=
(

1p
n

)2 1
2k1

+
n∑

k=2
v2

i,k
1

2k2λk
(6.60)

= 1
2nk1

+
n∑

k=2
v2

i,k
1

2k2λk
(6.61)

Note that the initial ‘Variance of Sums’ to ‘Sum of Variances’ swap from (6.58) to (6.59) is valid as

the variables ξk are uncorrelated. Likewise it can be shown that:

(6.62) E[(v j,:ξ)2]= 1
2nk1

+
n∑

k=2
v2

j,k
1

2k2λk
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Therefore, we have:

−2E[(vi,:ξ)(v j,:ξ)]=−2E

[(
n∑

k=1
vi,kξk

)(
n∑

k=1
v j,kξk

)]
(6.63)

=−2E

[
n∑

k=1

n∑
l=1

vi,kv j,lξkξl

]
(6.64)

=−2E

[
n∑

k=1
vi,kv j,kξ

2
k +

∑
k 6=l

vi,kv j,lξkξl

]
(6.65)

=−2E

[
n∑

k=1
vi,kv j,kξ

2
k

]
−2E

[∑
k 6=l

vi,kv j,lξkξl

]
︸ ︷︷ ︸

=0 as uncorrelated

(6.66)

=−2
n∑

k=1
vi,kv j,kE[ξ2

k](6.67)

=− 1
nk1

−2
n∑

k=2
vi,kv j,k

1
2k2λk

(6.68)

Summing these terms together yields:

E[(xi − x j)2]=
�
�
�1

2nk1
+

n∑
k=2

v2
i,k

1
2k2λk�

�
�− 1

nk1
−2

n∑
k=2

vi,kv j,k
1

2k2λk
+
�

�
�1

2nk1
+

n∑
k=2

v2
j,k

1
2k2λk

(6.69)

=
n∑

k=2

1
2k2λk

(v2
i,k −2vi,kv j,k +v2

j,k)(6.70)

=
n∑

k=2

1
2k2λk

(vi,k −v j,k)2(6.71)

= 1
2k2

n∑
k=2

1
λk

∂λk

∂w{i, j}
(6.72)

However, if we want to find the partial derivatives of the total effective graph resistance so that

we can adapt edge weights using steepest descent, we want to find the quantities:

∂Ω

∂w{i, j}
= ∂

∂w{i, j}
n

n∑
k=2

1
λk

(6.73)

=−n
n∑

k=2

1
λ2

k

∂λk

∂w{i, j}
(6.74)

As can be seen, each partial derivative in the sum is scaled incorrectly; in (6.72) we see we have

the reciprocals of the Laplacian eigenvalues scaling the partial derivatives, whereas in (6.74) it

can be seen that we require the squares of these reciprocals to scale the partial derivatives. All is

not lost, however, as we shall find a solution to this problem in Section 6.6. But firstly, we can

realise that we have inadvertently found the derivative of another interesting spectral function
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(up to a constant multiplier):∫
1

2k2

n∑
k=2

1
λk

∂λk

∂w{i, j}
dw{i, j} =

1
2k2

n∑
k=2

ln(λk)(6.75)

= 1
2k2

ln

(
n∏

k=2
λk

)
(6.76)

= 1
2k2

ln
(
det

[
L

])
(6.77)

That is, we have estimated the partial derivative of the log determinant of the reduced Laplacian,

see Figure 6.5. This is a concave function of edge weights, and if we maximise the log determinant,

we also maximise the determinant of the reduced Laplacian. This is an interesting function

thanks to a famous theorem by Kirchoff, which we explore next.
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Figure 6.5: Plot comparing the estimates of the partial derivatives of the log determinant of the
reduced Laplacian to the true values. Estimates are plotted as the mean of the last 1000 seconds
of the simulation run, once estimates have converged, with error bars of 2 standard deviations
marked in green.

6.4 Kirchoff’s Matrix Tree Theorem

Kirchoff ’s matrix tree theorem shows that the number of spanning trees in unweighted, undi-

rected graph G can be deduced from the spectrum of the graph Laplacian matrix L. Specifically,

if the eigenvalues of L are ordered 0=λ1 ≤λ2 ≤ ·· · ≤λn, and the set of spanning trees of G is T

then the number of labelled spanning trees |T | = 1
nλ2λ3 . . .λn. From this it is evident that if the

graph is disconnected, and there are no spanning trees, then λ2 = 0. Alternatively, the number of

spanning trees is equal to any cofactor of L. It has been suggested in previous literature that the
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number of spanning trees could be used a metric for network robustness [126, 127] in networks

with probabilistic edge losses, because the property of a network being connected is equivalent to

the existence of a spanning tree.

Example 6.4. Consider the simple unweighted graph depicted in Figure 6.6 :

Figure 6.6: A very simple unweighted and undirected graph, G

The graph Laplacian is then:

L=D−A(6.78)

=



1 −1 0 0 0

−1 3 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

0 −1 0 −1 2

(6.79)

which has eigenvalues:

(6.80)



λ1

λ2

λ3

λ4

λ5

≈



0

0.8299. . .

2

2.6889. . .

4.4812. . .


Thus, by Kirchoff’s matrix tree theorem, the number of spanning trees can be found:

(6.81) |T | = 1
n
λ2λ3λ4λ5 = 4

We can confirm for this simple example by inspection of the set of spanning trees, T :

Figure 6.7: The set of spanning trees T of the graph G
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6.4.1 Extension to weighted undirected graphs

When weights are assigned to each edge in the network, the determinant of the reduced Laplacian

corresponds to n times the weighted sum of each spanning tree in the network, where the weight

of a spanning tree is defined as the product of all edge weights in that tree [130]. As such,

the determinant of the reduced Laplacian still provides a useful metric for the robustness of a

network, as it quantifies both the number and strength of spanning trees in the network.

det(L)=λ2λ3 . . .λn(6.82)

= n
∑

Tk∈T

∏
{i, j}∈Tk

w{i, j}(6.83)

As a particular case, one can consider a weighted graph with integer weights as an unweighted

multigraph, where the number of edges between two nodes is given by the weight. Then, the

determinant of the reduced Laplacian still determines the number of spanning trees in the

multigraph.

Example 6.5. Consider again the small network used in the previous example, but now let us

assign weights to each edge:

2 1
2

1
4

33
4

Figure 6.8: A small weighted graph, used in this example.

The set of spanning trees remains the same as in Figure 6.7, but now each tree has a weight

defined by the product of edge weights in that tree.
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2 1
2

1
4

3

2 · 3
4 · 1

4 ·3= 9
8 2 · 3

4 · 1
4 · 1

2 = 3
16 2 · 3

4 · 1
2 ·3= 9

4 2 · 1
2 · 1

4 ·3= 3
4

Figure 6.9: The set of trees with edge weights labelled. Below each tree, the weight of that tree is
calculated.

From the weights of each tree, we can calculate the determinant of the reduced Laplacian

in accordance with Equation (6.83): det(L)= 5× (9
8 + 3

16 + 9
4 + 3

4 )= 345
16 = 21.5625. To confirm this
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result, we can find the non-trivial eigenvalues of the graph Laplacian and compute the product:

σ(L)= {0.5880. . . , 1.1920. . . , 4.7692. . . , 6.4508. . . }

det(L)= 21.5625

6.5 Optimisation of the Determinant of the Reduced Laplacian

Now that we have a decentralised estimate for the partial derivatives of the log determinant of

the reduced Laplacian, these derivative estimates can be substituted into the framework of the

existing weight adaptation law. Without an estimate for the value of the of the reduced Laplacian

determinant, we are more limited in what optimisation problems can be solved. For example,

maximisation of the reduced determinant is readily achieved, but we cannot for instance control

the determinant to a specific value, nor constrain another optimisation or control problem by

requiring that the reduced determinant be less than, or greater than, a specific value.

Nevertheless, we demonstrate the constrained maximisation of the reduced Laplacian deter-

minant:

(6.84)

maximise
w

det(L(w))

subject to w{i, j} ≥ 0 ∀{i, j} ∈ E∑
j

w{i, j} ≤ κi ∀i ∈ V

where the constraints are non-negativity of the edge weights, and that the weighted degree of

each node may not be greater than a constant value for each node, κi. We choose κi to be equal to

the degree, κi = |Ni| so that this constraint is local to each node.

First we notice that as the logarithmic function over the positive reals is a monotonically

increasing function, the previous optimisation problem is equivalent to:

(6.85)

maximise
w

log
(
det(L(w)

)
subject to w{i, j} ≥ 0 ∀{i, j} ∈ E∑

j
w{i, j} ≤ κi ∀i ∈ V

The log-determinant of a matrix is concave over the set of positive definite matrices, and all

constraints are affine so this is a concave maximisation problem.

Applying the decentralised estimator for the partial derivatives of the log determinant of

the reduced Laplacian, with the decentralised weight adaptation law, we formulate a stochastic
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differential equation for the maximisation of the reduced Laplacian determinant:

(6.86)

dxi =
(
−k1bi +k2

∑
j∈Ni

w{i, j}(x j − xi)

)
dt+dWi

ḃi = kγ(xi −bi)+kP
∑

j∈Ni

w{i, j}(b j −bi)−kI
∑

j∈Ni

w{i, j}(c j − ci)

ċi = kI
∑

j∈Ni

w{i, j}(b j −bi)

ṙ{i, j} = kL
(
(xi − x j)2 − r{i, j}

)
ẇ{i, j} = kw

(
2k2r{i, j} −νi −ν j +µ{i, j}

)
µ̇{i, j} =−w{i, j}µ{i, j}

ν̇i =
(
−κi +

∑
j∈Ni

w{i, j}

)
νi

Example 6.6 (Maximisation of the Determinant of the Reduced Laplacian). To illustrate the

effectiveness of this method, we seek to maximise the determinant of the reduced Laplacian of the

random network used in Figure 6.10. Numerical solution of the stochastic differential equations

is achieved using the Euler-Maruyama method with a time step of 1×10−3, and the control

parameters used in this simulation are as follows: k1 = 5, k2 = 1, kγ = 20, kP = 40, kI = 40,

kL = 1×10−3 and kw = 1×10−4. It can be seen in Figure 6.12 that the determinant of the reduced

Laplacian (as calculated centrally) rises over time as the edge weights adapt in Figure 6.11.

No node knows the current value of the determinant, and each may only communicate with its

neighbours. Regardless, the edge weights adapt over time to maximise the determinant of the

reduced graph Laplacian, whilst observing the constraint that the weighted degree of each node

may not be greater than its degree. This optimisation problem is equivalent to maximising the

weighted sum of spanning trees in the network.

Figure 6.10: A random graph with 16 nodes and 40 edges, used for the reduced Laplacian
determinant maximisation example. The original value of the reduced Laplacian determinant
with all edge weights of unit value is equal to 16,536,969,984, implying that there are exactly
1,033,560,624 spanning trees in this graph.
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Figure 6.11: Edge weights are adapted in time according to the decentralised adaptive update
law as presented in Equation (6.86). Note that due to the constraints and initial conditions, total
edge weight in the network does not increase over time.
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Figure 6.12: As edge weights adapt, the determinant of the reduced Laplacian is suitably improved
as we expect.

6.6 Estimating the Partial Derivatives of the Total Effective
Graph Resistance

Consider again the partial derivatives of the total effective graph resistance that we wish to

estimate:

∂Ω

∂w{i, j}
= ∂

∂w{i, j}
n

n∑
k=2

1
λk

(6.87)

=−n
n∑

k=2

1
λ2

k

∂λk

∂w{i, j}
(6.88)
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Compare this to the result we have obtained for E[(xi − x j)2] in the previous decentralised

estimator, (6.72):

(6.89) E[(xi − x j)2]= 1
2k2

n∑
k=2

1
λk

∂λk

∂w{i, j}

We can see that this result would agree (up to a constant factor) if we used a different matrix in

place of the Graph Laplacian in the stochastic differential equation (6.32), with eigenvalues of

{0,λ2
2,λ2

3, . . . ,λ2
n}, and the same eigenvectors as the original Laplacian matrix. Fortunately, such a

matrix is easily found in L2:

(6.90)
L2 =VΛV>VΛV>

=VΛ2V>

Unfortunately though, L2 is not a decentralised matrix, in the sense that for an agent i to

compute xi in the operation x=L2y, not only is information required from neighbours, but also

the neighbours of neighbours. However, we can circumnavigate this problem by introducing a

fast estimator f for Lx:

dx= (−k1b−k2Lf)dt+dW(6.91)

ḃ= kγ(x−b)−kPLb+kILc(6.92)

ċ=−kILb(6.93)

ḟ= kγ(Lx− f)(6.94)

ṙ= kL
(
(Px)◦2 −r

)
(6.95)

Now, the reduced equation for Equation (6.91) is given by:

dx=
(
−k1

11>

n
−k2L2

)
xdt+dW(6.96)

The system Equation (6.95) is a first order low pass filter of (xi − x j)2 such that we would expect:

r{i, j} → E[(xi − x j)2]→ 1
2k2

n∑
k=2

1
λ2

k

∂λk

∂w{i, j}
=− 1

2nk2

∂Ω

∂w{i, j}
(6.97)

Each edge can thus make the estimate:

â∂Ω
∂w{i, j}

=−2nk2r{i, j}(6.98)

and �∂Ω
∂w{i, j}

→ ∂Ω
∂w{i, j}

.

Example 6.7. To illustrate this result, we again plot the estimates of the partial derivatives

against the true values found by direct computation, for a randomly chosen graph, Figure 6.13.

The randomly chosen graph is depicted inset in Figure 6.13.
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Figure 6.13: Estimates of the partial derivatives of the total effective graph resistance are made
using Equations (6.91) to (6.95) and (6.98), and these are plotted against the true values found
by direct computation. Note that there is a constant offset present between the estimates and the
true values.

It can be seen that there is a constant offset between the estimated gradients and the ground

truth. Upon further investigation, it appears that this offset is equal to 2nk2
kγ

, see Figure 6.14. In

the previous analysis, we assumed that kγ would be large so that this offset would tend to zero.

However in simulation, this is not practical, and we may need to relax this assumption to perform

a better estimate.
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Figure 6.14: Using a modified estimate �∂Ω
∂w{i, j}

= 2nk2

(
1
kγ

− r{i, j}

)
, we see that the estimators

perform much better. Note that in the derivation we assumed that kγ was large, so the 1
kγ

term
would be negligible. However, in simulation, it is impractical to make kγ excessively large, and so
further analysis may be required to provide an explanation for the existence of this term.

Finally, we now have a method for making decentralised estimates of the partial derivatives

of the total effective graph resistance. This system fits into the existing decentralised weight

adaptation law, and can be implemented to solve a number of decentralised optimisation and

control problems.

6.7 Optimisation of the Total Effective Graph Resistance

We apply our decentralised edge adaptation algorithm to the problem of minimising the total

effective graph resistance of a weighted undirected network, over the edge weights as decision

variables. The problem is constrained to an existing graph topology, and admissible edge weights

are bounded below by a non-negativity condition, and above by a constraint on the maximum

weighted degree of all nodes. As discussed in Section 6.2, solving this problem corresponds to

maximising robustness of consensus in the presence of noise, as the bounds given in Equation

(6.21) becomes minimal.

Stating this problem in the standard form of a constrained optimisation problem, we have:

(6.99)

minimise
w

Ω (L(w))

subject to w{i, j} ≥ 0 ∀{i, j} ∈ E∑
j

w{i, j} ≤ κi ∀i ∈ V

where κi is the degree of node i, i.e. κi = |Ni|.
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To solve this optimisation in a decentralised manner, we first implement the following

decentralised SDE on the network used in Example 6.7:

(6.100)

dxi =
(
−k1bi +k2

∑
j∈Ni

w{i, j}( f j − f i)

)
dt+dWi

ḃi = kγ(xi −bi)+kP
∑

j∈Ni

w{i, j}(b j −bi)−kI
∑

j∈Ni

w{i, j}(c j − ci)

ċi = kI
∑

j∈Ni

w{i, j}(b j −bi)

ḟ i = kγ

(
− f i +

∑
j∈Ni

w{i, j}(xi − x j)

)
ṙ{i, j} = kL

(
(xi − x j)2 − r{i, j}

)
ẇ{i, j} = kw

(
2nk2

(
r{i, j} −

1
kγ

)
−νi −ν j +µ{i, j}

)
µ̇{i, j} =−w{i, j}µ{i, j}

ν̇i =
(
−κi +

∑
j∈Ni

w{i, j}

)
νi

We have chosen to present this SDE from the local view to make it clear that the method is

fully decentralised, and to show that 5 variables are updated on each node, and 3 variables are

updated on each edge. Note that all Wi are uncorreleated and identical sources of Gaussian white

noise with unit variance.

Example 6.8 (Minimisation of the Total Effective Graph Resistance). Initialising the same

network as used in Example 6.6, Figure 6.10, with unit edge weights, w{i, j}(t = 0)= 1, so that the

boundary conditions are satisfied, we implement the set of SDEs described in (6.100). Control

parameters used in this simulation are: k1 = 5, k2 = 1, kγ = 40, kP = 100, kI = 100, kL = 1×10−3

and kw = 4×10−4, and numerical solution is accomplished using the Euler-Maruyama method

with a time step of 1×10−3. Edge weights then adapt in time, Figure 6.15, to minimise the total

effective graph resistance, Figure 6.16, and the final state of the adapted network is illustrated in

Figure 6.17.
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Figure 6.15: Edge weights are adapted in time according to the decentralised adaptive update law
(6.100), where the refined sensitivities for the effective resistance, �∂Ω

∂w{i, j}
= 2nk2

(
1
kγ

− r{i, j}

)
,have

been substituted.
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Figure 6.16: As edge weights adapt, the total effective graph resistance Ω is reduced. It can be
seen that Ω drops from an initial value of approximately 56.99, to a value that oscillates around
∼ 56.09.

It is apparent that graph resistance initially increases in the period before the partial derivative

estimates have converged. This problem is exacerbated by the constant offset in the partial

derivative estimates of 2nk2
kγ

, causing estimates for the partial derivatives to be positive in the

early part of the simulation, when it is known that the total effective graph resistance is a strictly

decreasing function of edge weight. In practice, this problem could be avoided by delaying the start

of the edge adaptation update until the partial derivative estimators have converged sufficiently.

Another option to avoid this problem would be simply to threshold the estimates for the partial

derivatives, ensuring that they are less than 0: i.e. �∂Ω
∂w{i, j}

=−2nk2ramp
(
r{i, j} − 1

kγ

)
, where ramp() is
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Figure 6.17: The final state of the network, with edge thickness and brightness proportional to
the edge weights.

the ramp function:

ramp(x)=
x if x > 0

0 if x ≤ 0
(6.101)

6.8 Summary

In this Chapter, we presented two decentralised estimators so that agents in a network can

make estimates of the total effective graph resistance (Equations (6.32) to (6.37)), and the partial

derivatives with respect to their incident edge weights (Equations (6.91) to (6.95)). This allows

us to minimise the total effective graph resistance of a network, Example 6.8, resulting in lower

expected commute times of random walkers on the network and improved robustness to noise in

linear consensus applications.

We also found a decentralised method for estimating the partial derivatives of the natural log

of the reduced Laplacian determinant (6.72, 6.77) so that we can also develop a decentralised

optimisation strategy for maximising the reduced Laplacian determinant, Example 6.6. This also

maximises the weighted sum of spanning trees in a network in accordance with Kirchoff ’s matrix

tree theorem.

These two spectral functions of the graph Laplacian matrix are, unlike the algebraic connec-

tivity and spectral radius, functions of all n−1 non-trivial eigenvalues. To make these estimates,

white noise was introduced into the estimators in order to excite every mode associated with

a non-trivial eigenvalue, rather than just reinforcing the effects of the extremal eigenvalues,

and resulting in a set of stochastic differential equations. The introduction of noise itself into

the estimators then necessitated the use of filtering to reduce the amount of noise in the output

estimates, before the estimated functons and derivatives could be used in conjunction with the

previously described weight adaptation laws.
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7
CONCLUSIONS

In this Thesis we have explored how a network of interconnected and individual agents

can cooperate with their neighbours, exchanging and updating solely local information, so

that the collective may make a joint estimate of various global observables of the network

as a whole. Then using these decentalised estimates, we have proposed a set of decentralised

weight adaptation techniques to achieve constrained optimisation and control of these global

observables.

We have focussed specifically on the estimation and optimisation of spectral functions of the

graph Laplacian matrix, as these variables can often serve as metrics of the performance of

important network applications, such as speed of consensus, synchronisation, and connectivity.

Based upon the decentralised algebraic connectivity estimator presented in [29], we have proposed

estimators that yield estimates for the spectral radius (and hence the synchronisability ratio

may also be estimated), and the effective graph resistance. We have also sought methods for the

estimation of the partial derivatives of these functions with respect to edge weights, which are

required for optimisation by gradient descent.

In Chapter 3, we reviewed a number of both centralised and decentralised methods for the

optimisation and control of spectral functions, paying special attention to the decentralised

algebraic connectivity estimator presented in [29], as we develop this method further for more

spectral functions in subsequent Chapters. Following from this, in Chapter 4, we propose two

decentralised methods for the constrained optimisation of network observables. The first is an

interior point method utilising logarithmic barrier functions to ensure feasibility, and the second

is a set of ordinary differential equations designed so that the stable equilibrium satisfies the

Karush-Kuhn-Tucker (KKT) conditions. Each method has its own advantages and disadvantages.

The logarithmic barrier method ensures that at all times edge weights are guaranteed to remain
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Spectral Function Symbol Constrained Optimi-
sation

Control to a Desired
Value

Algebraic Connectivity λ2 Chapter 4 Chapter 4
Spectral Radius λn Chapter 5 Chapter 5
Effective Graph Resistance Ω Chapter 6.2 Chapter 6.5
Reduced Graph Laplacian
Determinant

∆ Chapter 6.2.1 7

Table 7.1: A guide to where the constrained optimisation problems that have been explored in
this thesis may be found.

feasible so long as they are initially feasible, but fails if a perturbation forces edge weights into

an infeasible regime. Contrariwise, the KKT method remains stable even when edge weights

leave the feasible set, but does not guarantee that edge weights will maintain feasibility in the

transient to the stable equilibrium. Further to this, the KKT method is proven to be exponentially

stable, whereas asymptotic stablity is only ensured for the logarithmic barrier method. Both these

methods can be used flexibly to achieve a number of common and relevant graph optimisation

problems, so long as the partial derivatives of the objective function and the contstraints can be

estimated in an entirely decentralised manner.

In the remaining Chapters, we sought to extend the number of spectral functions of the

graph Laplacian that can be estimated using an entirely decentralised approach. In Chapter

5 we modified the algebraic connectivity estimator presented in [29] to estimate the largest

eigenvalue of the graph Laplacian matrix, its spectral radius λn. This allowed us to optimise

both the spectral radius λn and the ratio of the algebraic connectivity and the spectral radius,

the oft-called synchronisability ratio, thanks to its importance in synchronisation applications.

Special attention was placed on proving the exponential stability of the multi-layer system,

based upon the separation of time-scales, using singular perturbation theory. Finally in Chapter

6, we modified the decentralised estimator once more to estimate the total effective graph

resistance, a function of all non-zero eigenvalues. This was achieved through the addition of

white noise to excite all modes with equal energy. When following a similar approach to that

used previously to find an estimate for the partial derivative of the effective graph resistance,

we instead, surprisingly, found that we had inadvertantly found a decentralised estimate of

the partial derivative of the reduced Laplacian determinant. It was found to be necessary once

more to modify the estimator for the estimation of the partial derivative of the effective graph

resistance. Interestingly, it was not immediately obvious how to recover an estimator for the

reduced graph Laplacian from the estimator for its partial derivatives, and we leave this problem

to further work. A summary of the decentralised constrained optimisation problems that have

been looked at in this Thesis can be seen in Table 7.1.

The most important result from this Thesis is that we have proven that agents in a network
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are able to, through only local interactions, find globally optimal solutions for a number of

common network optimisation problems. There are however a number of caveats. The weight

adaptation strategies we have presented rely on a number of layers of successive estimation of

global variables. This makes these local strategies far slower than global strategies, as we must

wait for estimates to diffuse across the network. Furthermore, convergence of the top layers relies

on convergence of all those below, and in cases when the extremal eigenvalues of the optimal

network are not distinct, convergence is not guaranteed, and a limit cycle in the vicinity of the

optimal network might instead emerge.

7.1 Future Work

There remains a great many further avenues that can be explored. Looking at Table 7.1, we are

currently missing a single piece in the control and optimisation of the graph Laplacian spectral

functions that have been investigated. Specifically, though we have presented a method for the

decentralised estimation of the gradient of the reduced Laplacian determinant in Chapter 6.2.1,

we have yet been able to design a method for the value of the reduced Laplacian determinant

itself. This means that we are able to perform decentralised constrained maximisation as in

Example 6.1, but are currently unable to control the Reduced Determinant to a desired value.

As stated previously, using the current proposed methods, we cannot guarantee exponential

convergence onto the solution when the optimal network has non-distinct extremal eigenvalues.

A direction for further work would be to devise methods that can circumvent or mitigate this

problem, for example by damping the excitations induced by the rapid switching of the equilibrium

of the eigenvector estimator when there is not sufficient separation of the eigenvalues.

7.1.1 Discrete Time Stability Analysis

So far, the methods proposed are continuous-time in nature, and the proofs given are also set

in the continuous-time framework. However, in practice, numerical integration of the set of

ordinary differential equations and stochastic differential equations for the simulations has been

achieved using the Runge-Kutta method, Forward Euler method, and Euler-Maruyama method.

In digital applications, such as controlling the formation of a swarm of mobile robots, it may

prove beneficial to perform a more complete stability and time-scale separation analysis on the

difference equations that are suggested by the Forward Euler and Euler-Maruyama methods.

This would allow us to determine control gains sufficent to ensure stability for a given time-step,

which would significantly lower the number of computations performed before convergence to the

vicinity of the solution.
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7.1.2 Discrete Edge Weights

An interesting extension would be to move from the realm of optimising networks with contin-

uous edge weights, to those with integer edge weights. This has been achieved for instance in

centralised optimisation with the movement from semidefinite programming [77, 76] to mixed-

integer semidefinite programming techniques [82, 83]. The paramount in this class of networks

are those with 0-1 edge weights, as these are equivalent to unweighted graphs, and this would be a

reasonable problem to start with, before generalisation to general integer weights (multigraphs).

A first step towards integer edge weights could be achieved through the sparsification of the

continuous edge weight solutions. A simple method to achieve this would be to employ lasso

regularisation through the addition of the one norm of the edge weight vector, σ||w||1 (suitably

scaled by σ), to the objective function to be minimised. This one-norm, like the spectral function,

is also a global function of all the edge-weights and could be estimated using consensus.

Of course some edge weights will still lie in the (0,1) interval. A further method would be

required to restrict edge weights to the allowable set of {0,1}, and if we are interested in finding

the globally optimal network, some method to iterate over all feasible combinations would need

to be implemented. For example, we could investigate whether a decentralised branch and bound

algorithm could be implemented, using the convex relaxation as the bound. If we are instead

interested in finding a good (but not necessarily optimal) solution, an initial option for achieving

this would to be to use an edge snapping approach similar to that suggested in [131, 132], through

modification of the potential function by application of a double potential well on each edge

weight.

7.1.3 Generalised Means of the Graph Laplacian Spectrum

It may also be possible to extend the number of spectral functions that can be estimated in a

decentralised manner. Though the algebraic connectivity, synchronisability ratio, effective graph

resistance, and reduced Laplacian determinant are some of the most frequently studied and

useful spectral functions of the graph Laplacian (and this is why we have focussed on these

functions in this Thesis) it should be noted that all of these functions are related to each other

in the following way: they are all intimately related to generalised means of the set of non-zero

eigenvalues of the graph Laplacian matrix.

The generalised mean µp of a set of n values xi is defined in the following manner:

(7.1) µp =
(

1
n

n∑
i=1

xp
i

) 1
p

And specifically there are a number of important generalised means: µ−∞ is simply the minimum,

µ+∞ is likewise the maximum, µ−1 is the harmonic mean, µ0 is the geometric mean, and µ1

is the arithmetic mean. When we look at generalised means of the non-zero graph Laplacian

eigenvalues {λ2, . . . ,λn} then we find that:
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µ−∞ =min{λ2, . . . ,λn}=λ2(7.2)

µ−1 = n
1
λ2

+·· ·+ 1
λn

= n2

Ω
(7.3)

µ0 = n
√
λ2 . . .λn = np

∆(7.4)

µ1 = λ2 +·· ·+λn

n
= 1

n
Trace(L)= 21>w

n
(7.5)

µ+∞ =max{λ2, . . . ,λn}=λn(7.6)

That is, the spectral functions we have been interested are intimately related to generalised

means of the non-zero eigenvalues of the graph Laplacian matrix: the algebraic connectivity and

spectral radius are minimum and maximum respectively, the harmonic mean µ−1 is inversely

proportional to the effective graph resistance, and the geometric mean is the nth root of the

reduced graph Laplacian determinant. The arithmetic mean is proportional to the trace of the

graph Laplacian; which is the arithmetic mean of the weighted degrees of all nodes; which is

related to the the total edge weight in the network. This being a common constraint to use in

network optimisation problems.

All generalised means are symmetric functions, and they are either convex or concave, so they

will be convex/concave functions of the edge weights. Perhaps it may be possible to generalise

the decentralised estimators proposed so as to estimate any generalised mean of the non-zero

eigenvalues.

7.1.4 Other Matrices

Another extension would be to shift focus to other important graph matrices, for example the

controlling the spectrum of the adjacency and normalised Laplacian matrices [35]. Bounds on the

chromatic number of a graph can be determined by the extremal eigenvalues of the adjacency

matrix, and it is reasonably straightforward to modify the decentralised estimators to estimate

the extremal eigenvalues of the adjacency matrix. For example, to estimate the largest eigenvalue

of the adjacency matrix, and its associated eigenvector, one could simply use the following system:

ẋ= κ2Ax−κ3xx>x(7.7)

and the estimator vector x will align with the eigenvector vn associated with the largest eigen-

value of the adjacency matrix αn, with the magnitude of this vector being related to the magnitude

of the eigenvalue in a similar manner to seen with the graph Laplacian estimators. Again the

arithmetic mean of the squared components of x will have to be estimated, with for example a PI

consensus subsystem.
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The partial derivative of the largest eigenvalue with respect to the edge weights can also be

found from its associated eigenvector:

∂αn

∂w{i, j}
= 2vn1vn2

||vn||22
(7.8)

The derivation follows the same path as for the graph Laplacian matrix.
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