7,441 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Scheduling for Cooperative Energy Harvesting Sensor Networks

    Get PDF
    In cooperative communication networks, the source node transmits its data to the destination either directly or cooperatively with a cooperating node. When using energy harvesting technology, where nodes collect their energy from the environment, the energy availability at the nodes becomes unpredictable due to the stochastic nature of energy harvesting processes. As a result, when the source has a transmission, it cannot immediately transmit its data cooperatively with the cooperating node. It first needs to determine whether the cooperating node has sufficient energy to forward its transmission or not. Otherwise, its transmitted data may get lost. Therefore, when using energy harvesting, the challenge is for the source to schedule its transmissions whether directly or cooperatively, such that the fraction of its events (sensed data) that are successfully reported to the destination is maximized. Hence, in this dissertation, we address the problem of cooperating node scheduling in energy harvesting sensor networks. We consider the problem for the case of a single cooperating node and the case of multiple cooperating nodes, as well as the scenarios of one-way and two-way cooperative communications. We propose a simple scheduling scheme, called feedback scheme, which enables the source to optimally schedule its transmissions whether directly or cooperatively. We show that the feedback scheme maximizes the system performance, but does not require auxiliary parameter optimization as does the-state-of-the-art scheme, i.e., the threshold-based scheme. However, the feedback scheme has the problem of overhead caused by transmitting the energy status of the cooperating node to the source. To overcome this burden, we introduce a statistical model that enables the source to estimate the energy status of the cooperating node. Because cooperation may result in the cooperating node performing worse than the source, we address this problem through fairness in the performance between the nodes in the network. In addition, we address the problem of scheduling for throughput maximization in a wireless energy harvesting uplink. We propose centralized and distributed algorithms that find the optimal solution, and we address complexity issues. Our algorithms are shown to have a linear or quadratic complexity compared to the exponential complexity of the brute force approach. Compared with cooperative transmission, our approach maximizes the network throughput such that no node\u27s throughput is adversely affected

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer
    corecore