3,024 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Unsupervised self-organised mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys

    Full text link
    We present an application of unsupervised machine learning - the self-organised map (SOM) - as a tool for visualising, exploring and mining the catalogues of large astronomical surveys. Self-organisation culminates in a low-resolution representation of the 'topology' of a parameter volume, and this can be exploited in various ways pertinent to astronomy. Using data from the Cosmological Evolution Survey (COSMOS), we demonstrate two key astronomical applications of the SOM: (i) object classification and selection, using the example of galaxies with active galactic nuclei as a demonstration, and (ii) photometric redshift estimation, illustrating how SOMs can be used as totally empirical predictive tools. With a training set of ~3800 galaxies with z_spec<1, we achieve photometric redshift accuracies competitive with other (mainly template fitting) techniques that use a similar number of photometric bands (sigma(Dz)=0.03 with a ~2% outlier rate when using u*-band to 8um photometry). We also test the SOM as a photo-z tool using the PHoto-z Accuracy Testing (PHAT) synthetic catalogue of Hildebrandt et al. (2010), which compares several different photo-z codes using a common input/training set. We find that the SOM can deliver accuracies that are competitive with many of the established template-fitting and empirical methods. This technique is not without clear limitations, which are discussed, but we suggest it could be a powerful tool in the era of extremely large - 'petabyte' - databases where efficient data-mining is a paramount concern.Comment: 13 pages, 6 figures, accepted for publication in MNRA

    Time Series Forecasting: Obtaining Long Term Trends with Self-Organizing Maps

    No full text
    à la suite de la conférence ANNPR, Florence 2003International audienceKohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecasting method specifically designed for multi-dimensional long-term trends prediction, with a double application of the Kohonen algorithm. Practical applications of the method are also presented

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Generating Adaptive Behaviour within a Memory-Prediction Framework

    Get PDF
    The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems
    • …
    corecore