1,110 research outputs found

    Bone Density Measurement Using Computed Tomography

    Get PDF

    Texture analysis of aggressive and nonaggressive lung tumor CE CT images

    Get PDF
    This paper presents the potential for fractal analysis of time sequence contrast-enhanced (CE) computed tomography (CT) images to differentiate between aggressive and nonaggressive malignant lung tumors (i.e., high and low metabolic tumors). The aim is to enhance CT tumor staging prediction accuracy through identifying malignant aggressiveness of lung tumors. As branching of blood vessels can be considered a fractal process, the research examines vascularized tumor regions that exhibit strong fractal characteristics. The analysis is performed after injecting 15 patients with a contrast agent and transforming at least 11 time sequence CE CT images from each patient to the fractal dimension and determining corresponding lacunarity. The fractal texture features were averaged over the tumor region and quantitative classification showed up to 83.3% accuracy in distinction between advanced (aggressive) and early-stage (nonaggressive) malignant tumors. Also, it showed strong correlation with corresponding lung tumor stage and standardized tumor uptake value of fluoro deoxyglucose as determined by positron emission tomography. These results indicate that fractal analysis of time sequence CE CT images of malignant lung tumors could provide additional information about likely tumor aggression that could potentially impact on clinical management decisions in choosing the appropriate treatment procedure

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces

    Intraoperative Planning and Execution of Arbitrary Orthopedic Interventions Using Handheld Robotics and Augmented Reality

    Get PDF
    The focus of this work is a generic, intraoperative and image-free planning and execution application for arbitrary orthopedic interventions using a novel handheld robotic device and optical see-through glasses (AR). This medical CAD application enables the surgeon to intraoperatively plan the intervention directly on the patient’s bone. The glasses and all the other instruments are accurately calibrated using new techniques. Several interventions show the effectiveness of this approach

    Modeling the Biological Diversity of Pig Carcasses

    Get PDF

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen
    corecore