8 research outputs found

    Frugal Satellite Image Change Detection with Deep-Net Inversion

    Full text link
    Change detection in satellite imagery seeks to find occurrences of targeted changes in a given scene taken at different instants. This task has several applications ranging from land-cover mapping, to anthropogenic activity monitory as well as climate change and natural hazard damage assessment. However, change detection is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we devise a novel algorithm for change detection based on active learning. The proposed method is based on a question and answer model that probes an oracle (user) about the relevance of changes only on a small set of critical images (referred to as virtual exemplars), and according to oracle's responses updates deep neural network (DNN) classifiers. The main contribution resides in a novel adversarial model that allows learning the most representative, diverse and uncertain virtual exemplars (as inverted preimages of the trained DNNs) that challenge (the most) the trained DNNs, and this leads to a better re-estimate of these networks in the subsequent iterations of active learning. Experiments show the out-performance of our proposed deep-net inversion against the related work.Comment: arXiv admin note: text overlap with arXiv:2212.1397

    Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image Change Detection

    Full text link
    Satellite image change detection aims at finding occurrences of targeted changes in a given scene taken at different instants. This task is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we investigate satellite image change detection using active learning. Our method is interactive and relies on a question and answer model which asks the oracle (user) questions about the most informative display (dubbed as virtual exemplars), and according to the user's responses, updates change detections. The main contribution of our method consists in a novel adversarial model that allows frugally probing the oracle with only the most representative, diverse and uncertain virtual exemplars. The latter are learned to challenge the most the trained change decision criteria which ultimately leads to a better re-estimate of these criteria in the following iterations of active learning. Conducted experiments show the out-performance of our proposed adversarial display model against other display strategies as well as the related work.Comment: arXiv admin note: substantial text overlap with arXiv:2203.1155

    Frugal Reinforcement-based Active Learning

    Full text link
    Most of the existing learning models, particularly deep neural networks, are reliant on large datasets whose hand-labeling is expensive and time demanding. A current trend is to make the learning of these models frugal and less dependent on large collections of labeled data. Among the existing solutions, deep active learning is currently witnessing a major interest and its purpose is to train deep networks using as few labeled samples as possible. However, the success of active learning is highly dependent on how critical are these samples when training models. In this paper, we devise a novel active learning approach for label-efficient training. The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria. The proposed approach is probabilistic and unifies all these criteria in a single objective function whose solution models the probability of relevance of samples (i.e., how critical) when learning a decision function. We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration, using a particular stateless Q-learning model. Extensive experiments conducted on staple image classification data, including Object-DOTA, show the effectiveness of our proposed model w.r.t. several baselines including random, uncertainty and flat as well as other work.Comment: arXiv admin note: text overlap with arXiv:2203.1156

    A Study of Algorithm Selection in Data Mining using Meta - Learning

    Get PDF

    Cost sensitive meta-learning

    Get PDF
    Classification is one of the primary tasks of data mining and aims to assign a class label to unseen examples by using a model learned from a training dataset. Most of the accepted classifiers are designed to minimize the error rate but in practice data mining involves costs such as the cost of getting the data, and cost of making an error. Hence the following question arises:Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?It is well known to the machine learning community that there is no single algorithm that performs best for all domains. This observation motivates the need to develop an “algorithm selector” which is the work of automating the process of choosing between different algorithms given a specific domain of application. Thus, this research develops a new meta-learning system for recommending cost-sensitive classification methods. The system is based on the idea of applying machine learning to discover knowledge about the performance of different data mining algorithms. It includes components that repeatedly apply different classification methods on data sets and measuring their performance. The characteristics of the data sets, combined with the algorithm and the performance provide the training examples. A decision tree algorithm is applied on the training examples to induce the knowledge which can then be applied to recommend algorithms for new data sets, and then active learning is used to automate the ability to choose the most informative data set that should enter the learning process.This thesis makes contributions to both the fields of meta-learning, and cost sensitive learning in that it develops a new meta-learning approach for recommending cost-sensitive methods. Although, meta-learning is not new, the task of accelerating the learning process remains an open problem, and the thesis develops a novel active learning strategy based on clustering that gives the learner the ability to choose which data to learn from and accordingly, speed up the meta-learning process.Both the meta-learning system and use of active learning are implemented in the WEKA system and evaluated by applying them on different datasets and comparing the results with existing studies available in the literature. The results show that the meta-learning system developed produces better results than METAL, a well-known meta-learning system and that the use of clustering and active learning has a positive effect on accelerating the meta-learning process, where all tested datasets show a decrement of error rate prediction by 75 %

    Selective generation of training examples in active meta-learning

    No full text
    corecore