19,089 research outputs found

    Selective pressures on genomes in molecular evolution

    Get PDF
    We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.Comment: 16 pages, 3 figures, to be published in J. theor. Biolog

    Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content.

    Get PDF
    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2-3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure

    Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness?

    Get PDF
    In the past few years, numerous research projects have focused on identifying and understanding scaling properties in the gene content of prokaryote genomes and the intricacy of their regulation networks. Yet, and despite the increasing amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here show that (i) our model reproduces qualitatively these scaling laws and that (ii) these laws are not due to differences in lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an indirect selective pressure for robustness that constrains the genome size

    Stops making sense: translational trade-offs and stop codon reassignment

    Get PDF
    Background Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature. Results In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences. Conclusions We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle
    • …
    corecore