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ABSTRACT  

Classification is one of the primary tasks of data mining and aims to assign a class label to 

unseen examples by using a model learned from a training dataset. Most of the accepted 

classifiers are designed to minimize the error rate but in practice data mining involves costs 

such as the cost of getting the data, and cost of making an error. Hence the following question 

arises: 

Among all the available classification algorithms, and in considering a specific type of data 

and cost, which is the best algorithm for my problem? 

It is well known to the machine learning community that there is no single algorithm that 

performs best for all domains. This observation motivates the need to develop an ―algorithm 

selector‖ which is the work of automating the process of choosing between different 

algorithms given a specific domain of application.  

Thus, this research develops a new meta-learning system for recommending cost-sensitive 

classification methods.  The system is based on the idea of applying machine learning to 

discover knowledge about the performance of different data mining algorithms.  It includes 

components that repeatedly apply different classification methods on data sets and measuring 

their performance.  The characteristics of the data sets, combined with the algorithm and the 

performance provide the training examples. A decision tree algorithm is applied on the 

training examples to induce the knowledge which can then be applied to recommend 

algorithms for new data sets, and then active learning is used to automate the ability to 

choose the most informative data set that should enter the learning process. 

This thesis makes contributions to both the fields of meta-learning, and cost sensitive learning 

in that it develops a new meta-learning approach for recommending cost-sensitive methods.   
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Although, meta-learning is not new, the task of accelerating the learning process remains an 

open problem, and the thesis develops a novel active learning strategy based on clustering 

that gives the learner the ability to choose which data to learn from and accordingly, speed up 

the meta-learning process. 

Both the meta-learning system and use of active learning are implemented in the WEKA 

system and evaluated by applying them on different datasets and comparing the results with 

existing studies available in the literature. The results show that the meta-learning system 

developed produces better results than METAL, a well-known meta-learning system and that 

the use of clustering and active learning has a positive effect on accelerating the meta-

learning process, where all tested datasets show a decrement of error rate prediction by 75 %.
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1 CHAPTER ONE: INTRODUCTION 

1.1 Research Aim, Objectives and Motivation 

There is no doubt in the machine-learning community that increasing the amount of data used 

in the learning process will positively impact the learning process performance because it 

increases the classifier version space size (Baxter, 2000; Dietterich, 1995); however, the 

question arises in regard to the type of data that should be used in the process. Moreover, 

there is consideration as to whether the next unlabelled data should be chosen randomly or 

whether a specific methodology should be adapted to select the most proper data. In the 

developed active learning selective methodology, the previous questions will be answered. 

1.2 Research Motivation 

This research is motivated by the fact that it is now widely acknowledged that there is no 

single machine learning algorithm that is always the best.  For years, researchers have tried to 

develop better and better machine learning algorithms. Better decision tree learners, better 

neural networks, better association rule mining methods, etc. etc. In recent years, there has 

also been a recognition that costs as well as accuracy need to be taken into account, leading to 

further algorithms and issues.   

Hence, there is a real need to develop a system for recommending an algorithm.  However, 

we don't have the knowledge of which algorithm works best under a given situation. 

Thus, the aim of this research is to build a meta-learning system for cost-sensitive learning 

that is able to understand the relationship between the learning task or domain and the 

learning strategies, and also develop a smart active learning method that is able to seek the 

data that the learner needs. The learning process is based on the accumulative experience 

gained from previous experience. In a meta-level learning process, learning does not need to 

start from scratch; instead each new task will take advantage of accumulating experience on 

the performance of multiple applications of a learning system.  
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1.3 Research Objectives 

 

Given the above motivation, the research objectives are: 

1. To carry out an in-depth, comprehensive literature review centred on the present data 

mining approaches, their use in meta-learning, cost-sensitive learning, and active-

learning. 

2. To devise a meta-learning system with the capacity to make suggestions concerning 

learning approaches that take cost into consideration 

3. To devise an active learning approach that provides learners with the ability to choose 

the most informative data for the learning process, and accordingly quicken the learning 

process 

4. To conduct an empirical evaluation of the meta-learning approach, and accordingly 

contrast the findings with another well-known meta-learning system. 

5. To assess the active learning approach devised in this research by drawing a contrast 

between the findings obtained and those from a passive learning approach that 

randomly selects data. 

1.4 Research Methodology 

A number of research approaches have been examined, with the most suitable one adopted in 

this study. Different research methodologies include the following: 

 Descriptive research vs. Analytical research 

This approach includes the study that explains the present state without any degree of 

control over input variables, commonly adopted in business and social science, where 

scholars can only explain the theory or the facts, the factors affecting theory, or 

otherwise explaining what occurs in regard to a particular phenomenon or what has 

happened. Thus, the descriptive research cannot consider the study results‘ validity 

owing to the fact it does not describe the result causes (Kane, 1983), whereas in the case 
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of the analytical research, the question is posed as to why it is that way or why we have 

this result. This is achieved through critical evaluation for the state through incorporating 

different input variables in an effort to complete a critical assessment for the results 

(Kothari, 2011; Silverman, 2013). 

 Conceptual vs. Empirical and Scientific methods 

Conceptual studies are carried out to devise a new theory or concept, or otherwise as an 

effort to describing a presence one, such as the cause behind a particular disease, for 

example. This is referred to as a ‗pen and paper‘ approach owing to its reliance on the use 

of concepts, which are then either proven or disproven. Empirical studies, on the other 

hand, involve a number of experiments and observations carried out in an effort to validate 

(or otherwise) an existing theory, or to develop a new one. In such a research, the 

researcher has complete control over the input variables, as well as over the design of the 

experiment, adhering to researcher needs (Kothari, 2011). In contrast, scientific 

approaches make use of both conceptual and empirical assessment approaches 

methods, beginning with the formulation of a hypothesis, with experiments then designed 

with the aim of testing the suggested hypothesis. Complete control is maintained by the 

researcher in proving or disproving the hypothesis. In such approaches, it is common for 

researchers to prove theory through the completion of experiments and observations, 

ensuring research bias on the experiments result outcomes is decreased (Lakatos, 1980). 

The current study falls under this approach.  

 Applied vs. Fundamental 

Applied researches are those that have made use of different approaches in an effort to 

overcome problems facing businesses or other entities, or society. In contrast, fundamental 

studies are centred on establishing hypotheses or defining theory, including a new 

mathematical framework or devising a new scientific algorithm (Bond & Fox, 2013; 

Kothari, 2011). 
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 Quantitative vs. Qualitative 

Quantitative studies are centred on quantity, measurements, its application in the field that 

uses different measurements, including computational, mathematical and statistical 

approaches, and methods to justify theory or facilitate understanding of the links between 

different patterns and entities. Importantly, quantitative concerns quality and types that 

cannot be measured, and has a strong link with sociological and behavioural 

considerations, mainly adopted in regard to marketing and social science, where the 

researches are concerned with establishing why people think in certain ways (Kothari, 

2004, 2011; Patton, 1980; Silverman, 2013). The argument has been posited that both 

qualitative and quantitative methods need to be carried out alongside one another, with 

Kuhn (1996) stating that ‗large amounts of qualitative work have usually been prerequisite 

to fruitful quantification in the physical sciences‘.  

The study methodology applied in this study is scientific, utilising both empirical assessment 

and conceptual approaches, and including the following stages 

 

1.    Outlining the study questions by emphasising the key issue driving the study, and 

including the fact that there is wide acceptance that there is no individual cost sensitive 

data mining algorithm that is most suitable, which means the data miner is required to 

assess all methods in an effort to determine the best in line with the issue.  

2.    Carrying out an in-depth literature review on the present methods and techniques to 

overcome the problem.  

3.    Design and implement a solution in mind of the problems, which involves devising a 

new cost-sensitive meta-learning system that has the ability to estimate the costs and 

accuracy for a particular cost-sensitive method, and thus guide the most suitable 

algorithm for a particular problem.  

4.    Empirical evaluation: This involves carrying out a number of experiments to cover all 

learning processes. Subsequently, the different feature selection methods are assessed 

considering the fact that there is no best feature selection method for all cases. Following, 
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the features that are seen to be uncorrelated or irrelevant are removed, with different cost-

sensitive methods. The entire process is observed and assessed, with active learning 

proposed and developed in mind of eradicating some of the issues inherent in the meta-

learning process. A mixture of 10 folds cross validation and leave one out validation 

methods are used in validation process. 

5.    Results analysis: Involves analysing and contrasting the results with similar works in 

the same domain. A conclusion is established from the findings. The key objective of the 

developed system is achieved, with the results seen to outperform the existing work in the 

same field.  
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1.5 Outline of Thesis  

The following summarises the organisation of this thesis.   

Chapter 1: Introduction 

This chapter has presented an introduction to the thesis and the research hypothesis, 

motivation, and objectives. 

Chapter 2: Background  

This chapter presents the background and a literature review covering the fields of cost-

sensitive learning, meta-learning, feature selection and active learning. 

 Chapter 3: Cost sensitive meta-learning system development 

This chapter presents the development of a cost sensitive meta-learning system that will be 

able to recommend a cost-sensitive data mining method given a specific data set, and able to 

improve its recommendations as it learns from the experience gained from data 

characterization.  

Chapter 4: Empirical evaluation of new cost sensitive meta-learning system. 

This chapter presents an empirical evaluation of the developed system. This includes 

comparing the results obtained from applying a cost sensitive meta-learning system with the 

results published from METAL project. The evaluation is based on comparing the accuracy 

and the cost. It also includes an evaluation of the developed active learning system relative to 

passive learning with random selection 

Chapter 5: Conclusion and future work 

This concludes the thesis by reviewing the extent to which the objectives of this study have 

been met, summarising the contributions and presenting directions on the future work. 
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2 CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW 

This chapter provides the background, focusing on the four main areas contributing to this 

research: Section 2.1 covers cost-sensitive learning ;  Section 2.2 covers meta-learning and its 

application in data mining; Section 2.3 describes feature selection methods and their 

application in data mining in general and in meta-learning work specifically; and Section 2.4 

describes active learning, and covers the general trends of active learning in  data mining, as 

well as the application of active learning in meta-learning. 

 

2.1 Cost-Sensitive Learning 

 

This section provides an overview of the cost-sensitive learning background and a literature 

review. 

2.1.1 Cost-Sensitive Background 

In classification problems, most learning algorithms aim at reducing the number of 

misclassification instances and increasing the number of correctly classified instances. In 

learning processes, costs are incurred, such as costs of misclassification, costs of testing, 

costs of obtaining data … etc. Cost-sensitive learning is a type of learning that takes costs 

into consideration; aiming at minimising the costs associated with the learning process. In 

cost-sensitive learning, an unknown example should be predicted to have the class that leads 

to the lowest expected cost (Elkan, 2001; Turney, 1995). Moreover, the model built from 

cost-sensitive learning should be developed in such a way as to achieve high accuracy but 

with low costs. An obvious example often presented in the literature for cost-sensitive 

analysis is medical diagnosis, where the doctor decides whether or not to carry out medical 

tests before making a diagnosis (Qin, Zhang, Wang, & Zhang, 2011; Turney, 1995; 

Zadrozny, Langford, & Abe, 2003). Using a test can incur costs, so therefore the question is 

raised as to whether or not it is worth carrying out a particular test. In credit card fraud 

detection, for example, if the cost of predicting credit card fraud is more than the amount of 

losses, is it then worth completing the test? 
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With the aim of developing a cost-sensitive learning concept, many researchers have worked 

in this field, with Elkan (2001) defining the term ‗optimal solution‘ as meaning the learning 

process that minimises the costs of misclassification whilst maximising accuracy. Turney 

(2000) lists the various different types of costs:  

 Misclassification costs: is the cost of making error such as classifying a non-cancer 

patient as cancer patient. 

 Test costs : is the cost of performing a specific test, such as the cost of performing a 

patient blood test  

 Human computer interaction costs: this is the cost that needs human work, such as the 

cost of tuning the model parameters, the cost of applying domain knowledge into 

learned model, and the cost of transforming the data into specific format to be used in 

a specific machine learning system. 

 

In the literature, misclassification costs are highlighted as being the most important costs in 

machine-learning (McCarthy, Zabar, & Weiss, 2005b; Turney, 1995, 2000), it depends on 

whether the predicted instance is a false negative (positive but classified as negative) or a 

false positive (negative but classified as positive). It is widely agreed that the costs of 

misclassification for the rare class (positive class) are often higher than the costs of 

misclassification for the negative class (dominant class). 

The next section highlights one of the main problems in developing a cost-sensitive classifier, 

which is known as the imbalance data problem (Sun, Wong, & Kamel, 2009). 

2.1.2  Cost-Sensitive Learning in the Imbalanced Data Problem 

In machine-learning, the class imbalance problem is one of the key challenges associated 

with cost-sensitive learning. In some applications, one class is rare, and the costs of not 

recognising it correctly are very high. If the data is imbalanced there is a danger that a learner 

will be overwhelmed by non-rare classes and accordingly will tend to classify each instance 

as frequent instance (Kotsiantis, Kanellopoulos, & Pintelas, 2006; Sun et al., 2009), making 

the model useless. An obvious example of this problem is cancer diagnosis, where the cost of 

misclassifying an example is high but the proportion of cases is low. In such cases, any non-

cost-sensitive classifier will tend to classify most instances as non-cancer, but the costs of 
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misclassifying cancer patients are more expensive (more serious) than misclassifying a non-

cancer patient; therefore, for datasets that contain a 95% dominant class and 5% rare class, 

classifying all instances as the dominant class will produce a high accuracy of 95%. For the 

medical applications, such a classifier is rather useless as it fails to identify the disease, which 

is the main interest of the user. As a result of this, there is a serious need to adapt a certain 

approach to tackle this problem; thus, building a classifier that does not consider the cost of 

misclassification would not perform well owing to the fact it is biased in classifying most of 

the instances under the category of a frequent class, resulting in a useless classifier. Taking 

into consideration that the misclassification costs of rare items are usually higher than the 

misclassification costs of frequent items, the needs for a cost-sensitive learner with the 

capacity to deal with imbalanced data is fundamental in developing a good classifier. 

Importantly, devising a good classifier over skewed data needs to consider three different 

factors (Sun, Kamel, Wong, & Wang, 2007):  

1. Imbalanced ratio: The ratio between rare classes and major classes. 

2. Small sample size: Where a smaller sample size has more effect in terms of 

recognising infrequent behaviour. 

3. Separability: Meaning the difficulties in separating the small ratio classes from large 

ratio classes.   

 

More details on the imbalanced data issue are covered by Ganganwar (2012), the reader is 

also referred to a comprehensive literature review of cost sensitive learning by Lomax and 

Vadera (2013). The following subsections provide a brief description of cost-sensitive 

learning. 

This section presents an overview of the different studies covered by the literature in terms of 

cost-sensitive classification. The word ‗cost‘ in the literature is used to describe the term in a 

very abstract sense, where cost has different measurement units, such as monetary units 

(British pounds), temporal units (seconds) or abstract units of utility (Turney, 2000), for 

example. Cost is not only a physical entity that can be measured, but also includes time 

wasted and the loss in patient life, such as misclassifying a patient with cancer as having no 

cancer.  
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An extensive search of the literature has been conducted in an effort to identify all existing 

cost-sensitive learning algorithms. The available algorithms are established and classified by 

the method through which an algorithm deals with cost, and according to the cost type 

covered. Some of the algorithms aim at minimising a certain type of error, such as 

misclassification error, or the cost of obtaining data. On the other hand, some aim at 

minimising more than one error type, such as the costs of misclassification error and the costs 

of obtaining data at the same time.  

Cost-sensitive algorithms vary according to the way they incorporate costs in the learning 

process. Two approaches are identified in the literature, the first of which is designing a 

classifier that is cost-sensitive, known as a direct method, whilst the second, which uses an 

indirect approach, involves designing a wrapper as a separate phase with the objective to 

convert cost insensitive learning algorithms to cost-sensitive. The following two subsections 

describe these two approaches  

2.1.3.1    Direct Methods 

The algorithmic approach changes the steps of an accuracy based classifier to take account 

of costs by directly utilising the misclassification costs (or other cost types) in the learning 

algorithm itself. For example, in regard to decision tree learning, the information theoretic 

measure is adjusted, along with the threshold, based on the costs of the various classes in 

an effort to include the cost of misclassification (Lomax & Vadera, 2013), with several 

works revealed under this category, such as EG2 introduced by Nunez (1991), CS-ID3 by 

Tan & Schlimmer (1989), and IDX by Norton  (1989).   All of these systems developed a 

cost-sensitive tree by introducing a new cost information ratio, which produces a cost 

factor in the information gain used in deciding which attribute the decision tree will select 

during the decision tree construction process.  

In traditional cost in-sensitive decision tree induction, the entropy is calculated for the 

training data to measure how homogenous the data is (Quinlan, 1986). The ID3 decision 

tree algorithm developed by Quinlan  (1986) uses the information gain measured for each 

attribute to decide which attribute should be chosen next when constructing a decision 

tree. This measure of information gain is based on the entropy for an attribute S, calculated 

using (2-1): 
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 Entropy (S) = ∑    
 
       (  )                              

 

                          (2-1) 

 

     Where S is an attribute, n is number of example for which the proportion of examples in       

class i is   . 

Given this definition of entropy, Information gain for a specific attribute X with respect to 

a set of example S is calculated using (2-2): 

       

ID3:         Gain(X) = Entropy (S) -∑
    

              Entropy (             

 

 

     (2-2) 

 

Value(X) is the set of X attributes values, 

                                                                           

    example belong to specific attribute value  

                                     

As mentioned above, ID3 uses the information gain value to decide which attribute to 

select. In direct methods that aim to take account of cost, this measure is changed to 

include costs. Different authors have experimented with different measures, leading to 

different algorithms. The measures, called the Information Cost Function (ICF) and the 

algorithms are:  

EG2:                   =        =
 

       
                                                                (2-3) 

IDX:                    =
       

  
                                                                               (2-4) 

 CS-ID3:              =
          

  
                                                                           (2-5) 
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Where    is the cost of attribute x,   is a predefined parameter that bias one attribute over 

others. For further details on cost-sensitive classifiers using a direct method, see the 

Literature review carried out by Lomex & Vadera (2013) and (Wang, 2013). The next 

subsection covers wrapper cost sensitive method. 

2.1.3.2 Wrapper Methods 

In this approach, the cost-sensitive learning process uses a wrapper in order to convert a 

cost-insensitive algorithm to a cost-sensitive without changing the internal behaviour of the 

learning algorithm. This is known as a black box as it deals with the algorithm as a closed 

box, without changing any of the classifier behaviours or parameters. In contrast to the 

transparent box, which deals with the algorithm itself (direct method), this approach does 

not require any knowledge of a particular algorithm behaviour. There are three methods that 

utilise this approach, all of which are detailed below.  

A. Sampling 

This class of algorithm changes the frequency of the instances in the training set according 

to its cost. As mentioned previously, the sampling approach was originally proposed to 

solve the problem of imbalanced data that affects the induced learner accuracy. The idea 

of this technique is to convert a cost in-sensitive learner to cost-sensitive learner by 

increasing the number of costly class examples and reducing the number of non-costly 

class. As a result, increasing the frequency of costly class will increase its weight, which 

ultimately reflects its importance. Elkan (2001) suggests changing the classes‘ distribution 

in the training set till the costly class has a higher number of examples that reflects its cost. 

In the literature, two sampling approaches are proposed, namely random sampling, which 

implies changing the data distribution randomly, and determinate sampling, which 

implies changing the data distribution in a predefined determinate way (McCarthy, Zabar, 

& Weiss, 2005a) . Both approaches can be applied to any algorithm in the pre-processing 

stage, meaning the algorithm will receive data relatively adjusted according to reflect its 

cost. Random and determinate sampling can be carried out in the following ways: 

1. Over-sampling: Including increasing the number of costly class examples  

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002). 



 

 

13 

 

 

2. Under-sampling: Including reducing the number of less costly class examples 

(Chawla et al., 2002; Drummond & Holte, 2005; Kotsiantis et al., 2006; Weiss, 

2004). 

It has been noticed that over-sampling can increase the occurrence of over-fitting 

because producing the exact copies of existing data produces a model that cannot 

perform well in the testing phase. In addition to this, it can produce an additional 

computational task if the training data is large (Kotsiantis et al., 2006; Mease, Wyner, & 

Buja, 2007). On the other hand, under-sampling could cause losses in data and may 

reduce the learning accuracy as it may discard some potential majority data. Generally 

speaking, re-sampling methods are attractive because they do not include any changes in 

the algorithm itself; instead, it adjusts the data distribution to make it more biased toward 

the costly class, meaning it is a simple way that can be adapted without being concerned 

about the internal classifier behaviour. 

B. Ensemble Learning Method 

The ensemble learning method is a supervised learning approach combining multiple 

models so as to produce a ‗better‘ classifier. This depends on learning from multiple 

model prediction, which is combined in a specific manner (either voting or averaging) so 

as to induce a new learning model. The predictions of each learning process can be 

combined in different ways, such as through voting, averaging and weighting. The 

following summarises some of the ensemble methods from the literature. 

 Boosting 

Boosting is the process of inducing a set of classifiers on the same data set in order to 

achieve empowerment (Schapire & Singer, 1999). In this case, the process will be carried 

out in a sequential manner and in different turns. At the end of each turn, the weights are 

adjusted so as to reflect the instance importance for the next learning turn. The boosting 

technique was initiated by Kearns & Valiant (1988), who asked: ‗Can a set of weak 

learners create a single strong learner?‘ In boosting, the final result is the accumulation 

of individual learners applied to the dataset either by averaging or voting.  

Cost-sensitive boosting includes changing the class distribution so as to reflect the cost 

of the induced class by assigning higher costs for the class that is more important. In 
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some papers, boosting is recognised as one type of sampling as a matter of changing the 

data set distribution, which is referred to in (Guo, Yin, Dong, Yang, & Zhou, 2008) as 

‗advanced sampling‘. The following summarises boosting in cost-sensitive methods. 

 AdaBoost:  AdaBoost is a machine-learning algorithm developed by Freund, Seung, 

Shamir, & Tishby (1993), which learns a highly accurate learner by accumulating 

different weak hypothesis. Each instance is given a specific weight, which reflects its 

importance in the learning process. Importantly, each hypothesis is trained on the 

same training example, with different distributions on different turns. On each turn, 

the algorithm increases the weight of the wrongly classified instance and decreases 

the weight of the correctly classified instance. 

 AdaCost: Although AdaBoost takes into consideration the misclassified class by 

increasing its weight and decreasing the weight of correctly classified classes, 

nonetheless, it deals with all misclassified classes in the same way; increasing the 

weight of misclassified classes and decreasing the correctly classified weight in the 

same ratio. For cost sensitive learning using AdaCost technique, costly classes are 

assigned more weight because it includes higher misclassification costs. This strategy 

is adapted by AdaCost, as proposed by Fan, Stolfo, Zhang, & Chan (1999), and uses 

the same strategy as AdaBoost but increases the weight of costly instances that are 

wrongly classified by a misclassification adjustment factor. 

 Weighting: This approach is inspired by the boosting idea by weighting each instance 

in such a way so as to reflect its importance in the learning task. However, the 

boosting strategy, on the other hand, assigns the initial equal weight for all instances 

in the first step, where this weight either increases if the instance is misclassified or 

otherwise decreases. Ting (1998) proposes an instance weighting approach that 

provides a different weight for each example, according to its misclassification cost 

from the first turn. 

 

 Bagging 

In bagging, booststrap samples (random sample with replacement) are generated from 

the training set, applying a specific learning algorithm to different data samples with the 
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objective to generate different models that are aggregated so as to produce single 

outcome. Examples of cost-sensitive algorithms that use bagging include: 

 MetaCost (Relabeling) (Domingos, 1999) is the name afforded to the algorithm that 

utilises the bagging approach. The main idea is to change the label of each training 

example to be the label of optimal class according to the conditional risk equation 

(minimising the cost) and then learning a new classifier in order to predict this new 

label. This is known as sampling with labelling. 

 Costing, as proposed by Zadrozny et al. (2003), is the algorithm that utilises the 

bagging approach by applying a base learner to samples of the data for the aim of 

generating different models. The use of sampling in costing is based on a folk 

theorem, which implies the transference of ‗a cost in-sensitive learner to cost-sensitive 

learner could be done by changing the training set instances distribution by 

multiplying it by a factor that is proportional to the relative cost of each example‘ 

which means changing the data distribution in the generated samples to minimize the 

cost of the original data. In contrast with MetaCost, costing changes the distribution 

of the training sample each time in such a way so as to minimise the misclassification 

cost and then uses the base learner in the new sampled data. 

 

This section has described the use of wrapper methods for cost-sensitive learning. The next 

section will cover meta-learning and its application in data mining. 

2.2 Meta-Learning Background and Literature Review 

 

In traditional data mining, learning algorithms are applied in order to build a pattern that 

predicts the value of unknown attributes given the values of other attributes. Different data-

mining algorithms are applied, such as clustering, association rule and classification, which 

include nearest-neighbour methods, decision tree induction, lazy learning and rule-based 

learning. The choice of specific data-mining techniques depends on the kind of data, the task 

that will be achieved and the domain area. Data mining techniques have been developed in 

recent years to fit all market needs—whether commercial, educational or medical. Most 

organisations are now seeking to add value to their data, which impacts their decision; 

however, most of these organisations are overwhelmed by data and look forward to 
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transferring such huge amounts of data into knowledge. Data mining provides a method of 

discovering this knowledge; unfortunately, however, both fields are growing constantly, 

which makes dealing with large amounts of data—and those developed techniques—

restricted to specialised experts. Another way of doing this is to apply the repetitive 

processing of trial and error so as to garner satisfactory results. Meta-learning concepts 

provide many techniques that help in tackling this problem, such as by automatically learning 

from any previous learning experience and applying this knowledge when facing a new 

problem. Moreover, such techniques can be learnt from every new task, where such 

knowledge then can be applied to any new problem, thus being more experienced and 

informed over time. The following presents a meta-learning perspective, goal, application and 

general idea overview, in addition to various recent studies in this field. 

2.2.1  Meta-Learning Perspective and Overview 

Meta-learning has attracted considerable interest in the machine-learning community during 

recent years. This section presents some of the meta-learning definitions and concepts that 

help in defining the research area, and will accordingly highlight our problem in a suitable 

and thorough way. In this part, we will cover meta-learning goals and benefits, as well as 

meta-learning application.  

A number of meta-learning definitions are given in the literature. The following provides a 

summary of those different meta-learning aspects and definitions: 

 ‗Meta-learning is defined as the process of learning how to learn, i.e., the learner 

learns its learning process from its knowledge about the task under the analysis‘ 

(Giraud-Carrier, 2008). 

 ‗Meta-learning is the understanding of the interaction between the mechanism of 

learning and the concrete contexts in which that mechanism is applicable‘ (Giraud-

Carrier, 2008). 

 ‗Meta-learning is the process of creating optimal predictive model and reuse previous 

experience from analysis of other problems‘ (Vilalta & Drissi, 2002). 

 ‗It is the process of automatically or dynamically learning an appropriate learner bias‘   

(Anderson & Oates, 2007). 
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 All these definitions have a similar meaning, emphasizing the idea of understanding the 

behaviour of the existing domain and make the link between the current problem and the 

learning task, in order to learn from the learning process itself. This research takes advantages 

of the benefits of meta-learning to develop a cost sensitive meta-learning system.  

2.2.2 Meta-Learning Goals and Benefits 

The benefits of meta-learning can be summarised as follows: 

1. Learning from the previous experience 

 

In traditional data mining, an algorithm is used on some data and there is no accumulated 

experience as a result of using the algorithm.  For example, the algorithm may not have 

worked well on a particular type of data and the lessons learned would only be learned 

by the individual. In contrast, the idea with meta-learning is to learn from the 

accumulative experiences (Brazdil, Soares, & Da Costa, 2003; Vanschoren, 2010) .  

 

 

2. Algorithm selection 

 

As mentioned above, meta-learning is used in order to choose an appropriate algorithm for 

a specific task (Vilalta & Drissi, 2002). The goal of a recommender is not only concerned 

with choosing the best algorithm but also on ranking the algorithms according to their 

predictive accuracy (Brazdil, Christophe, Carlos, & Ricardo, 2008; Brazdil et al., 2003) or 

any other performance measurement, such as accuracy and cost in this work. Generally 

speaking, the algorithm recommender is the process of choosing the best algorithm (set of 

algorithms) that produces good results after applying a set of algorithms on a specific data 

set with specific characteristics.  

 

3. Model generation  

 

Model generation is different to the algorithm selector in that it finds model parameters to 

make it suitable for a specific task. Vanschoren (2010) points out that it is not only the 

algorithms selection that can be adapted using meta-learning, but also different parameter 
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settings, which will naturally allow the performance of the same algorithm to vary on 

different datasets, thus leading to a new concept in the meta-learning  (Gomes, Prudancio, 

Soares, Rossi, & Carvalho, 2012). The choice of parameter value that results in best 

performance is carried out using the following steps: (1) a set of meta-features that 

characterises the problem under the domain is developed; (2) different parameter settings 

are chosen, along with their performance on different classifiers at base-level learning; and 

(3) a meta learner is used to build a model that predicts the performance of different 

algorithm settings on different problems or otherwise to predict the best algorithm 

parameters values (amongst a set of candidates), producing the best performance based on 

each data problem meta-features (Hutter & Hamadi, 2005) 

2.2.3 Meta-Learning Literature  Review 

The above describes the main aim of meta-learning.  This section presents several key studies 

in the meta-learning field, which are summarised and discussed below. 

The idea of meta-learning is not new; one of the earliest studies in this field was carried out 

by Rice (1976), who proposed an initial model for the algorithm selection problem by 

defining four essential factors known to impact the algorithm selector:  

 

1. The collection of problem instances. 

2. A set of algorithms to tackle such problem instances. 

3. A number of performance criteria to evaluate the algorithm.  

4. A number of features characterising the instance properties. 

The idea of meta-learning then is developed and proposed in the machine-learning 

community as a result of their needs to select an algorithm considered a best choice for a 

specific problem task. Wolpert & Macready (1997) suggest that there is no best solution to a 

specific problem, ‗...for any algorithm, any elevated performance over one class of problems 

is exactly paid for offset performance over another class,‘ which is referred to as the No Free 

Lunch Theory (Wolpert & Macready, 1997). 

Several researchers (Aha, 1992; Rendell & Cho, 1990; Rendell & Ragavan, 1993) 

implemented Rice‘s initial abstract model by completing studies that characterise the problem 

instance, such as through consideration to data size (percentage of positive example) in an 
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effort to characterise the problem (Rendell & Cho, 1990), and using a rule-based learning 

algorithm to develop rules that control the algorithm selector problem: for example, if the 

data has the following characteristics, C1, C2, then use algorithm A1 and A2 (Aha, 1992).  

Later on, a major European project known as StatLog (1991–1994) adopted the Rice 

approach in the algorithm selection problem by relating the characteristics of a task under 

analysis with algorithm performance. In this project, problem instances were characterised 

using different training set measurements, known as meta-features, where such 

characterisations are evaluated using simple methods such as dataset size, number of 

attributes and number of classes; statistical measurements such as mean value, skewness and 

standard deviation and theoretical measurements such as less entropy and noise. Moreover, 

they used different classification algorithms as meta-learners to predict the best algorithm for 

specific problems. The StatLog approach assigns an applicable and inapplicable label to each 

classifier after applying it on a specific data problem in comparison with the ―best classifier‖ 

which is the classifier that has a lower classification error in the same problem, and 

depending on a predefined ranges for the applicability, for example if naïve Bayes 

performance is 90 % on a specific dataset ( the best classifier), and the ranges of applicability 

is defined as   5%, then if neural network performs 80 % in the same dataset,  it will 

consider as inapplicable. The problem with this methodology is it‘s sensitive to the 

applicability boundaries which may be dependent on the data set.  

Another significant work in this field is carried out in the NOEMON project (Kalousis & 

Theoharis, 1999). In this project, the performance of each data set is compared with another 

existing one (two algorithms are evaluated at the same time). NOEMON uses instance base 

reasoning to map between data characterisation space and algorithm performance space.  

In a more recent study, a European project called METAL (Brazdil et al., 2003) uses K-NN 

as meta-learner to find the closest training data to the data under analysis.  This project also 

introduced the concept of landmarking which adopts the idea of using a simple learning 

algorithm to understand the place of a specific problem space. The idea of landmarking is 

extended to relative landmarking (the relative order between landmarking algorithms) and 

sub-sampling, which is the use of a landmarker on a sample of the data (Furnkranz & Petrak, 

2001).  Other studies that also use the K-NN method to establish the datasets that are near to 

one another are (Brazdil et al., 2003; Nakhaeizadeh & Schnabl, 1997). 
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In contrast with the use of meta-learning for recommending an algorithm, several authors 

suggest its use for recommending parameters such as Vanschoren (2010), Gomes et al. 

(2012), Miranda, Prudancio, Carvalho, & Soares (2012), and Sun (2014). This approach is 

concerned with changing the model parameters to make a specific algorithm suit a specific 

problem, accepting the idea that different parameter tuning gives different results for a 

specific classifier on a specific dataset, then a meta-mining approach is defined in (Behja, 

Marzak, & Trousse, 2012; Hilario, Nguyen, Do, Woznica, & Kalousis, 2009, 2011; Keet, 

awrynowicz, daeamato, & Hilario, 2013) which is in contrast with meta-learning, the meta-

mining approach is applied in all knowledge discovery processes rather than in the learning 

task only, and it opens the algorithm that was considered as closed box in meta-learning,  as a 

result of this work e-Lico (E-Laboratory for Interdisciplinary Collaborative) is started which  

includes the following: 

1. Planning the data mining process using hierarchical task networks. 

2. Meta-Mining process: learning process that learns the whole knowledge 

discovery process. 

3. Model Generation which includes dealing with the algorithm itself to optimize 

the algorithm mining task. 

4. Data mining ontology (DMO) is the knowledge base that contains data mining 

from learning gained from previous experience. 

 

Recently, a wealth of Literature reviews have been carried out to cover the meta-learning 

approaches and trends during recent years, such as the Literature review carried out by Balte, 

Pise, & Kulkarni (2014), which covers landmarking technology as an important data 

characterisation method, with its different challenges and future directions.  In Lemke, 

Budka, & Gabrys (2013), the authors present an overview of meta-learning technology trends 

and challenges providing a general view for meta-learning concepts, different solutions in 

designing meta-learning frameworks, and covering general meta-learning research 

challenges. 
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2.3 Feature Selection 

 

A significant problem that most data mining agents face is where to focus attention through 

the learning process. In order to achieve good results, the learning process should establish 

which part is most relevant, and should remove the part that is irrelevant. In data mining, it is 

fairly accepted that, if the data under processing is very large, the learning process will be 

consumed with dealing with a large amount of data, some of them are irrelevant, redundant 

and misleading, where this process is referred to as feature subset selection (Almuallim & 

Dietterich, 1991; Kira & Rendell, 1992; Pajkossy, 2013).  

One direction of research is to continue to seek the ultimate feature selection method that 

always works well. Another approach, adopted by this research, is accepting that one method 

does not fit all requirements, but instead aims to identify which method works best for a given 

data set. However, this is not easy, since details of which algorithm works best under different 

circumstances is not known. Thus, we have a meta-learning problem, namely:  

Can we automatically learn which feature selection algorithm works best for different 

circumstances?  

Part of this work aims at answering this question by developing a new meta-learning system 

that aims to learn from the experience of applying different feature selection methods on data 

sets with different characteristics. This section is divided into two parts: feature selection 

background, which points out the main feature selection problem and different feature 

selection methods. Part two covers the recent literature of applying feature selection in the data 

mining process and in meta-learning. 

2.3.1 Feature Selection Background  

The feature selection problem has attracted a wealth of researchers in machine-learning 

(Almuallim & Dietterich, 1991; Kira & Rendell, 1992) . Many feature selection methods are 

proposed with a number of searching strategies. The following subsections describe the 

feature selection problem, and the various feature selection methods. 
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2.3.1.1 Feature Selection Problem 

In this section, we highlight the feature selection problem, investigate the feature 

characterisation elements, and accordingly describe, in detail, the algorithms and 

techniques used for feature selection. 

A general definition for feature selection is a process of selecting a subset of features that 

maximise predictive power (Kira & Rendell, 1992; Koller & Sahami, 1996a, 1996b), or 

to find a subset of features that are not correlated because correlated features adversely 

affect the performance of inductive learning algorithms (Yu & Liu, 2003). 

      A feature is characterised by the following (Molina, Belanche, & Nebot, 2002) : 

 Relevancy 

 

A feature is relevant when it has a critical impact on a classifier‘s predictive power, 

and its role cannot be assumed by other features. A relevant feature plays an 

important role in the learning process, whereas an irrelevant feature is a feature that 

can be replaced by others without any influence on predictive power. Moreover, 

irrelevant input may lead to over-fitting, such as in the domain of medical diagnosis, 

for example, including the patient ID, which might induce a model that predicts an 

illness from a patient‘s ID (Ladha & Deepa, 2011). 

 

 Redundancy 

 

A feature is redundant if there is another feature in the data that has the same effect, 

where both features are usually highly correlated, thus removing one will not impact 

learning power. 

 

2.3.1.2 Feature Selection Process 

A traditional feature selection problem comprises three main steps: feature subset 

creation, subset evaluation, and stopping criteria.  
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1. Subset creation 

Subset creation is the process of selecting an optimal subset that maximises the 

predictive power and shows an improvement in the inductive process in terms of 

classifier performance, learning speed, generalisation capacity or the simplicity of learner 

(Molina et al., 2002). In the feature selection process, a subset candidate is created, with 

each subset then checked by using some evaluation criteria. If this subset shows better 

performance over a previous candidate, then the new subset will replace the previous 

one. This process is repeated until good enough solution is generated, with this process 

depending on a search strategy adapted by the feature selection algorithm. An important 

point that needs to be covered in the subset creation stage is the starting point: selecting 

the point in the feature space to start with all features, no features or randomly chosen 

features. In terms of search strategy, there are three approaches, as discussed below. 

 Forward 

 

Starts with no feature and adds them one by one. If the new one performs better than 

the old one, the new one will replace it. This process continues until no more 

features add any improvement to the learning process. The process terminates here, 

with the best features or best subset of features. 

 Backward 

 

This begins with all features and removes those that are irrelevant, removing subset 

by subset. Each time, the subset result is smaller than the previous one, until the last 

and most relevant subset is created.  

 Bi-directional 

 

Starts anywhere in the middle and searches through the search space backward or 

forward. Practically speaking, forward selection is less computationally expensive 

because the search engine begins with a lesser number of features, which makes the 

process much faster. However, backward selection considers feature interaction 
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more in its searching strategy as a result of starting with a large number of features 

(Kohavi & John, 1997). 

2. Subset Evaluation  

Subset evaluation is the process of checking whether each subset candidate is good 

enough. According to some evaluation criteria, the process of subset evaluation falls into 

two groups: wrapper and filter methods. In the wrapper method, the classifier itself is 

used to evaluate which subset of the features is more predictive, eliminating the one 

which is less predictive (Kohavi & John, 1997). In this technique, the classifier as the 

black box is considered part of the searching process, taking the feature subset and 

evaluating its accuracy using cross-validation evaluation; in turn, another subset enters 

the evaluation process until the most suitable subset in induced (Blum & Langley, 1997; 

John, Kohavi, & Pfleger, 1994). The idea of the wrapper approach is shown in Figure 

2.1(Hall, 1999b). This process is claimed to be computationally expensive as the learning 

algorithm itself undertakes the responsibility of finding the best subset; on the other 

hand, however, the positive aspect is that it reduces the algorithm bias because the same 

classifier, which is used in the searching process, will be used later on in the learning. 

In the filter method, data will be characterised by itself, independently from the learning 

algorithm. The feature selection problem, in this case, totally depends on the data 

characteristics, its correlation, its dependency, and many other data evaluation criteria. 

The main disadvantage of this approach is that it ignores the effect of the inducer in the 

feature selection process; however, it is more adaptable when different classifiers are 

learnt for the same dataset as a result of not using the learning algorithm in the feature 

searching process. Nonetheless, its advantages outweigh its disadvantages (John et al., 

1994): 

 Reduced computational costs as less data is involved in the learning process. 

 Adaptable to any changes in the learning algorithm. 

 Much faster scaling to a large data set than the wrapper algorithm, as it can be re-

run many times. 

Some of the drawbacks known for the filter method include the fact that its results do not 

show an explicit choice of preferable feature subset; instead, ranked feature selection is 
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given, and the user should specify how many features are suitable for a specific learning 

process (Hall, 1999b). The filter approach concept is shown in Figure 2-1 

 

 

Figure 2-1: Wrapper and Filter methods (Hall, 1999b) 

 

3. Stopping criteria  

Feature selection has to decide when to stop searching through the feature space, which 

depends on the evaluation criteria. Some of the used stopping criteria are as follows: 

 Adding or removing features that do not add any value to the learning process (they 

do not change the learning performance) 

 Reaching a specific stop pre-defined point, which includes: 

o Whether  a predefined subset is selected or a predefined number of iterations 

is reached (Dash & Liu, 1997) 

o The result is ‗good enough‘ 

o Whether a specific number of features are selected 

o No changes in the evaluation performance if feature is added or removed.  
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2.3.2 Feature Selection Literature Review 

The first pioneer works in feature selection were carried out by Almuallim & Dietterich 

(1991) and Kira & Rendell (1992), both of which used the filter approach in two different 

ways. The former defines the FOCUS algorithm, which starts with an empty set and uses the 

breadth-first search strategy to establish the good enough solution by choosing the minimal 

subset that can be used to determine the label value for all instances in the training set, 

whereas, Kira & Rendell (1992) defined the RELIF algorithm which  assigns a weight to each 

feature and accordingly finds the good enough feature that exceeds a user threshold. These 

two researchers assumed Boolean attributes, whereas Kononenko (1994) reports extensions 

to their methods that handle non-Boolean attributes and multiple classes. Other recent works 

rely on the wrapper approach rather than the filter approach.  As mentioned before, the main 

argument of using the wrapper method is that the inducer itself is used in the feature selection 

process, which will reduce induction bias, rather than using two different isolated strategies: 

one for feature selection and one for induction (as is the case in the filter approach). The first 

pioneer work that uses the wrapper approach in the feature selection problem was that by 

John et al. (1994), where a decision tree is used to establish the ―good enough‖ feature subset. 

The simplest way to do this is to run the learning algorithm in a chosen feature subset and 

accordingly calculate the accuracy, then return back to introduce another subset that is either 

removed if it is worse or added if it is better. Various other attempts are carried out to replace 

the decision tree, used in the wrapper methods by other induction algorithms, such as  (Aha & 

Bankert, 1994; Blum & Langley, 1997), both of which used a nearest neighbour algorithm 

within the wrapper algorithm. Likewise, Skalak (1994) works with the same concept but 

replaces greedy search with hill-climbing search.  

 On the other hand,  Koller & Sahami (1996b) developed an information theory-based feature 

selection method that uses cross-entropy to minimise the amount of losses during the feature 

selection process. Yang & Honavar (1998) used a genetic algorithm for feature subset 

selection to search for a subset of features that give good enough accuracy. Moreover  books 

written  by  Liu & Motoda (1998) and Liu (2005) provide a general overview of the feature 

selection methods and techniques, giving insight into important trends in feature selection 

work.  
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There is a wealth of research comparing different feature selection approaches in different 

applications. Hall & Homles (2003) performed a benchmark comparison of several attribute 

selection methods for two supervised classification learning schemes, C4.5 and naive Bayes. 

Both studies show that different feature selection methods perform differently in different 

cases which conclude no best methods for all cases and emphasizes on the need of an 

approach to know in advance which is best for a specific task. 

In this work, the importance of feature selection exists in exploring the type of feature 

selection method most suited to a specific type of data, and which are far from its learning 

scope. Thus, this is the aim of the process, where a direct connection will be carried out 

between feature selection methods and dataset characteristics with the aim of establishing 

which algorithm performs best if a specific feature selection method is carried out over a 

specific type of data. 

2.3.3 Feature Selection in Meta-learning Work 

The literature search did not reveal any use of meta-learning for feature selection, other than 

its use for reducing the number of meta-features by Kalousis & Hilario (2001) and 

Todorovski, Brazdil, & Soares (2000).  In the first work, a feature selection wrapper method 

is used to make a pairwise comparison. In this comparison, the relative performance of each 

pair of base learners is contrasted using different meta-learners after removing irrelevant 

meta-features using feature selection methods. The result shows the importance of using 

feature selection in the meta-level process. In the second work, feature selection methods are 

used to remove irrelevant features in meta-level learning. In the first step, when a new dataset 

emerges, a similar dataset from the meta-knowledge is found using k nearest point by 

calculating the nearest distance between two datasets using their attributes values, then the 

predicted new label for the new data is calculated to be the average of performance of each k 

nearest points found in the meta-knowledge. The performance for both before and after using 

feature selection in the meta-level process shows that choosing the relevant meta-feature has 

a potential effect on meta-learner predictive power. 

It is worth pointing out that, with those considerable available works in feature selection in 

general, a data miner has to choose which feature selection approach to use, which requires 
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time, effort and considerable experimentation.  Hence, this thesis will also explore the use of 

meta-learning for feature selection.  

The next section covers active learning and its application in data mining process. 

2.4 Active Learning  

 

Active learning is a subfield of machine-learning, where the learning algorithm is given the 

ability to choose the data from which it learns with the aim of making the learner perform 

better with less training examples. The learning algorithm in active learning has control over 

the input data in its learning process (Cohn, Atlas, & Ladner, 1994; Lindenbaum, 

Markovitch, & Rusakov, 2004; Tong & Koller, 2002). This is a very practical way of 

reducing the costs needed to label all training examples whilst eliminating some degree of 

redundancy in the information content of the labelled examples. Active learning is well-

motivated in many modern machine-learning problems, where unlabelled data may be 

abundant or easy to obtain, such as in the case of unlabelled webpages available in thousands 

of pages;  however, labels are difficult, time-consuming or expensive to obtain, such as 

classifying each web page as ‗relevant‘ or ‗not relevant‘ to web users. It has been shown that 

less than 0.0001 % of all web pages have topic labels (Fu, Zhu, & Li, 2013); therefore, 

having to label those thousands of web pages would be very time-consuming. Another 

example is detection of fraud in banks, where an expert in a bank needs to invest considerable 

effort and time to label a bank customer‘s behaviour as fraudulent or not fraudulent.  

From previous motivation, there are general machine learning trends that use the unlabelled 

examples, as well as the labelled ones, in the learning process. In active learning, the learner 

has the capability of asking for the labelling of any unlabelled examples by directing the 

query process into more informative unlabelled examples. It is fairly well known in the 

machine learning community that using active learning that queries the data instances to be 

labelled for training can achieve higher accuracy with data in comparison with passive 

learning, which ultimately depends on blindly training with all available data—and 

economically, it is more effective (Roy & McCallum, 2001; Settles, 2011) . Many studies 

have developed different strategies that are able to achieve this aim, as will be explained later 

in this section. 
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2.4.1 Active Learning Background  

This section sheds light on the main directions of using active learning in machine learning 

and provides a background on this topic and in using active learning for meta-learning. 

Active learning is best defined in contrast to passive learning: in passive learning, a learner 

has access to the initial randomly generated labelled examples to build a hypothesis that 

covers most of the training data. In the traditional learning process (passive learning), the 

more labelled training data that is available, the more accurate the classifier that will be 

developed (Prudancio & Ludermir, 2007). In most learning problems, having a labelled 

(classified) example is not an easy process; this needs time and effort. Therefore, developing 

a strategy that conducts a classification process with the least possible labelled data is the 

main aim of active learning. The active learning model is a slightly different framework than 

other learning frameworks in which a small number of available initial data has labels, whilst 

a large amount does not come with any labels; that is, most of the training data set is simply 

an input without any associated label. The goal of active learning is to seek more unlabelled 

examples for labelling but those unlabelled example should have specific condition to say 

that they are ‗informative enough‘ to be allowed to enter the labelling process. The term 

‗informative‘ is defined in active learning using different methods and different strategies. 

The following presents an overview of active learning scenarios and methods.  

2.4.1.1 Active Learning Scenarios 

There are many scenarios in which active learning can be used. The main three scenarios 

found in the literature are described here: (1) membership query synthesis, (2) stream-based 

selective sampling, and (3) pool-based sampling. 

1. Membership Query Synthesis 

One of the earliest scenarios introduced in the active learning problem is membership 

query (Angluin, 1988). In this scenario, the learner will use any unlabelled examples 

from input space; sometimes, the learner generates their own data. This approach has 

encountered many problems as the data generated sometimes does not represent the 

original data distribution. 
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2. Stream-based Selective Sampling 

In the stream selective sampling, instances are drawn from actual data distribution, with 

the learner then deciding whether to include or discard it from the learning process. This 

approach, in some studies, is known as stream-sampling or selective sampling (Settles, 

2011) because instances are selected one by one to enter the learning process.  

3. Pool-based Sampling 

This scenario is the most widely used scenario in active learning problems. In 

this scenario, the learner considers that there is a small pool of labelled examples 

and a large pool of unlabelled examples. Each time a query is applied on an 

unlabelled example, the most informative (or best) unlabelled example is chosen 

to be labelled, this includes starting with a large pool of unlabelled examples, 

picking a few points for labelling, then querying for more instances to be 

labelled in many different ways. Below is the active learning process for the 

pool-based sampling scenario (Melo , Hannois , Rodrigues , & Natal 2011) : 

 Start with a large pool of unlabelled data 

 Pick a few points at random and get their label 

  Repeat the following: 

1. Fit a classifier to the labels seen so far 

2. Pick the BEST unlabelled point to get a label for: 

i. Closest to the boundary. 

ii. Most likely to decrease classifier uncertainty. 

iii. Most likely to reduce the overall classifier error rate. 

iv. High disagreement between learners (in the case of more than one   

classifier) on how to label it. 

v. Most likely to reduce variance and bias.  

The pool-based scenario is different to the stream-based scenario in the sense that the 

pool-based scenario evaluates the given data prior to selecting the best query. This 

evaluation depends on the strategy used for this process. On the other hand, however, data 
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in the stream-based sampling scenario comes as stream, with the learner then evaluating 

each query one by one, and accordingly deciding whether to accept or discard the data. In 

our work, we will use the pool-based sampling.  

In this scenario, deciding which data is more informative is known as query strategy. 

Below is a description of the different query strategies found in the literature.  

2.4.1.2 Active Learning Query Strategy 

In the literature, several methods have been used to query the most informative data for 

labelling. Different query strategies are described below. 

1. Uncertainty Sampling 

Uncertainty sampling is the most common search strategy used in active learning. In 

some studies, it is known as query by uncertainty or uncertainty reduction. In this 

strategy, the pre-built classifier (the classifier that was built from the small pool of 

labelled data) is less confident in terms of how to classify the labelled data; those are the 

data that are nearer to the classifier boundaries. As a conclusion, if data uncertainty is 

high, this implies that the current model does not have a sufficient knowledge in how to 

classify it, thus meaning it is most likely that including such data in the learning process 

will improve model performance. This strategy is used in different machine-learning 

fields, such as natural language processing (Lewis & Gale, 1994), and in different 

classifiers: decision tree (Lewis & Gale, 1994), support vector machine (Tong & Koller, 

2002) and in nearest-neighbour classifier (Lindenbaum et al., 2004). The key point in this 

approach is how to evaluate uncertainty measurements.  

In uncertainty sampling, uncertain instances are the most attractive instances, with 

different uncertainty schemas used to measure those instances, such as a well-known 

entropy measurements used to measure data uncertainty (Holub, Perona, & Burl, 2008). 

Density measure is another example of uncertainty by calculating the number of 

examples that are nearer to the examples that are uncertain (more examples around 

specified data means that this data is more unlikely outlier) (Zhu, Wang, Yao, & Tsou, 

2008a). 
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2. Error Reduction 

This method depends on the estimation of how much classification error is likely to be 

reduced using the new dataset (Cohn, Ghahramani, & Jordan, 1996; Zhu, Lafferty, & 

Ghahramani, 2003). 

3. Variance and Bias Reduction 

This method depends on selecting samples that reduce learner bias and variance, which 

can be done by applying two learners: the single learner, such as naive Bayes, and 

bagging using naive Bayes as its base learner (or any other ensemble techniques), then 

asking the active learner to choose the informative data that reduces the difference 

between prediction using the first learner and the second learner (Aminian, 2005). 

4.   Outlier Detection 

Most of work carried out on active learning considers the data around the decision 

boundaries, as explained above (uncertainty sampling), although it is worth pointing out 

here that the uncertainty sampling technique fails to detect outliers. Outlier data is highly 

uncertain but does not provide any help in the learning process because outlier data is 

defined as an observation that deviates too much from other observations, and also does 

not provide any extra knowledge if they enter the learning process. 

In Figure 2-2, both A and B points are closer to the decision boundary, meaning they will 

be taken as uncertain samples; however, Point A is more informative than point B 

because there are two label examples close to it, whilst point B is considered an outlier 

point. The density measure can be evaluated based on how many examples there are 

similar or near to it, where greater density samples means more data near to a specific 

point, which means that it is less likely this point is an outlier (Xu, Akella, & Zhang, 

2007; Zhu et al., 2008a). 
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5.  Query-By-Committee 

Query by committee is a very effective active learning approach used in many 

classification problems (Cohn et al., 1994; Melville & Mooney, 2004; Seung, Opper, & 

Sompolinsky, 1992). It is the same as the query by uncertainty method, although the 

main difference between query uncertainty sampling and query by committee is that 

query by committee is a multi-classifiers approach where more than one classifier is 

imposed upon the original labelled data set. The more there are disagreements on how to 

A

1 

 

B

1 
Unlabelled data  

Labelled data  

 

Figure 2-2: Uncertainty samples that are outliers (Zhu et al., 2008) 
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classify a piece of data, the more informative the data. The idea behind this strategy is 

that enables classification strategy, where different classifiers should agree, to a high 

extent, on classifying new instances (by voting or averaging). In active learning, the 

disagreement gives new instances the favour of being chosen to enter the new 

classification process (Melville & Mooney, 2004) because this disagreement means that 

the classifier (set of classifiers) is not sure (not certain) on how to classify it, which 

emphasises the uncertainty sampling concept.  

 

6.  Sampling by Clustering 

In previous methods, the labelled data used to build the first learner is chosen randomly 

with the assumption that they have some prior data distributions; in most cases, however, 

this assumption is not correct due to the small size of initial data chosen, meaning it is 

most likely they are not a good representative for the whole dataset. For the aim of 

solving this problem, some researchers suggest clustering the whole dataset and then 

choosing the data that is more representative. Such data are the data that are nearer to the 

initial clusters‘ centres (Nguyen & Smeulders, 2004; Xu, Yu, Tresp, Xu, & Wang, 2003; 

Zhu et al., 2008a). In the work of (Zhu, Wang, Yao, & Tsou, 2008b), all unlabelled 

examples are clustered first, and data that are around the centre are taken to form the first 

set of labelled examples. Subsequently, more informative data are queried from 

unlabelled data using uncertainty sampling and density measures, as described above.  

Another work adopted active learning by clustering (Nguyen & Smeulders, 2004), in 

which active learning using clustering is developed so that data from the same cluster is 

given the same label, which reduces the efforts needed to label all data in the same 

cluster. In the study of (Xu et al., 2003), the active learner measures uncertainty sample 

for the data around boundaries, then clusters those (uncertain) samples to query the most 

representative points around the cluster centre for text classification problems.  

2.4.2 Active Learning in Meta-learning Scenarios 

In different machine-learning problems, it is recognised that the existence of several 

algorithms compete to be applied to specific classes of problems. In a traditional way, a 
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costly empirical evaluation of each classifier on the given problem is the most widely adopted 

strategy; alternatively, reliance can be placed upon the expert knowledge to choose the most 

effective classifier. Both ways are ineffective because, in the first case, it is impractical to try 

every single possible algorithm on a data set—especially given the existence of large number 

of algorithms and large sizes of datasets. On the other hand, however, if the expert 

consistently selects an in-effective classifier, meaning the most effective classifier will not be 

learned through the learning process, so it will be very practical if the most effective data 

mining procedure is known in advance. Through using the concept of meta-learning, we can 

build an algorithm selector that is able to establish, in advance, the most effective classifier to 

be used in a specific learning problem. In meta-learning, meta-knowledge is used to predict 

which algorithm is more effective for a specific data set, or to predict the performance of a 

given algorithm in a given dataset.  The desired meta-knowledge is developed by using a set 

of training examples, known as meta-examples. Each meta-example stores a number of 

features that characterise a given example, known as meta-features, and the performance of 

the set of algorithms applied to those examples when empirically evaluated over it.  

The main aim of using active learning in meta-learning is providing the learner with the 

ability to choose the most suitable, informative data for its learning process; where the most 

suitable data is the data that creates new knowledge in the process of meta-knowledge 

development, because training data that doesn‘t add any new knowledge is time-wasting and 

resources-consuming. Meta-knowledge development is the process of applying learners on 

meta-examples to create the basic knowledge that is able to predict which classifier (or set of 

classifiers) is more appropriate for specific data characteristics. The process of developing 

meta-knowledge is the process of generating different meta-examples, as required by 

performing an empirical evaluation of candidate classifiers on different sets of problems. 

Essentially, the more diverse the problems used, the more general and richer the meta-

knowledge that will be developed. This process is highly expensive as it depends on the 

methodology of empirical evaluation, the number of candidate algorithms and the number of 

meta-examples used in the meta-knowledge development process. There is no doubt in the 

machine learning community that increasing the amount of data used in the learning process 

will positively impact the learning process performance because it increases the classifier 

version space size; however, the question arises in regard to the type of data that should be 

used in the process. Moreover, there is consideration as to whether the next unlabelled data 
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should be chosen randomly?  Or whether a specific methodology should be adapted to select 

the most proper data?  In the selective methodology, the previous questions will be answered 

and the work will be evaluated by making comparisons between active learning using random 

sampling and active learning using a selective cluster-based algorithm ALBC (Active 

Learning Based on Clustering). 

2.4.3 Active Learning Literature Review 

The studies of active learning initially focused on a model of learning with membership 

queries (Angluin, 1988). In this model, the learner is given the ability to query any unlabelled 

data for labelling without any constraints. The main drawback for this model is that a query 

may result in data that are very far from its data original distribution. Hence, active learning 

studies turned to seek unlabelled examples that are more informative for the learning process. 

This in-formativeness varies in different studies and has different points of view with very 

different justifications. The following summarises the different active learning approaches 

found in the literature review.  

In the literature, the most common technique used in a labelling query is uncertainty 

sampling (Cohn et al., 1994; Lindenbaum et al., 2004), which chooses a sample where the 

classifier is mostly uncertain on how to classify. This means choosing the unlabelled data that 

lies on the decision boundaries, and using them to clarify this boundary (Lewis & Gale, 1994; 

Lindenbaum et al., 2004; Tong & Koller, 2002). In a related approach, Freund et al. (1993)  

introduced the committee-based approach deploys the same idea of uncertainty sampling, but 

the prediction will be done by a set (committee) of learners as opposed to a single learner. 

This allows competing hypotheses, where each member votes on the labelling of query 

candidates. More disagreement between committees indicates that the chosen examples they 

have voted on are more informative. 

In the same field, committee by bagging and committee by sampling is proposed by 

Mamitsuka (1998), which uses ensemble methods to   help reduce errors (Lindenbaum et al., 

2004; Roy & McCallum, 2001). 

Several papers have surveyed active learning, focusing on different active learning 

perspectives and directions: the Literature review done by Settles (2011) focuses on general 

active learning scenarios and query methods, whilst that by Dasgupta (2011) concentrates on 



 

 

37 

 

 

two directions of active learning, namely search through a version space to find the data that 

reduces it, whilst another is exploiting the cluster structure in data, which is our approach in 

this research. On the other hand, in the work of (Fu et al., 2013), the authors concentrate on 

the active learning methods that take the instance correlation between each other when 

selecting the most informative data for labelling. 

In meta-learning, the literature shows that active learning is used to reduce the amount of 

meta-examples needed to create a meta-knowledge (Prudancio & Ludermir, 2007, 2008; 

Prudancio, Soares, & Ludermir, 2011).  In a study by  Prudancio & Ludermir (2007), active 

learning is used to help a meta-learner to choose the most informative data for its learning 

process. Initially, K-NN is used as a meta-learner to label unlabelled examples by using the 

previously labelled examples. The active learner then chooses the most uncertain unlabelled 

example to enter the learning process. The K-NN uncertainty is calculated using the 

following ratio:  

         uncertainity_ratio=  
  

∑    
 
   

                                                                    (2-6) 

  : is the distance between unlabelled data and the nearest label neighbour 

∑    
 
   : The summation of distances between unlabelled data and their nearest neighbour 

labelled data. The highest value of this ratio indicates that the data has similar points with a 

conflicting label, which means that the current label is uncertain in terms of how to classify 

this instance. Later, in a study by Prudancio & Ludermir  (2008), three different active 

learning methods were combined to produce a ranked assessment for active learning 

problems. Those methods are: 

1. Uncertainty method: using the uncertainty ratio in (2-6). 

2. Entropy method: this method adapts the entropy measure, which defines the 

probability of class prediction using K-NN classifier, entropy can be calculated using 

the following equation : 

         ̃|E) =-∑      ̃ 
   ) =  |E)*          ̃ =   |E)                                  (2-7) 

E is the set of labelled examples,  ̃ is a set of problems used to generate unlabelled example, 

   is the subset of labelled problems associated to the class label     
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3. Combined method: This is the combination of the two previous measures (uncertainty 

and entropy), using the following equation: 

Combined Ratio= uncertainity_ratio ×    +      ̃|E) ×                            (2-8) 

   and   : weights for uncertainty ratio and entropy ratio such as        . 

uncertainity_ratio and Ent is the uncertainty ratio and entropy ratio computed in (2.6) and 

(2.7) respectively.  

Another work (Prudancio, Soares et al., 2011) uses uncertainty sampling combined with 

datasetoids to select the most informative data, where a datasetoids is an easy way of 

generating meta-examples by switching between data label and independent attributes, 

Accordingly, the independent attribute in meta-example becomes a class label  in datasetoids 

and a class label of meta-example becomes an independent attribute in datasetoids. 

Datasetoids is a way to obtain a new datasets from existing ones to increase the number of 

meta-examples (see Figure 2-3). 

 

 

Figure 2-3: Datasetoid generation (Prudancio, Soares et al., 2011) 

 



 

 

39 

 

 

2.5 Summary of the Literature Review 

 

This chapter has presented an in-depth Literature Review, which shows that a number of 

different efforts have been directed towards developing data mining algorithms that adhere to 

different business needs, highlighting recognition of the value of costs in the decision-making 

process. As such, several authors have developed cost-sensitive algorithms that are centred on 

various cost types in the data mining process, with additional feature selection approaches 

suggested in order to eradicate or decrease the impacts of irrelevant characteristics. A wide-

ranging Literature review of the field has been conducted to appreciate the various methods 

and to answer the question driving this study. 

The Literature review carried out revealed that there has been little work on applying meta-

learning for recommending cost-sensitive learning algorithms. The Literature review 

summarised two categories of cost-sensitive learning methods as follows:  

1. Direct methods that deal with the internal structure in an effort to ensure cost 

sensitivity‘ and  

2. Wrapper methods that add individual phases that complete the conversion of any 

error-based classifier in such a way so as to make cost-sensitive decisions. 

Using these two approaches, any cost insensitive classifier can be converted into cost 

sensitive. The major benefit of using a wrapper approach is that it works with the data itself 

without amending an algorithm, so it requires no knowledge about the algorithm which helps 

in applying this approach to any new algorithm, so it is straightforward and easy to 

implement. Some researchers have found that applying a resampling on imbalanced datasets 

considering the cost of each class performs very well. However, it includes some drawbacks 

when such as over-fitting over-sampling, information losses in under-sampling and it needs 

time to be applied especially in the case of large datasets. For example, MetaCost which 

includes bagging with re-labelling needs considerable time, especially in the case of large 

datasets, because a learner is applied on different data samples and then each data sample is 

relabelled with the label that gives minimum expected cost. This process could be very slow 

in the case of a large dataset. Other examples are AdaBoost and AdaCost, both of which 

includes applying different learners on the same dataset considering the weight of 
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misclassified instance on each turn by giving instances that are wrongly classified more 

weight than instances that are correctly classified.  Both of AdaCost and AdaBoost reduce 

over-fitting because more than one learner is applied during the learning process which 

reduces learner bias, but applying them could be a slow process as well. On the other hand, 

making the classifier cost sensitive by directly providing and utilizing the cost into the 

learning algorithm without any changes in the data under processing is an effective way 

because it is faster than a wrapper method. 

Generally speaking, it is noticed that some cost sensitive algorithms work well on a specific 

dataset and don‘t perform well on another dataset. Given the difficulty of knowing which 

cost-sensitive method works well for given situation, the thesis aims to adopt meta-learning.  

Hence this chapter also surveyed the field of meta-learning; Table 2-1 summarises different 

meta-learning approaches.   

 

                                          Table 2-1: Meta-learning approaches 

 

Year/Reference Meta-learning approach 

1975 

(Rice, 1975) 

Meta-learning main elements are proposed which 

includes: problem, problem characterizes, algorithm, 

and evaluation performance. 

1997 

(Wolpert & Macready, 

1997) 

No free lunch theory which stated that no one machine 

learning algorithm outperforms others in all cases 

1990-2000 

(King, Feng, & 

Sutherland, 1995) 

Algorithm selectors automation project with different 

dataset characterization such as METAL, statLog, and 

NOMEAN  

2000-2009 Ranked algorithms using different meta-learner such as 
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(Brazdil et al., 2003) K-NN which is used to rank algorithm according to 

specific criteria rather than giving single algorithm  

2000-2005 

(Pfahringer, Bensusan, & 

Giraud-Carrier, 2000) 

Landmarking which includes using a simple algorithm 

to understand the place of a specific problem space, 

suitable if applied on simple, non-complicated 

landmarker algorithm.  

2007-2011 

(Prudancio, Soares et al., 

2011) 

Active learning in meta-learning concept, used in area 

where unlabeled examples are numerous, and labeled 

example are expensive or hard to obtain. 

2010-2014 

(Sun, 2014) 

Model generation : used to characterize the algorithm 

itself by applying a meta-learning concept on 

algorithm parameters.  

2012-2014 

(Keet et al., 2013) 

Meta-mining which includes meta-learning in all data 

mining processes. 

 

 

The chapter also surveyed active learning methods which have the potential of improving the 

meta-learning process. Active learning methods are suggested as a way of overcoming 

supervised learning issues when the training data is costly or otherwise difficult to secure. 

Active learning is applied in an effort to provide the learning process with control over the 

data utilised throughout its learning process through the use of a small set of labelled 

examples and larger set of unlabelled examples. As can be seen when reviewing the 

literature, active learning is applied in the context of the meta-learning framework in order to 

decrease the number of meta-examples in an effort to speed-up the meta-learning process. As 

shown in prior work, active learning is summarised into the following categories, (see 

Table 2-2 and Table-2-3): 
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Table 2-2: Active learning approaches 

 

Active learning 

approaches 

Description Drawback 

Membership query 

(Angluin, 1988) 

Active learner uses any 

unlabeled data includes 

artificial data 

Data generated is very far from the 

original. 

Stream based 

selective sampling 

(Cohn et al., 1994) 

Data is chosen randomly then 

the learner decides whether or 

not to include it in the 

learning process 

Data is drawn from original data 

distribution but the learner receives 

data one by one and then selects the 

data that are more informative, 

which is a slow process and similar 

datasets could be chosen more than 

one time. 

Pool based sampling 

(Melo  et al., 2011)  

 

A large pool of unlabeled 

data and a small pool of 

labeled data 

The learner scan all data and choses 

the data that are more informative, 

disadvantages of this method 

depends on the way of the 

informative data will be selected     

(the query strategy). 
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Table 2-3: Active learning query strategy approaches 

 

Active learning query 

strategy 

Description Drawback 

Uncertainty sampling 

(Holub et al., 2008) 

Chooses the data that the 

classifier is uncertain about 

Includes outlier data which 

are uncertain but outside the 

scope of the learning process. 

Error reduction 

(Roy & McCallum, 2001) 

Chooses the data that reduces 

the classifier error 

Data that is chosen from 

small pool doesn‘t represent 

the whole dataset 

Bias and variance reduction 

(Aminian, 2005). 

Chooses the data that reduces 

the learner bias and variance 

Data that is chosen from 

small pool doesn‘t represent 

the whole dataset. 

Outlier detection 

(Zhu et al., 2008a) 

 

Chooses the data that are 

uncertain after removing the 

outlier data. 

Data that is chosen from 

small pool doesn‘t represent 

the whole dataset. 

Query-By-Committee 

(Cohn et al., 1994) 

Chooses the data that set of 

classifiers are mostly not 

agreed on how to classify it  

Data that is chosen from 

small pool doesn‘t represent 

the whole dataset. 

Active learning based in 

clustering 

(Urner, Wulff, & Ben-David, 

2013) 

Cluster the whole labeled 

data then choses the data that 

are around the cluster center 

No clear studies about the 

quality of generated cluster. 
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In summary, the literature review shows that there is a real need for understanding when cost-

sensitive algorithms work well and for an approach to recommend a particular learner given a 

new data set.      

Hence, the following chapter develops a new meta-learning system for meta-learning that 

includes feature selection methods, cost sensitive methods and that also explores the use of 

active learning. 
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3 3 CHAPTER THREE: COST SENSITIVE META LEARNING 

As motivated in chapter 1, there is no single best algorithm that establishes good enough cost-

sensitive classifiers. Moreover, the main aim of this thesis was highlighted, which is 

exploring the development of methods that can continuously improve so as to make 

recommendations based on new datasets. This research explores two ideas, both of which are 

described in this chapter: Section 3.1 describes an approach that learns about learners as new 

data sets are presented, whilst Section 3.2 describes an active learning approach that aims at 

identifying datasets geared towards assisting the system in improving what it learnt quicker. 

Chapter 4 presents an empirical evaluation and comparison between the work presented in 

this thesis and existing work in the field. 

 

3.1 Cost-Sensitive Meta-learning 

 

Given there is no unique, widely acknowledged best cost-sensitive learning algorithm, the 

ideal is to provide a system that will take a dataset and recommend a learner that will produce 

an good enough cost-sensitive classifier. Although the literature contains various 

comparisons and some ideas about when certain systems work well, there is no systematic 

knowledge that can be encoded into a knowledge base so as to produce an expert system for 

making such recommendations. Hence, the idea explored in this section is concerned with 

garnering knowledge pertaining to cost-sensitive learning algorithms. In applying learning, 

various examples are needed, where each one consists of some features and a class. We can 

generate examples by applying a learning algorithm to some datasets, and recording how well 

it works. Given the features of the datasets, such as skew and size, etc.—which are notably 

termed meta-features—we can apply various learning algorithms in an effort to induce 

knowledge relating to the performance of a particular cost-sensitive learning algorithm. In 

order to explore this idea further, the key questions needing to be addressed include: 
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1. What features would be best in characterising the data? 

2. Feature-selection can play an important role, prior to applying a learning 

algorithm, so how can this be incorporated within the meta-learning process? 

3. How can we learn which cost-sensitive approach is suitable for a particular 

dataset? 

4. Given a wide range of learning algorithms, which should be used for learning 

meta-knowledge? 

5. How can we use meta-knowledge to make a recommendation? 

 

Figure 3-1 presents the proposed meta-learning process aimed at addressing these questions. 
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Figure 3-1:Meta-Learning for cost sensitive learning 

 

The following describes the main components presented in Figure 3-1. 

1. Data Set Characterisation: This involves applying different data characterisation 

techniques to a given example of datasets in an effort to understand the nature of the 
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data, including simple, statistical and mathematical measures. This phase results in the 

meta-features that will be fed to the next stage of the process (Box 1 of Figure 3-1) 

2. Apply Algorithm: This involves applying different learning and feature-selection 

algorithms: 

A. Feature Selection: This applies different feature-selection methods and search 

strategies in the process of building knowledge on which feature-selection 

methods will suit specific datasets. The name of the features selection algorithm 

used and the results of applying different base learners on the data selected, with 

the dataset characterisation, forms an example. The table of examples produced 

provide input for a learner, which provides meta-knowledge pertaining to 

feature-selection methods, their performance and cost.  

B. Cost-Sensitive Learning: This involves applying different cost-sensitive and -

insensitive algorithms. The name of the algorithm and results, together with the 

dataset characteristics, form an example. The table of examples provides input 

to a learner, which results in the meta-knowledge predicting the classifier 

performance and costs for a given dataset. 

3. Performance Evaluation: This evaluates the performance of the classifiers using 

various measures, such as accuracy and misclassification costs. 

4. Combine Meta-features with Performance: The performance results, along with 

classifier name and feature-selection methods, as well as cost-sensitive methods, all are 

combined with meta-features for all datasets. 

5. Meta-Learning Process: The main goal of this phase is to learn about the performance 

of learning algorithms, which includes the result of all previous phases: datasets of 

examples with their characteristics (meta-features), different feature-selection 

strategies, and all sets of algorithms, along with their performance after applying cost-

sensitive and -insensitive algorithms, are all fed to the learner with the aim of 

developing meta-knowledge about the performance of the algorithms. 

In Base learning process the following classifiers are used: 
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 J48: decision tree classifiers is used to learn a classification rule which concludes the 

value of dependent attribute given the value of independent attributes, decision tree is 

a very popular classification techniques which is used in most of the classification 

problems, the benefits of using decision tree are as follows (Bhargava, Sharma, 

Bhargava, & Mathuria, 2013) : 

 Easy to be used 

 Easy to be interpreted by the end user 

 It can handle the missing values 

 High performance with quick results 

 Neural Network: neural network is a classifier that convert some input to output, 

neural network structure is made up of numerous interconnected units each unit 

consists of input/output that implements a certain function with a given weight to 

produce the classifier output (Hecht-Nielsen, 1989). 

 Naïve Bayes: probabilities classifier based on Bayes theorem with strong independent 

variables, it is used to predict a specific class membership probabilities based on 

others, such as the probability that a given sample belongs to a particular class(Lewis, 

1998). Despite its simplicity, impressive results can be achieved using it (Hall et al., 

2009; Jordan, 2002; Patil & Sherekar, 2013). 

 OneR: it is a simple classification algorithm that generate one rule for each predictor 

then select the rule with highest accuracy, it is easy to be used, produces rules that are 

simply interrupted (Devasena, Sumathi, Gomathi, & Hemalatha, 2011; Kabakchieva, 

2013). 

 Part: it is a simple, yet accurate classifier for generating a PART decision tree by 

building a partial J48 decision tree and makes the "best" leaf into a rule (Devasena et 

al., 2011). 

 ZeroR: it is classifier that predicts the majority class (if nominal) or the average value 

(if numeric) (Hall et al., 2009), although there is no predictability power in ZeroR, it 

is useful for determining a baseline performance for other classification methods 

(Nasa, 2012). 
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Figure  3-2 and  Figure  3-3 present more detailed diagrams of the meta-learning process for 

feature-selection and cost-sensitive learning, respectively, showing how the performance of 

different methods, combined with the features of the data, are used to produce meta-

knowledge. Thus, as illustrated in Figure  3-2, various datasets, combined with their 

characteristics, are taken as input. Feature-selection methods are selected, and a base learning 

method is chosen and applied, with its performance then evaluated. The features of the 

dataset, methods used and performance are all combined to form the examples and learning 

algorithm applied to learn the meta-knowledge. 

 

 

 

Figure 3-2: Feature selection meta-knowledge development 

 

In Figure  3-3, some datasets and their characteristics are taken as input. Cost-sensitive 

wrapper methods are selected (none, sampling, minimum expected cost and bagging), and a 
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base learning method is then selected and applied, and its performance evaluated. The 

wrapper methods, base learning methods used and performance are all combined to form the 

examples, and a learning algorithm is applied to learn the meta-knowledge.  

 

 

Figure 3-3: Cost sensitive meta-knowledge development 

 

The following Subsections provide a more detailed explanation of these phases, and 

accordingly address the questions raised above. 

 

3.1.1 Data Set Characterisation 

 

This subsection addresses the question: What features would be best in characterising the 

data? (Q1 P46). The aim is extracting knowledge relating to when a particular learning 

algorithm performs better on a specific task. This is not trivial, as pointed out by Rice (1975): 
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‗The determination of the best (or even good) features is one of the most important, yet 

nebulous, aspects of the algorithm selection problem’. 

 Towards this aim, the first stage is identifying the features that are the process of discovering 

the dataset characteristics through the use of simple, theoretical and information-based 

measurements. This section introduces these methods and accordingly explains each 

characteristic with different examples.  

 

Simple Measurements 

These descriptors of the dataset provide a very general and simple measure of complexity or 

the size of the data problem, and include the following: 

 Number of Instances: This is the total number of observations in the entire dataset. 

This is an important characteristic in supervised learning owing to the number of 

observations used in building a model effects its inductive bias (Baxter, 2000), and 

can result in model overfitting (Dietterich, 1995). It is known that we will have a 

better, generalised learning model when we use a larger number of instances in the 

learning process (Vilalta & Drissi, 2002); however, this factor is highly affected by 

other factors, such as any bias in the dataset and number of features used. Some 

studies point out that it is not only the degree to which data is skewed that impacts 

the learner performance towards rare classes, but also the scale of the sample, which 

affects leaner reliability (Sun et al., 2007). Some experimental observations reported 

in Japkowicz & Stephen (2002) indicate that, as the size of training set increases, the 

error rate caused by skewed data decreases. 

 Number of Attributes: The number of attributes is an important factor in building a 

specific model. A minimum number of attributes should be used when applying 

inductive learners, predominantly owing to the fact that irrelevant attributes have an 

adverse effect on the learning process and predictive power (Yu & Liu, 2003). 

 Number of Classes: The total number of classes is an important factor in describing 

the data. A large number of classes cause concern in regard to how many instances 
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may be available for training on each class. If the number of instances mostly 

belongs to a certain class, the data then becomes imbalanced, causing biases. 

  Figure 3-4 provides some of the simple measurement variation over different datasets. 

Figure 3-4 shows, there are many datasets with two classes, some of which have more than 

two classes—as in the case of chess and glass—whereas the number of attributes varies from 

61 attributes (sonar datasets) to 5 attributes (iris, diabetes). The number of instances varies 

from 24 instances (contact lenses) to 958 (tic-tac). 

 

Figure 3-4: Simple measurements for Different datasets 

Statistical Measurements 

Statistical measures provide a deeper characterisation of the data, and include the following: 

 The Skewness: Skewness describes the deviation from a normal distribution. 

This measure provides an indication of symmetry in the data; in other words, if the 

data looks the same from the right side and left side, it is symmetric, below presents 

the measure. 
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              ﴾3-1) 

 

Where  ̅ is the mean value, S is the standard deviation and n is the number of data 

points in the dataset.  

Zero skewness means that the data is symmetric; negative value means it is biased to 

the left; and positive means it is biased to the right. This measurement is used in 

several meta-learning studies, such as the StatLog project (King et al., 1995) and 

Metal (Brazdil et al., 2003). Data skewness is a very important factor in cost-

sensitive learning owing to the fact that data that are skewed tend to classify each 

instance to the more dominant class  

 Class Ratio: This measures the degree to which data is balanced by 

calculating the data distribution of the number of instances for the dominant class 

over the total number of instances for all classes. This is an important characteristic 

owing to the fact that imbalanced data can cause the generation of unreliable 

classifiers. This is because learning a model from imbalanced data tends to generate 

a model that classifies every instance as dominant class without affecting its 

performance. For example, consider the case of cancer diagnosis: if the percentage 

of cancer patient is 7%, then a classifier that classifies all patients as negative (not 

sick) has 93% accuracy. As mentioned previously, in some applications, the cost of 

misclassification for a rare class is much higher than the cost of misclassification in 

the dominant class. For this aim, many researchers have studied the effect of 

imbalanced data. This ratio is calculated using (3-2)(Elkan, 2001): 

 Class Ratio =
                                                

                          
 

 

                 (3-2) 
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When the data is not biased, for a 2-class problem, the expected example ratio then 

is 0.5. The more it departs from this, the less balanced the data.  

 Cost Ratio: In cost-sensitive classifiers, the cost ratio plays a critical role 

owing to the fact it reveals the importance of one class over another. The cost ratio 

reflects the importance of a specific misclassification error from one class over a 

misclassification error from another class: for example if the cost of wrongly 

classifying a sick patient as healthy in a medical diagnosis problem is twice that of 

misclassifying a healthy patient as sick, then the cost ratio in this case would be 2. In 

two class problems, the cost ratio is defined as the cost of false negatives over the cost 

of false positives. In multi-class problems, the cost ratio is more complicated: the cost 

matrix involved is not the usual 2 x 2 cost matrix presented when solving two class 

problems (more details on how to calculate the cost ratio in the case of multi-class 

problem is given in Section 3.1.3). 

Information Theoretic Measures 

The measures used here are motivated by information theory and applicable for discrete 

values in addition to continuous values. The following two measures are used: 

 Class Entropy: This is a measure of homogeneity of the set of examples 

in specific datasets. Given a set S of positive and negative examples of 

some target concept, the entropy of set S relative to this binary 

classification is given by (3-3)(Fayyad & Irani, 1992): 

 

 

                                

 

                 (3-3) 

Where      is the probability of a positive example and      is the probability of 

negative example. In machine-learning, it has been shown that entropy is related to 

information in the sense that, the higher the entropy or uncertainty of some data, the 

more information is required in order to completely describe that data (Quinlan, 1986; 

Rendell & Ragavan, 1993).  
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 Conditional Entropy: Measures the amount of information needed to describe the 

outcome of a random variable Y given the value of X, where Y is the attribute and 

X is the instance(Wang, Yu, & Yang, 2002). Conditional entropy is calculated 

using the following: 

1. The first step to calculate H (Y|X), which is the entropy of Y given the X, is by 

calculating the sum of each column of data. 

2. Calculate the weight of each column as the column sum divided by the total 

number of observations N. 

3. Calculate the entropy for each column using the entropy function in (3-3). 

Conditional entropy by columns is calculated using (3-4): 

 
   |X)=∑                 

 

              (3-4) 

 

Conditional entropy is a critical data characteristic that emphasises the 

relationship between the attributes and the class owing to the fact it gives the 

entropy of the class variable given the value of the attribute X. It has been used in 

many meta-learning projects, such as statLog and METAL.   

Figure 3-4 presents class skewness, entropy, and conditional entropy for the datasets used in 

this research. As shown, the datasets are selected with different class skewness, ranging from 

positive or negative, different class entropy, and different conditional entropy. 
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3.1.2 Base Learning Process 

 

Section 3.1.1 above described the data characterisation box 1 in Figure 3-1. This section 

describes the next step, which involves the application of different sets of base learning 

algorithms. Section  3.1.2.1 describes the feature-selection methods considered, whilst 

Section  3.1.2.2 describes the cost-sensitive learning methods. 

3.1.2.1  Feature-Selection 

Some datasets are very large and contain features that are either irrelevant or that have no 

impact on the learning process. It is well known in the machine-learning community that 

irrelevant features can have a negative effect on a learner‘s predictive power, and has 

some disadvantages (Almuallim & Dietterich, 1991; Kira & Rendell, 1992; Vanschoren, 

2010). Irrelevant features can cause greater computational demand, especially if there are 

a lot of features requiring additional processing. 

In the literature, a wide range of approaches are defined (see Section  2.3), albeit without 

a solid answer for the question that arises here: 

Figure 3-4: Information theoretic measures on different datasets 
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Amongst those different feature-selection approaches, which one should I use for a 

particular dataset? (Q2 P46) 

Considering the importance of feature-selection, this research includes use of meta-

learning for feature-selection; thus, meta-learning also explores the impact of feature-

selection methods based on dataset characteristics, with the aim of finding which 

algorithm performs best if a specific feature-selection method is applied for a specific 

task. In this research, a variety of feature-selection methods are used with the aim of 

learning meta-knowledge that predicts which feature-selection method is most suitable 

for a specific dataset. An overview of feature-selection methods—and related searching 

methods—was presented in Section  2.3. There are two different approaches, namely 

wrapper methods and filter methods: in the case of the former, the inducer itself is used 

to evaluate which subset of the feature is more predictive, eliminating those that are less 

predictive or irrelevant; in the latter, data is independently characterised from the 

learning algorithm, depending on the data characteristics, its correlations and 

dependencies. 

There are different search strategies defined in the literature: greedy search, which 

performs either forward or backward search by starting either with all attributes in the 

case of backward search, and eliminates those attributes that reduce or otherwise have no 

effect on classifier performance, whilst forward search starts with no attributes, and adds  

attributes one by one  that increase classifier performance until some stopping criteria are 

met (Kohavi & John, 1997). On the other hand, rankers rank a set of attributes according 

to their evaluation values, either gain ratio, entropy, etc. 

3.1.2.2  Cost-Sensitive Meta-learning 

Chapter two described cost-sensitive learning methods. In this section, the methods 

selected for inclusion in this study are briefly summarised. In general, there are two types 

of method for developing cost-sensitive classifiers: direct and indirect. In a direct 

approach, an algorithm is altered or developed in such a way so as to take into account 

costs; in an indirect approach, wrappers over accuracy-based algorithms are used to 

convert accuracy-based classifiers to produce cost-sensitive classifiers. 
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In this research, we use the wrapper approach with a wide variety of base learners. The 

advantages of using a wrapper approach include the amendment of the data input space 

rather than making any changes in any part of the classifier. In addition, it provides more 

flexibility to use any new learning algorithm without concerning its internal behaviour. 

The following cost-sensitive methods are used: 

 Minimum expected cost: In accuracy-based learning, the aim is minimising error by 

producing a classifier that minimises the number of misclassified instances. In general, 

each misclassified instance is counted according to its occurrence; therefore, if 50 

instances are misclassified in a dataset that contains 500, then the error rate is 10%. In 

contrast, the optimal class in cost-sensitive learning is the class that provides the 

minimum expected cost as opposed to the minimum misclassification number of 

instances by taking into account the cost of misclassification. This idea of optimal cost 

produced is by Elkan (2001). The expected costs are calculated using (3-5):  

 
∑                                          (3-5) 

C (i,j,x ) is the cost of misclassification example x as class i, when the true class is j,            

p (j|x) is the probability of classifying instance x as class j  

Accordingly, the cost-sensitive classifier tends to classify each instance to the class that it 

gives its minimum misclassification cost. 

 Re-Weighting: In the re-weighting method, each instance is allocated a weight that 

reflects its importance in the learning process, meaning each instance in the training set 

is multiplied by its misclassification costs. In this way, the costly class is given more 

weight owing to the fact that the misclassification of costly class is more severe (carries 

heavier penalties) than misclassifications in a dominant class. This leads to generating a 

model that is less likely to misclassify the costly instances.  

 Bagging (MetaCost): This is one of the algorithms that utilises bagging with 

resembling (Domingos, 1999). In MetaCost, the training set is divided into different 

samples (sample with replacement), with a specific base learner then applied on each 

sample in order to generate different models. The decision made by each model is 



 

 

60 

 

 

combined so as to produce the aggregate final prediction. Subsequently, each instance 

then is assigned a label that provides its minimum cost—even if it is not its true label. 

The re-labelled examples are re-processed through the insensitive cost learner (accuracy-

based learners) in an effort to produce a sensitive cost classifier. 

 

3.1.3 Performance Evaluation 

 

This is very important process in meta-learning, it involves evaluating the result of applying 

different base learners (cost-sensitive and insensitive) on a given datasets. In this research, 

accuracy and cost are used to evaluate the performance of the learning process by using 10 

folds cross validation. The idea is to have a 10 % subsets of the dataset called the validation 

set, nine are used for building the model and one is used for testing, then each subset that is 

taken for testing is retuned back to enter a training process and another subset is taken for 

testing. As a result the average of the ten trials is taken as the classifier performance. 

In our experiments different costs are generated using different cost matrix values, the value 

of the cost matrix is taken from 1 to 4 in round for each class and the cost is calculated by 

multiplying the number of misclassified instance from the cost matrix by the cost obtained 

from generated cost matrix using the following equation (Elkan, 2001): 

 
                  Cost 

∑                 

 
 

          (3-6) 

 

Where P (i,j) is the probability of classifying instance j into i, C(i,j) is the cost of 

misclassifying an instance j into i, N is the total number of instances. 

3.1.4 Meta-Learning Process 

 

As mentioned previously, meta-learning is the process of learning about the learning process, 

which can be achieved using the accumulative experience learned from previous applications 

of different learners on datasets with a wide range of characteristics, with these then used to 

help recommend future uses. In meta-learning, the meta-features are computed for all datasets 
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(Step 1 of Figure 3-1), then combined with the result of accuracy and cost from the empirical 

evaluations of different base learning classifiers on those datasets, and accordingly provided 

as input to the meta-learner (Box 5 in Figure 3-1) in order to create the meta-knowledge. This 

meta-knowledge can then be used to select one or more algorithms given the characteristics 

of the datasets under analysis. The question that arises here is: 

Which learning algorithm should be used for this learning task? (Q4 P46) 

In theory, several alternative methods could be employed in an effort to adhere to this 

recommendation: 

 K-nearest neighbour: Given a new dataset, one could compute the k-nearest neighbour 

based on the characteristics of the new dataset, and accordingly use this as a basis of a 

recommendation.  

 Neural networks: One could train a neural network, which, when given the 

characteristics and a proposed learner, predicts accuracy and cost.  

 Decision tree learners: A decision tree in which each internal (non-leaf) node is 

labelled with an input feature, given a new dataset, allowing one to predict the 

accuracy and cost of the given dataset by simply tracing through the given tree 

checking its attributes until a leaf is reached. 

All of the above-cited methods could have been used in this research; however, an important 

aim of this research is developing meta-knowledge that could be transparent and 

comprehensible. Hence, in this research, the decision tree induction is used as a meta-learner. 

More specifically, J48 is used because it is readily available, easy to use, and produces rules 

which are comprehensible. J48 is used as meta-learner that predicts the performance of a 

given classifier for a specific dataset according to its computed features and accordingly is 

linked to different base learners‘ performance. The meta-knowledge developed using J48 is 

converted into rules, such as: 

If classEntropy<1.5 && number of Instances < 30, & number of classes =2,  

then naiveBayes classifier accuracy is >80. 

If feature-selection = wrapper, search strategy =bestFirst. 



 

 

62 

 

 

 The meta-learning procedure described above has been implemented in the WEKA (Hall et 

al., 2009) system, WEKA is open source software which is popular for machine learning 

algorithms to apply data mining tasks, WEKA contains a collection of visualization tools and 

algorithms for data mining tasks, and data analysing using different predictive models, with 

graphical user interface for easy accessing those machine learning. The results of an 

evaluation are presented in chapter 4. The next section will tackle a specific problem faced in 

the development of meta-learning, which is the problem of improving the speed of learning 

good-meta knowledge.  

 

3.2 Development of Active Learning Based on Clustering 

 

The process of developing meta-knowledge, as described above—namely the generation of 

different examples by applying different classifiers and evaluating their performance—is an 

important first step in this research, but could prove time-consuming, particularly for large 

datasets. More specifically, not all datasets will contribute the same amount of new 

knowledge: for example, if a new dataset is very similar to previous datasets, there would be 

little benefit in using it if the existing predictions are accurate, and one might get more 

knowledge from another dataset. This problem of seeking out the right examples for learning 

is not new, and several authors have proposed the use of active learning, such as Cohn et al. 

(1994), Lindenbaum, Markovitch, & Rusakov (2004) and Tong & Koller (2002). Active 

learning has emerged in some domains, where labelled data is not available or otherwise 

requires time and effort to be labelled. 

The central problem of active learning is how to choose data that will be labelled (Roy & 

McCallum, 2001; Settles, 2011) . The new data is determined using different query strategies:  

 

1. Uncertainty Sampling: In this framework, the query seeks the data that the learner is 

uncertain (or least certain) on how to classify (Cohn et al., 1994; Huang, Jin, & Zhou, 

2010). Through this technique, data which has the maximum uncertainty measure is 

selected to enter the learning process. It is claimed that, when data uncertainty is high, 

the classifier does not have sufficient knowledge for its classification. As a result, 

including these data will improve the learning process (Settles, 2011). This approach 
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is also referred to as closest-to-boundary criterion (Nguyen & Smeulders, 2004) 

owing to the fact that the data that are nearest to the current learner boundaries are 

often the most difficult to classify with certainty, and therefore they may produce new 

knowledge.  

2. Query-By-Committee: Through this framework, more than one classifier is used. 

Each learner is asked to vote on the labelling of the new data, where the data chosen is 

the data that has the largest number of disagreements in terms of how it should be 

labelled (Settles, 2011; Seung et al., 1992). This concept follows the uncertainty 

sampling approach described above, where data around the boundaries are taken to be 

the most informative data for labelling. 

3. Expected Error Deduction: This depends on the estimation of how much 

classification error is likely to be reduced using the new nominated dataset  (Roy & 

McCallum, 2001) 

4. Active Learning with Clustering: All of the above methods ignore the prior data 

distribution in choosing the first pool of dataset to be labelled. Hence, some 

researchers have suggested active learning with clustering that takes into 

consideration the prior data distribution e.g.(Nguyen & Smeulders, 2004; Urner et al., 

2013).  

The approach adopted in this thesis is to use active learning based on clustering with the 

aim of improving accuracy more rapidly as new datasets are added (points 3 and 4). As 

mentioned previously, most active learning approaches (namely points 1–3) ignore data 

distribution by applying a specific learner or set of learners on a small number of samples 

with the aim of labelling under the assumption that those chosen samples are good 

representatives of the whole dataset. In most cases, this assumption is violated owing to the 

small number of samples taken for labelling and a large number of unlabelled data (Zhu et 

al., 2008b). A potential solution for this problem is finding clusters of dataset that could 

represent the whole data space.  

Active learning based on clustering is motivated by the idea of establishing good 

representative samples for the potentially wide range of datasets needed to create the meta-

knowledge in the meta-learning process. In applying this approach, the following questions 

arise: 
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 How can we assess the cluster ‗goodness‘? 

 In considering that a ‗strong enough‘ cluster is generated, would all data in the same 

cluster behave in the same way to a specific learner?  

 Can we unify them in one cluster label that reveals their performance? 

In an effort to answer these questions, the concept of weak and strong clusters is introduced, 

along with the development of an active learning algorithm for meta-learning. Figure  3-5 

illustrates the idea of strong and weak clusters, plus sign refers to the example that has correct 

classification result and minus for the example that has wrong classification result, the figure 

shows various possible clusters that have both positive and negative examples: 

 

 Cluster 1: All positive examples are concentrated around the centre. The further away 

we are from the centre, the more negative examples are found (because they may 

belong to another cluster). This cluster has good predictive power and can be 

considered as a strong cluster. 

 Cluster 2: This cluster has a mixture of negative and positive examples spread near 

and far from the centre. This cluster is not good because no decision boundaries are 

fixed, and it has low predictive power owing to the fact that data with similar patterns 

are classified differently, and hence is a weak cluster.  

 Cluster 3: Most of the negative examples are concentrated around the centre, whilst 

most of the positive examples are spread around the cluster boundaries, meaning this 

cluster is poor, and we expect that the positive examples on the boundaries should be 

belong to a different cluster. 
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As the examples in Figure  3-5 illustrate, there are two important points: 

 

1. Data that are close to the cluster centres are more representative. 

2. Data samples in the same clusters are likely to have the same classifier performance, 

meaning the closer the two instances, the less likely they are to have different 

performance (Urner et al., 2013) ; this will help us in assigning one label to each 

cluster. 

As described above, our aim is finding how far each data is from its cluster centre because we 

believe that (in the case of strong cluster) data in the cluster‘s centre are more representative 

and should have the lowest error (more positive examples). Through this approach, we use a 

statistical measure, known as the z score, to measure the distance of a specific dataset from 

the cluster centre. The z score indicates the amount of standard deviations of an element from 

the mean. A dataset with higher z score is nearest to the cluster boundary. The formula for 

calculating a z score is given in (3-7) (Abdi, 2007) : 

   
   ̅

 
                            (3-7) 

Where   is the attribute value,  ̅ is the mean value, and   is the standard deviation. 

Cluster1 (strong)  

Cluster3 (weak) 

Cluster 2 

(weak) 

+          Data that is correctly         

classified. 

-          Data that is wrongly 

classified  

Figure 3.4: Examples of strong and weak clusters Figure 3-5: Examples of strong and weak clusters 
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In order to assess whether a cluster is strong or weak, we first divide each cluster into three z 

score zones (Zone 1, Zone 2 and Zone 3), where each zone highlights the distance from the 

cluster mean. In order to achieve a strong cluster, we expect to have more positive examples 

in Zone 1 and more negative examples in Zone 3. According to this, creating a good cluster 

can be done through minimising the error prediction for each cluster by seeking more data in 

the cluster‘s centre that are positive.  

Thus, searching for a new datasets will be done in the following cases: 

1. There are no datasets in a specific zone, which means no data represents this 

type of knowledge. 

2. The error rate is increasing whilst we are moving toward the cluster centre, 

which means the cluster is not good enough in terms of prediction. 

The question that arises here is how a data character that goes into a specific z_score in a 

specific cluster can be chosen. The minimum distance between dataset characters and cluster 

z_score is used to find the dataset that fits into the specific cluster z_score. 
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The above considerations lead to the active learning process, as presented in Figure  3-6, 

which includes the following steps: 

 

1. Dataset characterisation: Each dataset is characterised using different simple 

mathematical and statistical methods with the aim of clustering each dataset with its 

natural groups. 

2. Learning application and performance evaluation: Different base learners are applied to 

the characterised data with the aim of evaluating the performance of different classifiers, 

such as applying J48, naive Bayes, neural network, oneR, zeroR. Each dataset has 

evaluation accuracy and misclassification cost resulting from applying different 

classifiers. All the results are evaluated using 10-fold cross-validation.  

 J48_cluster

s 
NN_clusters 

c1 

 

Select Data 

 

c2 

small set of unlabelled 

data 

Data 

characterisation 

Learning application and 

performance evaluation 

Group labelled data 

into different 

classifiers 

zeroR 

J48 

NN 

oneR 

Clustering and 

labelling  

Small set of 

labelled data 

large set of unlabelled 

data 

c1 c1 c2 

oneR_clusters 

1 2 

3 4 

5 

6 

Re cluster 

Figure 3.5: Active learning based on clustering Figure 3-6: Active learning based on clustering 
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3. Divide each labelled datasets into its classifier groups: The datasets are grouped 

according to the learning algorithm used (J48, naïve Bayes, neural network, part, and 

zeroR). 

4. Clustering: Each classifier‘s group is clustered based on the data characterisation. 

Subsequently, each cluster is given an initial label that is the average of its datasets labels. 

As shown in Figure  3-7, J48 group clusters are generated by applying J48 learner on data, 

with the average label of all datasets within a specific cluster then assigned as ‗cluster 

label‘, with the average categorised in ranges (for example: 50–60 in Cluster 1 and 80–90 

in Cluster 2 for J48 accuracy group, and 5–10 for Cluster 1 and 30–40 for Cluster 2 for 

Naive Bayes cost group). As a result, each classifier‘s group has its own clusters, each 

representing the expected results of data in that cluster. Figure  3-8 depicts two different 

clusters showing the different results and data characteristics; thus, if data is in Cluster 

1—which has number of classes = 2, number of attributes = 14, class skew = 0.5—then 

J48 can be expected to produce better results than if it was in Cluster 2—where number of 

classes = 3, number of attributes = 5, class skew = 2. 

 

 

 

 

 

 

 

 

 

 

Dataset 

𝒅𝟏  

50-60 

80-90 

5-10 Naïve Bayes  
cluster2 

J48  

cluster1 

30-40 

Figure 3-7: Illustration of classifiers specific clusters for J48 and naïve Bayes 



 

 

69 

 

 

 

Figure 3-8: Illustration of two clusters and their characteristics, both for J48 and naïve 

Bayes 

 

For each learning method (J48, naïve Bayes, neural network, Part, oneR, and ZeroR) 

 

 Evaluate quality of clusters based on z_score (described previously in this section)  

 Determine the characteristics of the data needed to improve the predicted accuracy 

of clusters. 

 Search for  new data  

 Add the selected data into labelling datasets 

5. Select data: More informative data for each cluster is selected by re-clustering, which is 

done with the aim of finding better clusters after new data is added.  

6. Re-cluster with the new data added. 

The above outline procedure is presented in greater detail as per the algorithm below:  

 Figure  3-9  presents the top level of the active learning algorithm,  

 Figure  3-10: The query formulation steps, 

 Figure  3-11 presents dataset determination steps, and 

 Figure  3-12 presents dataset search steps. 
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Figure 3-9: The top level of the active learning algorithm 
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Figure 3-10: The query formulation steps 
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       Figure 3-11: Dataset determination steps 
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Figure 3-12: Dataset search steps 

 

A significant assumption in the above algorithm is that, as more data becomes available, the 

performance of the predictions improves; however, some initial trials suggest that the error 

rate does not always decrease as the number of labelling data grows for all datasets in 
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different clusters (more details can be found in Section 4.3). Figure  3-13 shows what can 

happen when the error rate starts to increase. In an effort to address this problem, rather than 

always clustering on the last state, the procedure is extended by storing the cluster 

information that gives the minimum error prediction rate and re-clusters the labelled dataset 

based on ‗best cluster‘. The results of these algorithms are shown in detail in Section 4.3 

 

Figure 3-13: Error Rate versus number of labelled data using ALBC 

 

Clustering on Best Cluster 

For each learning method (J48, naïve Bayes, neural network, Part, oneR, and ZeroR):  

 Find the cluster prediction error  

 Find the cluster with highest performance 

 Predict the data needed based on     using Active Learning Based on Clustering 

Algorithm in Figure  3-9 

 Re-cluster based on new data. 

Figure  3-14  illustrates clustering on the best cluster method. As shown in Figure  3-14, each 

cluster prediction performance is calculated using ALBC algorithm, then the cluster with 

highest performance is used for the prediction then the data is predicted using the specified 

cluster (highest performance) then the clustering is done based on this cluster.   
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Figure 3-14: Best cluster method 
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3.3 Summary of Cost-Sensitive Meta-Learning Work and Active Learning  

This chapter has presented the design of a meta-learning system for recommending feature 

selection methods and cost-sensitive learning methods. The central idea is to apply various 

feature selection methods and learning algorithms to determine their performance on several 

data sets. The performance and characteristics of the data are combined to form examples 

which are then used as input J48 to generate the meta-knowledge in the form of decision 

trees. This meta-knowledge can then be used to predict the performance of the feature 

selection methods and algorithms on new data, and hence allow the user to select the most 

suitable methods.   

The chapter also explores how one can speed up the meta-learning process by identifying the 

next most suitable dataset(s) to digest into the meta-learning process. This is done by 

choosing a small set of labelled data, the labelled data are clustered according to its meta- 

features, and then any new data that will enter the learning process will be assigned to the 

clusters that are nearer to its meta-features.  The quality of the clusters is determined by using 

z-scores and the characteristics of data sets that can improve the clusters is identified and 

provides the basis for selecting the new data sets to ingest. 

The next chapter presents a detailed evaluation of the methods developed in this chapter, 

including a comparison with the METAL system for meta-learning. 

 

A full detailed experiments description and comparison between those two solutions and 

other existing work will be done in chapter 4. 
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4 CHAPTER FOUR: EMPRICAL EVALUATION OF NEW COST 

SENSTIVE META-LEARNING SYSTEM 

Chapter 3 presented the design of a system for meta-learning knowledge concerning cost-

sensitive learners. It proposed the use of data characterisation coupled with performance data 

in the generation of examples, providing input to a learning algorithm that induced 

knowledge, which subsequently could be used to predict the performance of learning 

algorithms on given datasets. Chapter 3 also proposed a new approach to active learning in an 

effort to speed-up the meta-learning process.  

 
This chapter presents an empirical evaluation of the following ideas: 

 Section  4.1 evaluates the meta-learning process to learn the meta-knowledge for 

recommending feature-selecting methods. 

 Section  4.2 evaluates the meta-learning process to learn the meta-knowledge for 

recommending cost-sensitive algorithms, and accordingly presents a comparison with 

those obtained with METAL—a project with similar goals.  

 Section  4.3 presents an evaluation of the use of active learning by comparing with the 

use of a random process for the selection of meta-example. 

 

Each section is structured so that the aim of the experiment and methodology adopted is 

explained, with the results presented and then discussed. 

4.1 Feature Selection Experiment 

As described in Section  3.1, feature selection is an important element of data-mining since 

there may be several features available in a dataset that are irrelevant or correlated, and it is 

known that the use of features that are correlated or irrelevant can have an adverse effect on 

some learning algorithms (Hall, 1999a; Kim, Street, & Menczer, 2003; Kohavi & John, 

1997). Hence, Section  4.1.1 evaluates whether or not feature selection has an effect and 

whether there is a single best method. Subsequently Section  4.1.2  aims at building meta-
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knowledge that recommends the most appropriate feature selection approaches for a given 

dataset. 

4.1.1 Evaluating Feature Selection Approaches 

This section presents the results of an evaluation in assessing how well feature-selecting 

methods work, and further assesses whether there is, in fact, a best method. The experiments 

use 10 datasets from the UCI Machine Learning Repository(Bache & Lichman, 2013), 

namely contact lenses, diabetes, vote, iris, credit-g, labour, glass, ionosphere, breast-cancer 

and soybean. For each dataset, the following characteristics are identified: number of classes, 

number of instances, number of attributes, class entropy, class skew and class conditional 

entropy. The experiments utilise four target learners: J48, naïve Bayes, neural networks, and 

a cost-sensitive classifier using minimum expected cost with J48 as a base learner. The 10 

cross-validation methodology is adopted in the experiments, with the results including 

standard error. 

In order to evaluate the effects of using feature-selection methods on classifier performance, a 

comparison is carried out between using and not using a feature-selection method. Three 

different feature-selection methods are considered, with the results presented below. 

 

  Table  4-1 summarises the improvements in classifier accuracy after using a wrapper 

feature-selecting method, known as the WrapperSubsetEval in Weka (Kohavi & John, 

1997), which uses a greedy search method for adding and removing attributes. The 

results are presented in three columns for each base learning method: a column with 

the accuracy prior to use of feature selection, a column after utilising the wrapper 

method with feature subset selection (columns with a FS suffix) and a column 

highlighting the improvement (columns labelled IM). Results are presented for a 

decision tree learner, known as J48, naïve Bayes (NB), neural networks (NN) and the 

use of cost-sensitive learning with J48 (J48_Cost). Figure  4-1 presents improvements 

in the form of a bar chart, showing improvements in almost all cases, except J48_cost-

sensitive classifier in Diabetes and Vote datasets, and NN in both Glass and Weather 

datasets. 
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 Table 4-2 summarises the improvements in classifier performance using a filtering 

feature-selection method known as GainRatioEval in Weka. This method uses worth of 

an attribute by utilising an information theoretic measure, which is used in decision 

tree learning algorithms, known as the gain ratio, with respect to the class. Figure  4-2 

presents the improvements in the form of a bar chart, highlighting the improvements in 

almost all cases, except J48 classifier in Ionosphere, Soybean and Vote datasets, naïve 

Bayes in Weather, Soybean and Vote datasets, NN shows a decrement or no changes 

in all cases, except Contact-lenses, Ionosphere, Vote and Cancer datasets, and 

J48_Cost-sensitive shows decrement in all cases except credit-g, Glass, Labour and 

Cancer. 

 Table  4-3 and Figure  4-3 summarise the improvements in classifier performance using 

a feature-selection wrapper method, known as cfsSubEval in Weka, which evaluates 

the worth of a subset of attributes by considering the individual predictive ability of 

each feature, in addition to the degree of redundancy between them (Hall, 1999a), J48 

shows a decrement or no changes in all cases, except Diabetes, Glass and Labor 

datasets. Naïve Bayes shows accuracy improvements in all cases except Credit-g, 

Glass and Weather datasets. NN shows accuracy improvements in all datasets except 

Contact-lenses, Glass and Weather whereas; J48_Cost-sensitive shows increment or no 

changes in all cases except Contact-lenses, Diabetes and Cancer. 
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Table 4-1: Changes in classifiers performance accuracy after using WrapperSubSetEval with 

Greedy Search (accuracy %   standard error) 

 

Dataset J48 
J48 

FS 
IM NB 

NB 

FS 
IM NN 

NN 
FS 

IM 

J48_

Cost 

J48_

Cost

_FS 

IM 

Contact Lenses 
83.3

      

87.3

     
4 

70.8

 7.5 

87.5

     
16.7 

70.8

     

83.3

   
12.5 

79.2

     

83.3

     1.4 

Credit-Card g 
70.5

      

74.6

     
4.1 

75.4

     

74.4

     
-1 

71.6

     

96

     
24.4 

72.6

     

73.7

   4.4 

Diabetes 
73.8

      

75

     
1.2 

76.3

     

77.5

 1.4 
1.2 

75.3

     

78.6

     
3.3 

75.1

     

74.5

     -0.6 

Glass 
66.6

     

71

     
4.4 

48.5

   

58.1

     
9.6 

67.7

     

67.2

 3.8 

-0.5 

 

 

 

70   7   

4 

Ionosphere 
91.4

     

93.7

   
2.3 

82.6

     

92.0

     
9.4 

91.1

     

92.5

 1.7 
1.4 

90.3

   

90.5

     
2.0 

Labour 
73.6

     

82.4

     
8.8 

89.4

     

94.7

     
5.3 

85.9

     

94.7

     
8.8 

75

   4 

82.4

   2 

Weather 
64.2

      

71.4

      
7.2 

64.2

      

71.4

      
7.2 

78.5

      

71.4

      
-7.1 

35.7

   

35.7

   
2 

Soybeafn 
91.5

     

93.4

     
1.4 

92.9

     

93.2

     
0.3 

93.4

     

94.4

     
1 

91.5

     

92.2

     2.2 

Vote 
96.3

     

96.9

     
0.7 

90.1

     

95.8

   
5.7 

94.1

     

97.0

      
2.9 

96.3

     

95.6

   2.2- 

Cancer 
75.5

     

75.8

     
0.3 

71.6

     

74.1

     
2.5 

64.6

     

75.8

     
11.2 

73.4

   

73.4

   
2 

Average of IM   34.4   56   57.9 
  

40.3 
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Table 4-2: Changes in classifier performance accuracy after using GainRatioEval with 

Ranker (accuracy %   standard error) 

 

Dataset J48 
J48 

FS 
IM NB 

NB 

FS 
IM NN 

NN 

FS 
IM 

J48_

Cost 

J48_

Cost_

FS 

IM 

Contact Lenses 
83.3

      

83.3

     
0 

70.8

 7.5 

83.3

     
12.4 

70.8

     

83.3

     
12.5 

79.2

   

74.8

   -4.4 

Credit-Card g 
70.5

      

72.8

     
2.3 

75.4

     

75.5

     
0.1 

71.6

     

70

     
-1.6 

72.6

     

73.1

     2.0 

Diabetes 
73.8

      

74.3

   
0.2 

76.3

     

76.4

     
0.1 

75.3

     

76.0

     
-0.7 

75.1

   

72.6

     2.5- 

Glass 
66.6

     

68.3

     
1.6 

48.5

   

50

     
1.5 

67.7

     

67.2

     
-0.5 

70

     

71   

4 

Ionosphere 
91.4

     

90.3

     
-1.1 

82.6

     

87.1

     
4.5 

91.1

     

91.4

     
0.3 

90.3

   

90.

      -0.3 

Labour 
73.6

     

77.1

     
3.5 

89.4

     

89.4

     
0 

85.9

     

85.9

     
0 

75.4

   

78.9

     5.0 

Weather 
64.2

      

71.4

      
7.1 

64.2

      

57.2

      
-7 

78.5

      

78.5

      
0 

35.7

   

35.7

     2 

Soybean 
91.5

     

85

     
-6.5 

92.9

     

85.9

   
-7 

93.4

     

86.2

     
-7.2 

91.5

   

90.4

   -1.1 

Vote 
96.3

     
95   -1.3 

90.1

     

89

     
-1.1 

94.1

     

94.7

     
0.6 

96.3 
4 

95.4

   -0.9 

Cancer 
75.5

     

75.1

     

-

0.03

- 

71.6

     

72.3

     
0.7 

64.6

     

69.5

     
4.9 

73.4

     

74.8

     4.1 

Average of IM   5.8   4.2   8.3 
  

2.8- 
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Table 4-3: Changes in classifier performance accuracy after using CfcSubEval with 

bestFirst (accuracy %   standard error) 

 

 

Dataset J48 
J48 

FS 
IM NB 

NB 

FS 
IM NN 

NN 

FS 
IM 

J48_

Cost 

J48_

Cost

_FS 

IM 

Contact 

Lenses 

83.3

      

70.8

     
-12.5 

70.8

 7.5 

70.8

     
0 

70.8

     

66.6

     
-4.2 

79.2

   

50

     04.0- 

Credit-

Card g 

70.5

      

70.5

     
0 

75.4

     

74.4

     
-1 

71.6

     

73

     
1.4 

72.6

     

72.7

     2.4 

Diabetes 
73.8

      

74.8 
2 

1.1 
76.3

     

77.5

     
1.2 

75.3

     

75.5

     
0.2 

75.1

     

73.5

     4.1- 

Glass 
66.6

     

68.9

     
2.3 

48.5

   

47.6

     
-0.9 

67.7

     

65.8

     
1.9- 

70

   

70

     2 

Ionospher

e 

91.4

     

90.

    5 
-1.4 

82.6

     

92.0

     
9.4 

91.1

     

93.4

   
2.3 

90.3

   

90.8

     2.0 

Labour 
73.6

     

77.1

     
3.5 

89.4

     

91.2

     
1.8 

85.9

     
85   -0.9 

75.4

   

80.7

   0.5 

Weather 
64.2

      

42.8

      
-21.4 

64.2

      

57.1

      
-7.1 

78.5

      

71.4

      
-7.1 

35.7

   

57

   04.5 

Soybean 
91.5

     

90.1

   
-1.4 

92.9

     

92.2

     
-0.7 

93.4

     

93.8

   
0.4 

91.5

   

90.7

     2.3- 

Vote 
96.3

     

96

     
-0.3 

90.1

     

96

     
5.9 

94.1

     

95.8

     
1.7 

96.3

   

95.4

   2.4- 

Cancer 75.5

     

73.0

   7 

-2.5 71.6

     

72.3

     

0.7 64.6

     

72.6 8 73.4

   

57

     -41.1 

Average 

of IM 

  -32.6   9.3   -.01   

-04.2 
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Figure 4-1: Changes in classifiers accuracy after using WrapperSubSetEval with 

Greedy Search 

 

 

Figure 4-2: Changes in classifier accuracy after using GainRatioEval with Ranker 
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Figure 4-3: Changes in classifier accuracy after using CfcSubEval with bestFirst 

 

The above results show that, in general, there is improvement in the learning algorithm 

performance when using feature selection positive values in IM columns), there are some 

negative values which shows accuracy decrements in some cases after using the feature 

selection which can result from losing some important features. Moreover, it also shows that 

there is no best feature-selection approach for all learning tasks: for example, in using the 

WrapperSubsetEval approach with greedy search, J48 performs better than the naïve Bayes 

classifier and neural network on Soybean dataset; however, naïve Bayes outperforms J48 and 

neural networks on the contact-lenses dataset once the WrapperSubSetEval feature-selecting 

method is used. J48 and naïve Bayes show the same performance improvement on Weather 

dataset, whereas neural networks, on the other hand, show a reduction in performance when 

this feature-selecting method is used. On the other hand, using cfsSubsetEval with a best-first 

strategy shows a decrement in performance in the same datasets (Weather, contact-lenses and 

Soybean).  

What is required for a good data mining plan is good understanding of the data nature, and 

knowledge regarding which feature-selecting strategy works well for a specific dataset. Thus, 

the aim of our next experiment, as presented in Section  4.1.2, is finding the link between 

dataset characteristics, feature selection approaches and search techniques with different 
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classifier performance in an effort to establish which feature-selection method is best for a 

specific task. 

 

4.1.2 Developing Meta-Knowledge for Feature Selection 

Meta-knowledge for feature-selecting methods is developed by learning from the application 

of the methods on forty-two datasets from the UCI repository (Bache & Lichman, 2013). For 

this aim, different dataset characteristics are used for the purpose of understanding the nature 

of the data and to know what makes a feature-selecting method work well on a specific 

dataset. For each dataset, the following characteristics are identified: number of classes, 

number of instances, number of attributes, class entropy, class skew, and class conditional 

entropy. All of these characteristics are linked to different feature-selection approaches under 

different search techniques, along with the application of six classifiers (J48, naïve Bayes, 

oneR, part, zeroR, and neural networks). The results, together with the characteristics, are fed 

to J48 in an effort to create the meta-knowledge for predicting the performance of the 

methods, which then can be used for recommending what feature-selection approaches should 

be used on a specific dataset.  

Table  4-4 summarises the feature-selection approaches, evaluation strategies and the search 

strategy used in the experiments. None indicates using a learning algorithm without feature-

selection. There are two different feature-selection approaches used in the experiments: a 

wrapper method and filter method. In a wrapper method, a subset of features is evaluated 

using the learning algorithm that ultimately will be employed in the learning process. In a 

filter method, data is characterised independently from the learning algorithm, depending on 

data characteristics; therefore, the subset is filtered even prior to learning. Different search 

strategies are used, including forward greedy search, which involved starting with no features, 

adding them one by one, and evaluating performance. The search stops when adding features 

results in a drop in performance. Another search strategy used is best first, which contrasts 

with greedy search, where the searching process in best first does not terminate when the 

performance starts to drop; instead, a list of features that are chosen thus far are sorted in order 

of performance, whilst another search starts from different points, with a comparison carried 

out between different lists of feature stored previously (Hall, 1999a). Ranker search strategy is 
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used to rank attributes according to the measurements value used in filtering, such as entropy, 

gain ratio. 

 

Table 4-4:Combination of feature selection approaches, search strategies, and 

evaluators 

Feature Selection 

Approach 
Attribute Evaluator Search Strategy 

None None None 

Wrapper ClassifierSubSetEval GreedySearch 

Wrapper ClassifierSubSetEval BestFirst 

Wrapper CfsSubSetEval BestFirst 

Filter InfoGain Ranker 

Filter GainRatioEval Ranker` 

Filter OneAttributeEval Ranker 

 

In order to obtain the meta-knowledge for different feature-selecting methods, desired 

features are extracted for forty-two datasets. Each dataset, with its characteristics, is linked to 

6 classifiers in an effort to evaluate their accuracy and cost after applying the combinations 

listed in Table 4-4; in other words, each dataset has 42 rows (6 classifier * 7 feature selection 

combination). 

A sample of the data characteristics with different feature-selection approaches, along with 

the different classifiers accuracy and cost for contact-lenses dataset, is shown in Figure 4-4, 

where: 

t1: number of classes, t2: number of attribute, t3: class entropy, t4: class skew, t5: number of 

instances, t6: class conditional entropy, f1: feature selection type, f2: evaluator, f3: search 

strategy  
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Figure 4-4: Sample of dataset characterises used to build meta-knowledge along with 

classifier performance for weather dataset 

 

The following decision tree results, stemming from applying J48 as a meta-learner on the 

performance data and characteristics, are illustrated in Figure  4-5 and Figure  4-6 . 
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>9
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40-45
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75-80

<=7
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>7

70-75
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Figure 4-5 : Decision tree for feature selection with accuracy (Left) 
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Figure 4-6: Decision tree for feature selection with accuracy (right) 
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The knowledge in the above decision tree is suitable as meta-knowledge, which can be used 

in deciding the feature-selecting methods best for a given dataset; that is, given a new dataset, 

its characteristics would be calculated and the tree traversed to predict the performance of 

specific algorithms. For example, if the class entropy for a given dataset is >0.95, class skew 

<=0.63, conditional entropy is <=13.7 and number of classes >3, then the predicted accuracy 

is 65–70 using J48 classifier, 65–70 using naïve Bayes with Ranker filter method and 60–65 

using greedy search and best first method, oneR results in less than or equal to 40, NN will 

give 65–70 (without any feature selection), 55–60 with greedy wrapper search and Best first, 

and 70–75 with ranker filter methods. As these recommendations are given to a user, he/she 

will be able to choose the algorithm and feature-selecting method best suited to his case: for 

example, in this specific case, the user may choose to apply NN with ranker feature methods, 

as this gives the highest accuracy.  

Notice that the classifier always appears as a splitting node in the decision tree, which 

suggests that the behaviour of the dataset (the accuracy and preferred feature selection) is 

highly affected by the learning algorithm used. The above decision tree is generated using all 

training data and the performance of applying 10 fold cross validation gives 78 %. The 

following observations can be made about these results: 

 

 Feature-selecting methods are an important factor in the meta-knowledge decision 

tree, especially when the number of attributes is large: for example, if the number of 

attribute >11 (Figure  4-6), classifiers, such as naïve Bayes and NN, are highly 

affected by the feature selection search method used. In contrast, if there are less than 

11 attributes and fewer than 3 classes, feature selection does not appear in the 

decision tree.  

 Class skew presents a challenge to any induction algorithms. As mentioned previously 

in Section  2.1, when data is highly skewed, a classifier tends to classify each instance 

into dominant class to maximise accuracy. From the above decision tree, it can be 

noticed that feature selection is relatively more important in skewed data, as 

mentioned in (Forman, 2003). This appears in the above decision tree, where feature 

selection is not a factor in the case of class skew < 0.63, unless the number of 

attributes is relatively large (>11), whereas the classifier accuracy is affected by the 
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feature-selecting method if the class skew >0.63 for most of the learning algorithms 

used (J48, part, naïve Bayes, and NN). (See Appendix A1-2) 

 Selecting the right set of features for classification is one of the most important 

problems in building a good classifier. Classifier performance is highly affected by 

irrelevant or correlated data; therefore, for example, J48 is less affected by using 

feature selection than naïve Bayes and neural networks because J48 is designed to 

choose the most relevant feature during construction. This appears in the previous 

decision tree, where the neural network and naïve Bayes accuracy are more affected 

when using feature selection, when a number of attributes is relatively large (>11) 

(Figure  4-6). 

 Class Entropy measures the ‗amount of mix‘ of the data: for example, if the class 

entropy=0, all instances belong to the same class (minimum mix) with high accuracy. 

We notice that, in the first tree (Figure  4-5), the accuracy of using J48 on a specific 

dataset with class entropy <0.93 is 70–80, whereas using J48 with feature selection on 

another dataset that has class entropy >0.93, accuracy ranges from 40–50 (using 

Greedy search method) and 60–65 using Ranker filter method. Hence, we can 

conclude that feature selection is not essential when using J48 if the classes are well 

discriminative (the class entropy is low). 

The following decision tree results from applying J48 as a meta-learner on misclassification 

cost prediction, as illustrated in Figure 4-7 and Figure 4-8
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Figure 4-7:  Decision Tree for feature selection with misclassification cost (left) 
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Figure 4-8: Decision Tree for feature selection with misclassification cost (right)
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The knowledge in the above decision tree is suitable as meta-knowledge that can be used in 

deciding which feature-selecting methods are best for a given dataset in considering a 

misclassification costs; that is, given new data, its characteristics can be calculated and the 

tree traversed to predict the misclassification costs of a specific algorithm: for example, if the 

data class entropy >0.47 and number of instances >214, the number of attributes >9, then the 

user is recommended to use J48 or oneR algorithm with cfsSubsetEval feature selection, 

which gives a minimum misclassification cost. (See Figure 4-7 ). 

The above decision tree is generated using all training data, and the following observations 

can be made: 

 Class Entropy is an important characteristic affecting classifier performance and, 

accordingly, misclassification cost. In general, the misclassification costs for the set of 

examples with class entropy <0.5 are less than the misclassification costs for the 

datasets with a class entropy > 0.5 (see Table  4-5 ).  

Table 4-5: Misclassification cost comparison between left and right branch of feature 

selection decision tree 

classEntropy<=0.5 classEntropy >0.5 

 Instances 

<=214 

instance>214 

J48 <5 J48 attribute <18 attribute >18 attribute 

30-40 none 50-60 <=9 >9 

wrapper 40-50 50-60 40-50 

filter 40-50 

NB none 10-20 NB 20-30 

 

attribute 

<=9 

attribute 

>9 wrapper <5 

filter attribute 

<=23 

10-20 40-50 50-60 

attribute >23 <5 

NN attribute <=19 attribute 

>19 

NN attribute <=18 

 

attribute 

>18 

attribute 

<=9 

attribute 

>9 

<5 none 10-

20 

20-30 30-40 40-50 50-60 

wrapper < 5 

filter 5-

10 
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Table 4-5 shows the misclassification costs for J48, NB and NN applied on data with class 

entropy <=0.5 ranges from 5 to 20. On the other hand, the misclassification costs of applying 

the same classifiers on data with class entropy >0.5 range 40–60 (if the number of instances 

>214) and 30–60 (if the number of instances < 214) because datasets with lower class entropy 

are more easily discriminated, having higher accuracy and therefore a lower misclassification 

cost.  

 From the above decision trees Figure  4-7 and Figure  4-8, we notice that feature 

selection is more critical when the number of attributes is relatively large. Table  4-5 

shows that the misclassification costs are highly affected by feature-selecting methods 

if the number of attributes is relatively high: for example, when using feature 

selection with J48, the misclassification cost decreases from 50 to 40 if the number of 

attribute >18, and using feature selection with NN causes a decrement in the 

misclassification costs from 10 to 5 (if the number of attribute >19). 

 Notice that the classifier always appears as a decision node, which states that the 

behaviour of the data (the cost of data misclassification) is highly affected by the 

learning algorithm used to build the model.  

 Class skew is a critical characteristic affecting misclassification cost because class 

skew has a direct affect in classifier accuracy; class skew appears as a splitting point 

in Figure  4-8.  

The next section presents the development of the meta-knowledge for cost-sensitive learning. 

 

4.2 Cost-Sensitive Learning Experiment 

This section presents an empirical evaluation of the meta-learning approach for recommending 

cost-sensitive methods. Section  4.2.1 describes the experiments performed to uncover the 

knowledge regarding the performance of various methods, as based on the characteristics of 

the data, i.e., the meta-knowledge that is able to guide future recommendations. Section  4.2.2 

evaluates the results obtained by making a comparison with the METAL project. 
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4.2.1 Cost-Sensitive Experiment Methodology 

This subsection describes the experiments that are conducted to learn a model that predicts 

the performance of cost-sensitive classifiers, given the characteristics of a dataset. Twenty-six 

datasets are characterised using simple and theoretical measurements, and are mapped to 

different cost-sensitive and -insensitive classifiers, evaluated using 10 folds cross-validation 

with the aim of finding under which circumstances a specific algorithm results in good 

accuracy and minimum cost. For cost-insensitive algorithms, the base learner is learnt, as it is 

without any wrapper methods, whilst for cost-sensitive algorithms, different wrapper phases 

are added to convert cost-insensitive classifiers to cost-sensitive. Thus, in each dataset, there 

are 264 rows (6 cost-insensitive classifiers *4 wrapper methods types and 11 cost ratios). As 

an example, Table 4-6 shows the characteristics used for the contact-lenses dataset, and 

Table 4-7 shows the cost ratios used, where the cost ratio ranges from 1 to 4 for each class. 

Table 4-8 summarises the different cost-sensitive and -insensitive approaches, Table 4-9 and 

Table 4-10 show how accuracy and cost are categorized. 

Table 4-6: Dataset characters for contact-lenses dataset 

NoOfClass NoOfAttribute 
Class 

Entropy 

Class 

Skew 
NoOfInstances 

Conditional 

Entropy 

Example 

Ratio 

Cost 

Ratio 

3 5 1.32 0 24 1.24 0.62 2 

  

Table 4-7: Cost ratios  

CostRatio 1 2 3 4 0.5 0.25 0.67 0.33 0.75 1.3 1.5 

 

 

Table 4-8: Cost-sensitive approaches 

Cost Insensitive classifiers Cost-sensitive approaches Cost-sensitive classifier 

J48 

None, 

Sampling,MinimumExpected 

cost, Bagging(MetaCost) 

Meta-J48 

OneR Meta-OneR 

ZeroR Meta- ZeroR 

NeuralNetwork Meta-NeuralNetwork 

PART Meta- PART 

NaïveBayes Meta-naïve Bayes 
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Subsequently, the J48 classifier is used as a meta-learner to predict the accuracy and cost of 

different datasets, as characterised by different meta-features (shown in Table  4-6) and 

mapped to different cost-sensitive and -insensitive approaches (shown in Table  4-8 ). 

 

The accuracy of the classifiers is categorised into the following bands (Table  4-9) in order to 

enable the application of learning algorithms, such as J48 for meta-learning: 

 

Table 4-9: Accuracy categories 

Accuracy <=40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 >=95 

 

The misclassification cost for one instance is categorised into the following bands 

(Table  4-10) in order to enable the application of learning algorithms, such as J48 for meta-

learning: 

 

Table 4-10: Cost Categories 

Cost 0-

10 

10-

20 

20-

30 

30-

40 

40-

50 

50-

60 

60-

65 

65-

70 

70-

75 

75-

80 

80-

85 

85-

90 

90-

95 

95-

100 

100-

150 

150-

200 

>=200 

 

 

The characteristics, cost ratios and performance obtained can be combined to form examples. 

Table  4-11and Table  4-12 provide examples of the kind of data that can be obtained. 

 

Table 4-11: Accuracy of cost-sensitive approaches with different dataset characteristics 

for contact-lenses dataset at a cost ratio of 0.5 

t1 t2 t3 t4 t5 t6 t7 t8 Classifier Wrapper Type Accuracy 

3 5 1.3 0 24 1.2 0.62 0.5 J48 None 80-85 

Bagging 80-85 

Sampling 85-90 

Min_ 

Expected_ 

Cost 

80-85 
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Table 4-12: Cost of cost-sensitive approaches with different dataset characters for 

contact-lenses dataset at cost ratio 0.5 

t1 t2 t3 t4 t5 t6 t7 t8 classifier WrapperType Cost 

3 5 1.3 0 24 1.2 0.62 0.5 J48 None 20-30 

Bagging 20-30 

Sampling 10-20 

Min_expected_Cost 

 

20-30 

 

 

 

Figure  4-9 and Figure  4-10  show the meta-knowledge obtained when J48 is applied to the 

table of examples. Meta-knowledge like this can be used to make recommendations. 

Accordingly, if we take the contact-lenses dataset as an example, this has 3 classes, with 5 

attributes, example ratio of 0.6, and if we consider the cost of rare classes is four times the 

cost of dominant classes (cost ratio=4), the system will recommend using J48 or part 

classifier without any wrapper method if the accuracy is the main user concern, and using 

neural network with sampling or minimum expected cost, which gives minimum cost.
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Figure 4-9: Decision tree for cost-sensitive methods accuracy (right) 
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Figure 4-10: Decision tree for cost-sensitive methods accuracy (left)
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The knowledge in the above decision tree is suitable as meta-knowledge that can be used in 

deciding which cost-sensitive methods are best for a given dataset. The following can be 

observed from the decision tree of Figure 4-9 and Figure 4-10: 

 

 Class entropy is the most important factor used to predict classifier accuracy. As 

mentioned previously, class entropy measures the homogeneity of the data, meaning 

data with lower class entropy is expected to have higher accuracy because it is well 

discriminated. This appears in the previous decision Figure  4-9 and Figure  4-10. 

 Classifier type is an important factor used to predict the accuracy of adopting a 

specific-cost-sensitive and -insensitive classifier on a specific dataset: for example, if 

we compare between using NN and ZeroR with wrapper methods in the same dataset, 

which have class entropy >0.9, example ratio <=0.6, and number of attribute>14, we 

notice that the accuracy of using ZeroR with sampling and bagging  range from 40 to 

65, while using NN give 90 to >95 for sampling and 90-95 for bagging (see 

Table  4-13 and the decision tree in Appendix A2-5). 

Table 4-13: Different dataset accuracy using different cost-sensitive classifiers 

 

classEntropy>0.9 & classSkew<=0.4,exampleRatio<=0.6,noOfAttribute>14 

NzeroR Sampling Bagging  

CR<=1.5 CR>1.5 CR<-1.5 CR>1.5 

60-65 <=40 60-65 <=40 

NN Sampling Bagging 

CR<=2 CR>2 

90-95 >95 90-95 

 

 Example ratio is the ratio of the number of instances belonging to the frequent class to 

the number of instances belonging to the rare class; the ratio measures the balance of 

the dataset. As mentioned previously in Section 2.1, classifiers applied to imbalanced 

data tend to classify each instance to the frequent class. The meta-knowledge in 

Figure  4-9 shows that the example ratio is an important factor. Now, comparing 
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balanced datasets (example ratio <=0.6) and imbalance datasets (example ratio >0.6) 

(both have number of classes =2), overall, the accuracy of the balanced datasets is 

more than the accuracy of the imbalanced dataset using the same classifiers with the 

same wrapper cost-sensitive methods. Table  4-14 shows that the accuracy of applying 

J48 and J48 with different wrapper methods on imbalanced data results in accuracy 

ranges spanning 40–65. On the other hand, applying the same classifiers on more 

balanced datasets gives a higher accuracy, ranging from 60 to 95. (See Figure  4-9). 

 

Table 4-14: Comparison between J48 and MJ48 classifier accuracy between balance 

and imbalanced dataset 

ClassEntropy>0.9 && ClassSkew<=0.4,noOfClasses<=2 

ExampleRatio >0.6 ExampleRatio <=0.6 

J48 60-65 J48 >95 

MJ48 

Sampling 
CR <=0.75 1=>CR>0.75 CR>1 

MJ48 

Sampling 

Attribute 

<=10 

Attribute 

>10 

60-65 45-50 40-45 60-65 90-95 

MinExCost 

CR 

<=0.3 

0.3<CR 

<=0.5 
0.5<CR<=2 

 

CR>2 
MinExCost >95 

60-65 55-60 45-50 55-60 

Bagging 

CR<=0.3 0.3<CR<=0.6  CR>0.6 

Bagging 90-95 

55-60 45-50 <40 

 

 As one would expect, the cost ratio appears to be a significant decision node in the 

tree because the classifier performance is highly affected by the cost ratio 

characterisation. Table  4-14 shows that cost ratio does not appear in the decision node 

where the example ratio <= 0.6 as much as in datasets with example ratio > 0.6 

because when data is imbalanced in the second case, the cost ratio becomes a critical 

factor that affects classifier accuracy (see Section 2.3 for imbalanced data problem). 

In addition, Table  4-14 shows the importance of the cost ratio in building a cost 
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sensitive classifier: for example, when using the MJ48 classifier with different 

wrapper methods (Sampling, MinExpectedCost and Bagging) in the imbalanced 

dataset, the accuracy decreases when applying a higher cost ratio (higher penalties on 

the misclassification of rare classes). Figure  4-11 shows the decrement in accuracy 

using different cost ratios over J48, naïve bayes and neural network wrapper methods 

on the contact lenses dataset as an example. 

 

Figure 4-11: Cost ratio with classifier accuracy 
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Figure  4-12 and Figure  4-13 show the decision tree generated when applying J48 as meta-

learner on the set of examples measuring the cost of misclassification.
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Figure 4-12: Decision tree for cost-sensitive methods in predicting cost (left) 
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Figure 4-13: Decision tree for cost-sensitive methods in predicting cost (right) 
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The following can be observed from the decision tree in Figure  4-12 and Figure  4-13: 

1. The ratio of examples and cost ratio are important characteristics affecting both 

classifier accuracy and, accordingly, its misclassification cost. 

2. Class skew is an important factor affecting classifier misclassification cost, as shown 

in the previous decision tree (Figure  4-13), which shows more highly skewed data 

(class Skew >0.6)  

3. We notice that changing cost ratio will have an impact on misclassification cost more 

so than on accuracy. Figure  4-14 presents the misclassification costs of using different 

wrapper methods (Bagging, Sampling, MinExpectedCost) with different classifiers 

(J48, naïve bayes, neural network) in contact-lenses dataset, and also shows the 

considerable cost changes (decrement or increment) for different cost ratios.  

 

 

Figure 4-14: Cost ratio with misclassification cost 
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4.2.2 Cost-Sensitive Meta-Learning System Evaluation 

This subsection presents a comparison of the results obtained with an alternative meta-

learning system METAL (Berrer, Paterson, & Keller, 2000; Brazdil et al., 2003). The 

following begins with an overview of METAL, and accordingly presents the results of 

comparing the METAL meta-learning project and our system. 

METAL is a meta-learning assistant project for providing user support in machine-learning 

with similar goals to the research presented in this thesis, and hence is a good basis for 

comparison. The main difference with the work presented in this thesis is that METAL uses 

instance-based learning to rank the recommendations that best suit a specific problem. In 

METAL, Brazdil et al. (2003) claim that using instance-based reasoning has the advantage of 

being able to extend the meta-knowledge as soon as new meta data, with its performance, 

becomes available. The distance function used,        ,     between two datasets (j and k) 

is given in (4-1): 

        ,   )=∑ √ 
             

        
   

    

 

            (4-1) 

 

                                                                                        

    Value if the meta features of    . 

Seven datasets are used for comparison. In this research, data characterisation methods, such 

as simple mathematical and statistical methods, are similar to those used in the METAL 

project, except that we also use the ratio of the number of examples in the classes 

exampleRatio and the ratio of costs of misclassification costRatio, given that we are 

interested in misclassification cost as a measure of performance, in addition to classifier 

accuracy. These two characteristics are important owing to the fact they reflect the 

importance of one class over the other, which is considered essential in cost-sensitive 

learning. The datasets used for comparison are taken from the UCI Machine Learning 
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Repository (Bache & Lichman, 2013), and the misclassification cost is calculated by 

multiplying the cost matrix values with the confusion matrix values. 

In this research, the misclassification cost is also included in the learning process, given the 

fact that one of the primary aims of this study is contributing knowledge in regard to cost-

sensitive learning. 

The comparison here is made between the results obtained from our cost-sensitive meta- 

learning system and the METAL system: the prediction error for each dataset is compared, 

including each cost-sensitive and in-sensitive method for both accuracy and misclassification 

cost, and listed in    Table 4-15 to Table 4-23. The empirical evaluation is carried out using 

10 folds cross-validation. The prediction error is calculated using (4-2): 

 Prediction Error =√                                                                            

 

            (4-2) 

 

 

                      Predicted by the system that uses the meta-knowledge, taking the 

edge point of ranges get from the meta-knowledge  

                             when the algorithm is applied. 

The results of each of the datasets, in comparison to METAL, are presented below. 

Diabetes Dataset 

The diabetes dataset is a medical dataset taken from the UCI Repository (Bache & Lichman, 

2013). The data records whether a patient tests positive or negative for diabetes. The factors 

used include personal data, such as age, number of times pregnant and the results of medical 

examination, such as mass index and blood test. There are 768 examples, with 500 examples 

with Class 1 and 268 examples from Class 2, and 8 attributes. The prediction error, as defined 

by (4-2) and using the meta-knowledge described in Section  4.1 for cost insensitive and 

sensitive classifiers, accuracy and cost prediction errors for the diabetes dataset using 
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different cost-sensitive and -insensitive methods, is shown in   Table 4-15 for both our system 

and METAL. 

METAL prediction error is calculated using (4-1) with k=3 and the final prediction is the 

average of the 3 nearest points. 

Below is the evaluation result for both accuracy and cost-prediction error, where the shaded 

box indicates the lowest error prediction. 

   Table 4-15: Accuracy and cost-prediction error in diabetes dataset 

Prediction 

error 
J48 NB NN OneR PART ZeroR  

Avg  

Acc 
Diabetes 

Dataset 
acc cost acc cost acc acc acc cost Acc cost acc cost 

Bagging 3 6 1 7 2 1 0 1 5 8 7 4 3.0 

Sampling 1 3 1 2 2 1 2 3 8 8 2 1 2.7 

MinExpected 

Cost 
1 3 1 2 2 1 0 3 8 8 7 4 3.2 

Cost-sensitive 

(none) 
1 4 1 2 3 1 0 3 5 8 2 1 2.0 

Cost in-

sensitive 
12 26 1 23 13 24 15 27 10 27 7 34 9.7 

METAL 10  3  8 1 
 

3 11  3  6.3 

Wrapper 

methods 
Bagging Sampling 

MinExpected 

Cost 
Cost-sensitive none 

Cost in-

sensitive 

Avg Cost 

 
4.5 3 3.5 3.2 26.8 
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Figure 4-15: Accuracy-prediction error in diabetes dataset 

 

Figure 4-16: Cost-prediction error in diabetes dataset 

 

As shown in    Table 4-15, Figure 4-15 and Figure 4-16, Sampling and the Cost-sensitive 

method without any wrapper method gives the lowest error rate prediction for accuracy, 

whilst METAL and Cost-insensitive give the highest error rate prediction for accuracy. 

Sampling and Cost sensitive without any wrapper methods, as well, give the lower error rate 

for misclassification cost-prediction.  
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Credit-g Dataset 

The problem posed in this dataset is classifying a bank customer as good or bad, which 

depends on the risk of refunding bank credit. A total of 1,000 examples, with 700 for Class 1 

(good) and 300 with Class 2 (bad), are considered, with the data imbalanced with an example 

ratio (70%, 30%). The cost matrix for this dataset is shown in Table 4.16 taken from UCI 

repository (Bache & Lichman, 2013). A cost-sensitive meta-knowledge developed is used to 

predict the accuracy and cost of this dataset based on cost ratio and provided in this cost 

matrix. 

Table 4-16: Cost matrix for Credit-g dataset 

 

 

Figure 4-17 shows the results for the German credit dataset (2 classes, 24 attributes, 1000 

observations). 

Table 4-17: Accuracy and cost-prediction error in credit-g dataset 

Prediction 

error 

Credit-g 

J48 NB NN OneR PART ZeroR Avg 

Acc 
acc cost acc cost acc Cost acc cost acc cost acc cost 

Bagging 14 12 14 9 3 3 6 48 25 26 40 0 17.0 

Sampling 10 16 14 2 6 16 16 32 22 30 40 0 18.0 

MinExpected 

Cost 
15 27 14 4 4 13 2 63 25 42 35 5 15.8 

Cost-sensitive 

(none) 
5 27 5 15 6 21 0 61 9 23 40 0 10.8 

Cost_ 

In-sensitive 
0 32 10 20 9 6 0 61 9 23 40 0 11.3 

METAL 10  2  3  5  3  30  8.8 

Wrapper 

methods 
Bagging Sampling 

MinExpected 

Cost 

Cost 

sensitive 

(none) 

Cost insensitive 

Avg Cost 16.3 16 25.7 24.5 23.7 

 

 

 Good  Bad 

Good 0 1  

Bad 5 0 
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Figure 4-17: Accuracy-prediction error in credit-g dataset 

 

 

Figure 4-18: Cost-prediction error in credit-g dataset 

 

As shown in Figure 4-17, Figure 4-18 and Table 4-17, METAL and Cost-sensitive methods, 

without any wrapper, show better prediction accuracy than others, whereas Bagging and 

Sampling, on the other hand, show better cost-prediction accuracy.  
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Glass: 

This dataset contains examples of types of glass and their attributes. It consists of 214 

instances, 8 attributes and 7 classes.  

Table 4-18: Accuracy and cost-prediction error in Glass dataset 

Prediction 

error Glass 

Cost ratio=1 

J48 NB NN OneR PART ZeroR  

Avg 

Acc acc cost acc cost acc cost acc cost acc cost acc cost 

Bagging 2 3 5 5 23 23 8 7 37 38 20 19 15.8 

Sampling 1 2 0 1 17 18 30 29 27 28 20 19 15.8 

MinExpected 

Cost 
1 1 3 4 17 18 30 29 27 28 20 19 16.3 

Cost-

sensitive(none) 
1 0 17 17 0 1 2 3 1 1 5 4 4.3 

Cost  

in-sensitive 
1 0 3 3 7 8 8 7 28 28 30 29 12.8 

METAL 9  25  15  9  10  23  15.2 

Wrapper 

methods 
Bagging Sampling 

MinExpected 

Cost 

Cost-

sensitive 

(none) 

Cost in-sensitive 

Avg Cost 15.8 16.2 16.5 4.3 12.5 
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Figure 4-19: Accuracy-prediction error in Glass dataset 

 

Figure 4-20: Cost-prediction error in Glass dataset 

 

 Figure 4-19, Figure 4-20 and Table 4-18 show the accuracy and cost prediction error over 

different classifiers with different wrapper cost-sensitive methods. Table 4-18 shows that 

Cost-sensitive methods, without any wrapper, and Cost-insensitive classifiers show better 

prediction accuracy than others, and also show better cost-prediction for this dataset.  
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Transfusion Dataset: 

The blood transfusion data is from the Blood Transfusion Service Centre (Yeh, King-Jang, & 

Tao-Ming, 2009). The dataset number of instances= 748, with the number of attributes = 5 

and classes= 2.  
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Table 4-19:  Accuracy and cost-prediction error in Transfusion dataset 

Prediction 

error 

Transfusion 

Cost ratio=1 

J48 NB NN oneR PART ZeroR  

Avg 

Acc acc cost acc cost acc cost acc cost acc cost acc cost 

Bagging 2 2 0 0 3 3 1 1 3 3 1 1 1.7 

Sampling 2 3 0 0 2 2 1 1 3 3 1 1 1.5 

MinExpected 

Cost 
2 2 0 0 2 2 1 5 3 3 1 1 1.5 

Cost-sensitive 

(none) 
2 4 0 0 2 2 1 1 3 3 1 2 1.5 

cost_ 

in sensitive 
2 2 0 0 3 3 1 1 3 3 1 6 1.7 

METAL 3  5  2  4  2  4  3.3 

Wrapper 

methods 
Bagging Sampling MinExpectedCost 

Cost-

sensitive 

none 

Cost insensitive 

Avg cost 1.7 1.7 2.2 2 2.5 

 

 

Figure 4-21: Accuracy-prediction error in transfusion dataset 
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Figure 4-22:  Cost-prediction error in transfusion dataset 

 

As shown in Figure 4-21, Figure 4-22 and Table 4-19, Sampling, MinExpectedCost and Cost-

sensitive without any wrapper method show best prediction performance, whilst METAL 

shows the highest error. For cost-prediction, Bagging and Sampling, on the other hand, best 

prediction performance is achieved. The accuracy and cost-prediction errors are very low for 

this dataset, which means that the characteristics used to characterise this dataset are very 

effective in understanding the dataset‘s behaviour and accordingly gives good prediction 

performance. 

Heart Dataset: 

The purpose of this dataset is centred on predicting the presence or absence of heart disease 

given different medical tests. This data has 2 classes and 13 attributes, and there 270 

examples. The cost matrix for heart disease is presented in Table 4-20. 

Table 4-20: Heart cost matrix 

 Absent  Present 

Absent  0 1  

Present 5 0 
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Table 4-21 shows the accuracy prediction error and cost prediction error for heart disease. 

Table 4-21: Accuracy and cost-prediction error in heart dataset 

Prediction 

error  

heart 

Cost ratio=5 

J48 NB NN OneR PART ZeroR  

Avg 

Acc acc cost acc cost acc cost acc cost acc cost acc cost 

Bagging 20 9 15 8 8 5 10 22 10 3 20 5 13.8 

Sampling 10 9 10 1 12 8 20 47 15 1 10 5 12.8 

MinExpected 

Cost 
28 24 9 1 11 11 10 49 12 17 21 5 15.2 

 

Cost-sensitive 

(none) 

15 50 12 6 13 13 24 29 15 24 10 172 14.8 

cost_ 

in sensitive 
0 20 13 20 32 47 1 39 20 26 25 147 15.2 

METAL 11  8  9  20  10  40  16.3 

Wrapper 

methods 
Bagging Sampling MinExpectedCost 

Cost-

sensitive 

none 

Cost 

insensitive 

Avg cost 8.7 11.8 17.8 49 49.8 

 

 

Figure 4-23: Accuracy-prediction error in heart dataset 
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Figure 4-24: Cost-prediction error in heart dataset 

 

As shown in Table 4-21, Figure 4-23 and Figure 4-24, Bagging and Sampling show the best 

prediction performance for both accuracy and cost for this specific dataset, whereas METAL 

shows the highest accuracy-prediction error. 

 

Vehicle Dataset 

A problem in object recognition is establishing a method of distinguishing 3D objects within 

a 2D image by the application of an ensemble of shape feature extractors to the 2D 

silhouettes of the objects (statLog). This contains 940 instances, 19 attributes and 4 classes. 

Figure 4-22 shows the result of accuracy and cost prediction error for this dataset. 
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Table 4-22: Accuracy and cost-prediction error in vehicle dataset 

Prediction error 

Vehicle 

Cost ratio=1 

J48 NB NN OneR PART ZeroR  

Avg 

Acc acc cost acc cost acc cost acc cost acc Cost acc cost 

Bagging 1 5 0 7 37 32 2 3 5 8 14 10 9.8 

Sampling 6 10 1 5 13 10 2 2 5 8 14 15 6.8 

MinExpected 

Cost 
6 10 1 5 13 14 3 3 5 5 14 15 7.0 

 

Cost-

sensitive(none) 

6 10 1 5 13 14 3 3 5 5 14 16 7.0 

cost_ 

in sensitive 
14 13 1 5 13 14 38 35 35 38 64 60 27.5 

METAL 4  31  2  26  6  47  19.3 

Wrapper 

methods 
Bagging Sampling MinExpectedCost 

Cost-

sensitive 

none 

Cost insensitive 

Avg Cost 10.8 8.3 8.6 8.8 27.5 

 

 

Figure 4-25: Accuracy-prediction error in vehicle dataset 
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Figure 4-26: Cost-prediction error in vehicle dataset 

 

As shown in Table 4-22, Figure 4-25 and Figure 4-26, Sampling, MinExpectedCost and Cost-

sensitive without any wrapper methods show the best prediction performance for accuracy,  

while Sampling, and MinExpectedCost show the best cost prediction performance for this 

specific dataset.  

 

Vote Dataset 

This dataset classifies a vote type for election and contains 435 instances, with the number of 

attributes amounting to 16 and classes totalling 2 (democrat and republican). 
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Table 4-23: Accuracy and cost-prediction error in vote dataset 

Prediction 

error 

Vote 

Cost ratio=1 

J48 NB NN oneR PART 
ZeroR 

 

Avg 

Acc 
acc cost acc cost acc cost acc cost acc cost 

acc cost 

Bagging 1 4.8 0 16.5 1 4.1 0 4.5 4 3.8 4 37 1.7 

Sampling 1 4.5 1 17 5 2.5 0 4.1 0 1.5 34 37 6.8 

MinExpected 

Cost 
1 4.5 0 17 1 2.5 1 4.5 4 1.5 

34 37 6.8 

Cost-

sensitive(none) 
0 5 5 4 1 2.5 1 4.5 4 11.5 

34 37 7.5 

cost 

in-sensitive 
1 5 5 4 1 2.5 1 4.5 29 66 

29 2 11.0 

METAL 31  19  13  3  23  2  15.2 

Wrapper 

methods 
Bagging Sampling MinExpectedCost 

Cost-

sensitive 

none Cost in-sensitive 

Avg Cost 11.8 11.1 11.2 10.8 14 

 

 

Figure 4-27: Accuracy-prediction error in vote dataset 
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Figure 4-28: Cost-prediction error in vote dataset 

 

 Table 4-23, Figure 4-27 and Figure 4-28 shows that Bagging, Sampling, and 

MinimumExpectedCost show lowest accuracy and Sampling, MinExpectedCost and Cost 

sensitive without any wrapper methods show lowest cost-prediction error. 

 

4.2.3 Conclusion 

This section presents an evaluation of the meta-knowledge learned using the approach 

developed in this thesis in comparison to the METAL system. The following table 

(Table 4-24) summarises the relative prediction performance for METAL and our approach. 
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Table 4-24: Average accuracy-prediction error for all methods used in all compared 

datasets 

Dataset Bagging Sampling MinExpected 

Cost 

Cost-sensitive 

none 

Cost 

insensitive 

METAL 

 

Diabetes 

3 2.7 3.2 2 9.7 6.3 

Credit-g 17 18 15.8 10.8 11.3 8.8 

Glass 15.8 15.8 16.3 4.3 12.8 15.2 

Transfusion 1.7 1.5 1.5 1.5 1.7 3.3 

Heart 13.8 12.8 15.2 14.8 15.2 16.3 

Vehicle 9.8 6.8 7 7 27 19 

Vote 6.8 6.8 7.5 1.7 11 16 

Avg 

accuracy- 

prediction 

error 

9.7 9.2 9.5 6.1 12.6 12.1 

 

Table 4-24 provides the average prediction error for each dataset, utilising different cost-

sensitive and -insensitive techniques. This table shows that our cost-sensitive system provides 

better accuracy-prediction error in all tested datasets than METAL, except in the case of 

Credit-g. It has been shown in many papers that credit-g performs well using K-NN as meta-

learner because, in the credit-g dataset, the attributes are carefully selected, and K-NN works 

very well when there are no irrelevant attributes. 

As has come to our knowledge, this is the first work that uses meta-learning methods to 

recommend which cost-sensitive plan is best for a specific task. Importantly, this is motivated 

by the idea that, although a wealth of work has been carried out on converting the learning 

process from accuracy-based algorithm to cost-based algorithm, there is no systemic meta-

knowledge that provides a prediction in terms of which cost-sensitive plan should be used for 

a specific dataset. 

The result shown in this section can be concluded that the use of J48 as a meta-learner 

provides better prediction power over using K-NN, where this is very sensitive to irrelevant 

attributes, as any irrelevant performance evaluations mean new predictions are highly 

affected by k number. We conducted our experiments on k=3, meaning we may have a very 

different result if k is assigned to a different number. The conclusion obtained is the same 
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result revealed by Prudancio, De Souto, & Ludermir. (2011) where K-NN as a meta-learner is 

used for a small number of meta examples and a large number of meta examples (some of 

them generated by using datasetoids (explained in Section 2.4.2), comparing the results of 

both shows that K-NN as meta-learner has better performance when the number of examples 

is small as K-NN is sensitive to the irrelevant meta examples potentially produced by 

datasetoids. In addition, K-NN is very sensitive to the choice of k number.  

 

4.3 Active Learning 

Chapter 3 presented the development of an active learning methodology that proposed an 

approach for improving the meta-learning process by selecting the most informative data for 

the learning process. The Literature review in Section 2.4 revealed that there is some works 

in active learning over meta-learning, with the aim of speeding-up the meta-knowledge 

development process (see Section 2.4.2). A new active learning based on the clustering 

algorithm is proposed and evaluated. The aim of this evaluation is evaluating the effect of 

using active learning based on the clustering method in meta-knowledge prediction error by 

comparing the meta-knowledge prediction error created by adding informative data (selected 

by ALBC (Active Learning Based on Clustering) and between using passive learning that 

randomly selects data. 

Active learning is implemented and tested using 56 datasets with a variety of meta-features. 

The datasets are divided into two sets: a total of 6 are taken as the initial set of labelled 

examples, whilst the remaining 50 are taken as unlabelled examples from which the 

algorithm will choose. The experiment is carried out as follows: first, the data is 

characterised, with different classifiers then applied to the initial datasets. Subsequently, each 

dataset is evaluated using 10 folds cross validation and assigned a label (accuracy and cost), 

with the labelled datasets then grouped into different classifiers, where each data group is 

clustered on its meta-features, with new data needed for each cluster then selected from the 

unlabelled pool using the ALBC algorithm described in Section  3.2. These stages are 

described in the subsections below. 

1. Initial datasets are characterised using different dataset characterisation methods, 

where Table  4-25 shows the initial datasets randomly chosen for labelling: 
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Table 4-25: Dataset characterisation for small pool of dataset 

Number 

Of 

classes 

Number 

of 

attribute 

Class 

entropy 
Class skew 

Number of 

instances 

Conditional 

entropy 

2 10 0.88 0.29 286 0 

3 5 1.33 0 24 3.72 

2 9 0.93 0.38 768 9.21 

7 10 2.18 1.82 214 7.72 

2 35 0.94 -8.59 351 8.01 

3 5 1.58 0.06 150 7.14 

 

2. Learning application and performance evaluation: To label the initial data, different 

classifiers are applied to the previous datasets, with the performance (accuracy and 

cost) of each dataset then evaluated using 10 folds cross-validation. Table  4-26 shows 

the accuracy obtained from different classifiers for one dataset aligned with its data 

meta-features. 

Table 4-26: Accuracy of applying different classifiers to the previous datasets aligned 

with its meta-features 

Number 

of 

classes 

Number 

of 

attribute 

Class 

entropy 
Class skew 

Number 

of 

instances 

Conditional 

entropy 
Classifier Accuracy 

2 5 0.94 -0.06 14 3.07 

J48 45-50 

Naive Bayes 70-75 

OneR 40-45 

Part 55-60 

ZeroR 60-65 

Neural 

Network 
70-75 

 

3. Data is grouped into different classifiers group:  

Data is divided into different groups as shown in Table  4-27. 
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Table 4-27: Accuracy results of applying J48 into the first set of data 

Number 

of 

classes 

Number 

of 

attribute 

Class 

entropy 

Class 

skew 

Number of 

instances 

Conditional 

entropy 
Classifier Accuracy     Cost 

2 10 0.87 0.19 277 0 J48 75-80 20-30 

3 5 1.32 0 24 0 J48 80-85 10-20 

2 9 0.93 0.37 768 9.20 J48 70-75 30-40 

2 5 0.94 -0.06 14 3.07 J48 45-50 40-50 

2 35 0.94 -8.58 351 8.01 J48 90-95 5-10 

3 5 1.58 0.06 150 7.14 J48 >95 <5 

 

 

4. Clustering  

As mentioned previously, clustering is done in order to form the initial representative 

data and accordingly seek more informative data for each cluster.  

5. Select Query 

Each informative dataset is selected using the select query algorithm, as described in 

Figure  3-10. The results obtained are discussed below. 

4.3.1 ALBC Comparison Result with Random Selection 

 

In order to evaluate the ALBC algorithm, a comparison is made between using this 

algorithm on initial clusters formed from a small pool of labelled datasets. The main aim 

of this part is seeking more data from large unlabelled datasets (50 datasets), using both 

algorithms (ALBC and random), and then drawing a relation between meta-knowledge 

prediction error and a number of labelled examples. Meta-knowledge prediction error is 

calculated using the following steps: 

1. Initial labelled datasets are used to create a meta-knowledge that predicts the performance 

of applying a specific classifier into a given dataset. Leave-one-out experiment is 
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performed to evaluate the performance of meta-learner in accuracy and cost prediction. 

on each step one dataset is left out for testing and the rest is taken to create the meta-

knowledge, the meta-knowledge prediction performance is calculated using the average 

accuracy of all cases giving the chance for all dataset to enter the testing process, leave 

one out method is used here rather than 10 folds cross validation because we started with 

a small number of meta-examples (eventually 6). More datasets are added to the meta -

example pool using both methods (ALBC and random selection),                                                                         

and each time, the meta-knowledge is created and prediction performance is evaluated. 

The relation between meta-knowledge prediction error and the number of meta-examples 

for both methods (ALBC and random selection) is illustrated for each learning algorithm 

(Figure  4-29 and Figure  4-30). 
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Figure 4-29: Accuracy prediction error with number of labelled examples 
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              Figure 4-30: Accuracy prediction-error with number of labelled examples 
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4.3.2 Results Discussion  

 

In absolute terms, the results obtained through the use of ALBC are better than those 

obtained from randomly choosing the data to be labelled for most of the used 

classification methods except the ZeroR classifier (see Figure  4-29 and Figure  4-30).  

Ideally, the error rate should decrease as the number of labelled examples increases; 

however, this is not the case in all time, in some cases the curves goes up and down. In 

order to address this, as described in chapter 3, the active learning process was further 

refined by adopting a best-first search method; that is, the best cluster, which gives the 

minimum error rate during all active learning processes to date, is selected and expanded 

(see Section  3.2). 

4.3.3 Clustering Based on Best Cluster  

 

The experiment adopted here is to compare the ALBC method, which is based on the 

‗best cluster‘ methods that is described in Section 3.2, with one that randomly chooses 

the labelled data. This experiment is carried out on 56 datasets, where 6 datasets are 

initially taken as the first set of labelled data, with those datasets then clustered based on 

the best cluster that provides the minimum error rate from previous experiments. 

Subsequently, more data is selected using the ALBC algorithm as summarised in nection 

3.2.     
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Figure 4-31: The results for learner’s accuracy-predictionerrorbasedon‘bestcluster’

methods 

 

Saving the clusters that gives minimum error rate and clustering each new data on this cluster 

gives better results than previous experiments in terms of the error rate decreasing whilst 

increasing the number of labelled data, as shown in Figure 4-31. 

 

4.3.4 Conclusion 

 

In this section, we present the use of active learning to support the classifier to query more 

informative examples, which will be used to enter the labelling process. The work done here 

is different to other active learning works, covered in Section 2.4. The clustering in previous 

works has been done over unlabelled examples with the aim of finding the most 

representative data (usually around centres) to enter the labelling process (Nguyen & 

Smeulders, 2004; Xu et al., 2003; Zhu et al., 2008a). In contrast to previous work, this 

methodology depends on clustering the first set of labelled data and accordingly seeking 
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more informative data that improves each cluster‘s predictive power. Importantly, this can be 

done by dividing each cluster into three zones, depending on the distance between cluster 

centres and cluster boundaries, and accordingly searching for data characters that best 

improve cluster predictive power. 

In this section, the ALBC algorithm is applied and tested using six labelled datasets and 50 

unlabelled datasets, and accordingly is evaluated using leave one out validation process with 

6 classifiers. The results obtained through the ALBC approach, in general, are better than 

those achieved through the random selection method in most cases. The methodology used in 

increasing a meta-knowledge predictive power contributes to both the meta-learning and 

active learning fields 

The next chapter gives a conclusion that summarizes the achievements and contributions 

made by this study. 
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2. CHAPTER FIVE: CONCLUSION AND FUTURE WORK 

 

 

 Supervised learning is one particular area of data mining where learning is carried out 

through the use of examples with class labels with the aim of learning a model that is adopted 

in an effort to estimate unseen examples‘ class labels; however, the learning process 

encompasses a number of costs, including misclassification costs, the costs associated with 

obtaining data, and test costs.  

In the field of data mining, cost-sensitive learning is recognised as an active area of research 

that focuses on handling different types of costs. In the literature, a number of different 

approaches have been devised in an effort to deal with different kinds of costs, such as the 

cost of tests and misclassification costs. A number of academics have directed their efforts 

towards developing approaches and classifiers that consider misclassification costs; however, 

the most suitable cost-sensitive classifier for a given data set and problem remains unknown. 

Hence this thesis has aimed to study the use of meta-learning in an effort to establish the link 

between problem characterisation and the cost-sensitive method that is most appropriate for 

the learning area in question.  

Meta-learning is defined as creating knowledge that associates the problem characteristics 

with the data mining algorithm‘s performance, considering this process in much the same 

way as any other learning process that centres on ‗learning from learning‘.  

A number of the feature selection approaches and cost sensitive data mining approaches have 

been devised and introduced during the last decade; however, establishing which are the most 

valuable is not simple, with no best method recognised amongst the options. Accordingly, 

this study has examined whether it is feasible to devise a meta-learning system that can be 

adopted in mind of selecting a cost-sensitive data mining algorithm for a particular data set, 

taking into account misclassification costs. 
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Considering the ever-growing volume of data mining algorithms, along with the presence of 

large-scale data that may be prone to misleading or irrelevant characteristics, the thesis has 

explored the following questions:  

Which of the cost-sensitive learning algorithms should be adopted for a particular 

data set, and what feature selection approach should be applied in an effort to 

eradicate distracting or otherwise irrelevant attributes? 

Section 5.1 summarises the objectives set to address this question and reviews the extent to 

which the objectives have been achieved. 

5.1 A Review of the Research Objectives  

This section discusses the research objectives, and accordingly reviews the degree to which 

they have been fulfilled: 

1. To carry out an in-depth, comprehensive literature review centred on the present 

data mining approaches, their use in meta-learning, cost-sensitive learning, and 

active-learning. A literature review for cost-sensitive learning methods has been 

carried out, with meta-learning methods and their use in the data mining field also 

widely covered and associated with the study area. A general recognition for the value 

of cost sensitive learning is found in the literature with a growing volume of data 

mining algorithms that are cost sensitive, but there is no single cost sensitive learning 

method that is found to be the best for all cases.  Chapter two also presents an in-depth 

review of the feature selection methods, search strategies and their impact on the 

learning process. The literature review highlighted that there are a number of feature 

selection methods though there is no single method to suit all cases.  Likewise, the 

literature review identified several cost-sensitive methods but no single method that 

could be applied successfully in all cases. The literature includes some studies of meta-

learning such as the METAL project which recommends the algorithm for a given 

problem using K-NN meta-learner. However, none of these focus on the cost-sensitive 

learning algorithm.  

 

2. To devise a meta-learning system with the capacity to make suggestions 

concerning data-mining approaches that take cost into consideration. Chapter three 
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develops a new meta-learning system with the ability to suggest the most suitable 

feature selection method  with a set of classifiers (or just one) that are best suited to a 

particular data set. The meta-knowledge for recommending feature selection was 

learned by applying different feature selection methods on forty two data sets and the 

results together with the characteristics of the data sets combined to form the meta-

examples. A decision tree learner was then used on the meta-examples to obtain the 

meta-knowledge for feature selection. A similar approach was used for learning the 

meta-knowledge for recommending cost-sensitive learning but with the added 

complication that costs had to be considered. The meta-knowledge for recommending 

cost sensitive algorithms was learned by applying different wrapper cost sensitive 

methods on twenty six data sets and the results together with the characterization of the 

datasets combined to form the meta-examples. A decision tree learner was then used on 

the meta-examples to obtain meta-knowledge that can be used to rank the performance 

of different cost sensitive learning algorithms, allowing a user to select the most 

appropriate algorithm for their needs.    

 

3. To devise an active learning approach that provides learners with the ability to 

choose the most informative data for the learning process, and accordingly 

quicken the learning process: Section 3.2 presents a new and innovative active 

learning algorithm that aims to accelerate the meta-learning process. The approach is 

based on clustering the meta-features and performance for each learning algorithm and 

seeking new data sets that can improve the clusters‘ predictive power. The 

identification of knowledge in this manner reduces the time and the effort the learner 

has to expend in considering data that doesn‘t contribute to the generated meta-

knowledge. The approach adapted in this thesis is to use active learning based on 

clustering by establishing good representative samples for a potentially wide range of 

datasets that needed to create meta-knowledge. These clusters seek data that rapidly 

improves meta-knowledge accuracy each time data sets are added. The algorithm 

proposed in this thesis is novel in that it uses z-scores to provide bands in a cluster that 

aid in assessing the quality of the clusters and enable identification of suitable data sets 

that could be added to help improve the predictive power of future clusters.   
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4. To conduct an empirical evaluation of the meta-learning approach, and 

accordingly contrast the findings with another meta-learning system—namely 

METAL: The cost sensitive meta-learning system developed provides answers to the 

questions detailed earlier by learning the knowledge about the performance of different 

data mining algorithms on a number of different data sets. This meta-learning system 

encompasses a number of different algorithms, including J48, naive bayes, neural 

network, part, zeroR and oneR, the performance of which is calculated by completing 

tests on a variety of datasets, including a large number of characteristics.  

Chapter 4 presents the result of an empirical evaluation of the meta-learning system for 

recommending feature selection methods, and meta-learning for recommending cost-

sensitive methods. The results for feature selection show the importance of factors such 

as the number of attribute, class entropy, class skew and the classifier used. Those 

factors affect the knowledge about which feature selection method would be 

recommended to be used in a specific dataset. On the other hand, the knowledge 

produced about the performance of cost-sensitive learning algorithms, shows the 

importance of factors such as ratio of classes, and cost ratio. For example, using 

sampling for cost sensitive learning with J48 on a dataset with example ratio > 0.6 

gives an accuracy of 40-45% if the cost ratio > 1, whilst using sampling with J48 on a 

dataset with example ratio <=0.6 results in accuracy in the range 60-65% if number of 

attribute <=10, both having class skew <=0.4 and class entropy >0.9 (see Table 4.14).  

In a comparison to METAL, an evaluation is conducted on seven datasets by 

comparing the prediction error, which is the difference between classifier performances 

using a true empirical evaluation based on 10 folds cross validation and between 

classifier performances guided by the developed meta-knowledge. The results show 

that cost-sensitive meta-learning outperforms METAL in the majority of the cases. 

 

5. To assess the active learning approach devised in this research by drawing a 

contrast between the findings obtained and those from a passive learning 

approach that randomly selects data. The generated knowledge provided in point 3 

undergoes consistent improvement through the learning process, particularly by making 

use of an active learning method that utilises a wealth of available unlabelled data, and 

a small volume of  labelled data, in order to choose the most informative data for the 
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learning process. Section  4.3 presents an evaluation of the active learning process 

developed in this study. The methodology adopted included 50 unlabelled datasets and 

6 labelled datasets utilising different algorithms, namely J48, neural network, naïve 

bayes, part, zeroR and oneR. The evaluation highlights that active learning based on 

clustering outperforms the use of passive learning based on random selection for the 

majority of the tested data. The active learning based on clustering algorithm is 

improved through devising an active learning approach centred on a new, innovative 

‗best cluster‘ method, and one which provides a minimum error rate. The findings show 

that in the following of this clustering on a minimum cluster method, the error rate is 

seen to continuously decline when labelled data is incorporated into the learning 

process.  

 

To conclude, the key contributions of this study are as follows: 

1. A meta-learning system has been developed that learns the meta-knowledge capable 

of suggesting the most applicable algorithms for feature selection and cost-sensitive 

data mining. The work done has been contrasted with the METAL scheme—a widely 

recognised project in the domain of meta-learning. Importantly, an empirical 

evaluation shows that the cost-sensitive meta-learning system developed in this study 

outperforms METAL in relation to the majority of the datasets undergoing testing.  

2. Based on the literature search, this is the first study that develops and utilises a meta-

learning system in deducing knowledge about the performance of cost-sensitive 

learning methods.   

3. The research has introduced an innovative, active learning system based on clustering, 

with the algorithm accelerating meta-learning through choosing the new datasets for 

labelling in such a way that it enhances cluster quality.  The active learning system for 

meta-learning has been compared with a passive method that selected data sets 

randomly and the findings highlight that active learning based on clustering performs 

better across all of the tested data. 
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5.2 Future Work  

This section will focus on a number of different directions for future work. 

1. Alternative cost-sensitive approaches 

There are a number of different cost-sensitive algorithms, and the system and method devised 

in this study have made use of a number of these for inclusion as one element of the meta-

learning process. Those implemented in the research make use of wrapper-based methods 

that produce cost-sensitive classifiers from cost-insensitive ones. The benefit of this approach 

is that it is able to deal with the algorithm as a closed box, without the need to implement any 

changes in regard to its internal behaviour. Future works could encompass experiments with 

various other algorithms, including ICET (Turney, 1995), EG2 (Nunez, 1991) and CSNL 

(Vadera, 2010) for example.  

 

2. Alternative Meta-Learner 

In this research, there has been the adoption of J48 as a meta-learner owing to the fact that 

J48 is simple to use, its results are simplistic and therefore can be easily converted into rules. 

A different type of meta-learner could be adopted, such as RandomForest, for example, 

which is an ensemble approach, comprising boosting with replacement (bagging) with 

decision tree base learner that grows upon randomly assigning parameters, where each single 

tree on each sample is created through randomly choosing features and accordingly 

calculating the most suitable divide in relation to the randomly chosen features. Importantly, 

this classifier is suggested by Breiman (2001) and gives a good result in different studies such 

as (Sun, 2014) .  

 

3. Model Selection  

In addition to choosing an algorithm, there is also the need for a data mining user to choose 

the most suitable parameters for an algorithm. For instance, in the context of decision tree 

learning, there is the necessity to experiment with the amount of pruning. There is also the 
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need to choose the learning rate for a neural network. In order to circumvent this issue, a 

number of scholars have adopted meta-learning in an effort to provide a map between the 

performance of different classifiers with different parameter settings for each classifier, and 

dataset characteristics (Alexandros & Melanie, 2001; Sun, 2014). This would be done by 

doing the following: 

(1) a set of meta-features that characterises the problem under the domain is developed; 

(2) different parameter settings are chosen, along with their performance on different 

classifiers at base-level learning; and (3) a meta learner is used to build a model that 

predicts the performance of different algorithm settings on different problems or otherwise 

to predict the best algorithm parameters values (amongst a set of candidates), producing 

the best performance based on each data problem meta-features. 

In conclusion, this thesis has contributed to the field of cost-sensitive data mining and meta-

learning by developing a novel system for meta-learning, including the use active learning for 

accelerating learning.   
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Appendix A      Cost-Sensitive Meta-knowledge Decision Trees  
 

This appendix presents the decision trees created as part of cost sensitive meta-knowledge development for both cost sensitive recommender 

and feature selection recommender  

A1. Feature Selection Meta-knowledge Decision Tree   

           

 

Figure A2-1-1: Decision Tree for Feature Selection with Accuracy 
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Figure A1-2: Decision Tree for Feature Selection with Accuracy 
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Figure A1-3:  Decision Tree for Feature Selection with Misclassification Cost 
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Figure A1-4: Decision Tree for Feature Selection with Misclassification Cost  
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A2.   Cost-Sensitive Meta-knowledge Decision Trees  
 

 

 

 

Figure A2-1: Decision Tree for Cost Sensitive Methods with Accuracy  

 

 

classEntropy
noOfInstances

<=0.9

Classifier 

<=214

85-90

NN

MNN

Sampling 

<=1.5 >1.5

MinExpectedCost

CostRatio
Bagging

85-90

>2

85-90

NB

80-85 Part

70-75

zeroR

85-90

oneR

costRatio

MNB

85-90

<=1.3

costRatio

>1.3

80-85

<=3

75-80

>3

WrraperType

costRatio

85-90 80-85

85-90
<=2

80-85

WrapperType
MPart

costRatio

Sampling

85-90

<=1.3

75-80

>1.3 85-90

minExpectedCost

costRatio

Bagging

85-90

<=0.3

80-85

>0.3

MOneR costRatio

WrapperType

>1.3

70-75

<=1.3

>95

Bagging

85-90

MinExpectedCost

costRatio

70-75

<=2

80-85

>2

MZeroR

60-65



 

 

155 

 

 

classEntropy
classsKew

>0.9

ExampleRatio
<=0.4

<=0.6

noOfAttribute

classifier

noOfAttribute

MoneR

MNN

costRatio

>14

90-95

<=1

WrapperType

>1

costRatio

Sampling

90-95
Bagging

minExpectedCost

>95

>2

90-95

<=2

costRatio

90-95

<=1.5

>95

>1.5

>95

<=14

>95

>14

noOfClasses

<=14

75-80

>2

WrapperType

<=2

costRatio

sampling

60-65

minExpectedCost costRatio

Bagging

60-65

>2

65-70

<=2
<=0.25

80-85 50-55

>0.25

noOfAttribute

MZeroR

noOfClasses

<=14 >14

costRatio

<=40

>1.5

60-65

<=1.5

<=40

>2
costRatio

<=2

55-60

>0.75

<40

<=0.75

 

Figure A2-2: Decision Tree for Cost Sensitive Methods with Accuracy  
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Figure A2-3: Decision Tree for Cost Sensitive Methods with Accuracy  
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Figure A2-4: Decision Tree for Cost Sensitive Methods with Accuracy  
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Figure A2-5: Decision Tree for Cost Sensitive Methods with Accuracy  
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Figure A2-6: Decision Tree for Cost Sensitive Methods with Misclassification Cost  
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Figure A2-7: Decision Tree for Cost Sensitive Methods with Misclassification Cost  
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Figure A2-8: Decision Tree for Cost Sensitive Methods with Misclassification Cost 
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Appendix B  Meta-Learning Cost-Senstive and Active Learning 

design 
 

This appendix presents the details design for both meta-learning system and active learning 

based on clustering approach, the design includes class diagrams which includes the 

collection of classes that contribute in the system, their relations and each system scenario 

that shows how each part of the system is developed and used. 

B1. Cost- Sensitive Meta-knowledge System Design  
 

The first step in structuring the system is to model the system domain in terms of a 

collection of classes and the relationships between them. These classes are conceptual 

classes, which includes modeling the main elements that contributes in building the 

system and the relation between them, the relation between those elements represent 

connection that are important in building the system, the aim of this section is to 

develop class diagrams that show the main elements that lead to full system 

development, this section is divided into two parts: 

 Feature selection meta-knowledge that recommends feature selection method.  

 Cost sensitive meta-knowledge development which recommends cost sensitive 

method. 

 

 Feature Selection Meta-Knowledge Development 

 

This part of the system takes a data set and recommends feature selection method with 

the learner that will produce a best choice highest accuracy and minimum cost. 
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Following is the main classes that contribute in reaching this aim with each class 

attributes and associations, class diagram of Feature selection recommender shown in 

Figure B1-1. 

 

 

 

Figure B1-1: Feature Selection Meta-Knowledge Development Class Diagram  

 

            Instances class  

 Instances refer to the input, or the example that will be learned , each dataset is 

charaterized by the values of a set of predetermenined attributes,  An Instances 

class is dealing with instances that is in our case a dataset that will be examined, 

this class is available in Weka.Core package and connects with Instance class 

where  number of Instance object will create Instances object, and it connects 

with Attribute class that records each instance characteristics as shown in Fig  

B1-2  . 

           DataChar class 

This class is responsible for developing different dataset characterization which 

includes some simple, mathematical and statistical data characters  for Instances class 
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objects,  following is a class diagram showing the classes, relations that connect each 

class elements in DataChar class (Figure B1-2) 

 

 

 

             Figure B1-2:  DataChar Class Diagram 

 

           Following is a detailed desription for each class contributes in this process 

FeatureSelection class 

 

This class is resposible for applying diffrent feature selection methods and search 

stategies that is used to remove the features that are irrelevent or reduncdent after 

evluating thier effects on the learning process using feature selection wrapper 

methods, or by finding thier correlation with each others using featue selection 

filter methods, following show feature selections methods which are defind in 

FeatureSelection class that uses AttributeSelection weka class, FeatureSelection 

class uses five diffrent AttributeSelection methods and four search satratigies, 

each Featureselection object is resposible to record a feature selection name, 

type from AttributeSelection class and search strategy used from 

AttributeSelectedClassifier class, see Figure B1-3. 
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  Figure B1-3:  FeatureSelection Class Diagram 

 

 

BaseLearner class  

Baselearner class is responsible for recording information about the classifiers 

applied to the given dataset in base learning stage, six diffrent classifiers are 

applied to the given dataset using Classifiers class from Weka.Classifier 

package using buildClassifier method, the nameOfClassifier is recorded in 

BaseLearner class, then its accuracy and cost are calculated in BaseLearner 

class using values returned from Evaluation class as shown in the diagram  

Figure B1-4, a full detailes of every tasks and how could be achieved will be 

desribed below in dynamic diagrams development. 
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Figure B1-4: BaseLearner Class Diagram 

 

Combination class  

This class is resposible for recording all information from all previous processes 

including data charaters, the result of applying feature selections methods, and 

the result of applying diffrent base learner classifiers with thier performance, all 

those information are linked togother to create combination object, that will be 

linked to metaLearner object via apply, see Figure B1-5. 
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Figure B1-5 : Combination Class Diagram 

 

MetaLearner class  

Metalearner class is responsible for recoding information about the classifier 

applied in meta learning level, J48 is used as meta learner to develop a decision 

tree that will be used in creating rules used in meta knowedlge development, 

MetaLearner class stores information about the decision tree results from 

applying J48 on the combination of all previous processes, the result of applying 

a J48 can be returned using result method and the combination can be returned 

using getCombination method that returns combination object from 

Combination class see Figure B1-6. 
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Figure B1-6: Combination Class Diagram 

 

Metaknowledge class  

This class is responsible for developing meta knowledge as rules from the 

desision tree result from MetaLearner class see Figure B1-7. 

 

              Figure B1-7: Met-knowledge Class Diagram 
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 Cost sensitive Meta-Knowledge Development 

 

This part of the system takes a dataset and recommend a learner that will produce best cost 

sensitive method, this is done by using cost sensitive wrapper methods as individual phase to 

convert cost insensitive learner to cost sensitive learner, following is the main classes that 

contribute in reaching this aim with each class attributes and methods as shown in Figure B1-

8. 

 

 

 

Figure B1-8: Cost Sensitive Meta-Knowledge Development 

 

Wrapper class  

This class is resposible for adding individual wrapper phase to convert cost insensitive 

learners to cost sensitive learner, this will be done using three diffrent wrapper approches 

sampling and minmum expected cost taken from weka costSensitiveClassifer class and 

one bagging from MetaCost class see Figure B1-9. 
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Figure B1-9: Wrapper Class Diagram 

 

 

The Use Cases:  

In this section, use cases that will be implemented will be shown, to decide what is required 

to implement the system; each task the system has to perform is investigated, breaking down 

what is required into separate steps within the core system. This section is divided into two 

sections: section one describes all steps in developing feature selection meta-knowledge 

development; section two describes all stapes in developing cost sensitive meta-knowledge 

development. 
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Feature Selection Meta-knowledge Development 

 

The aim of this section is to show each individual task to develop a working scenario and 

how each object interact to demonstarte those working scenario. 

 Feature selection meta-knowledge development scenario 

In this scenario, large number of dataset are used to generate a meta-knowledge that 

recommend feature selection with classifier that maximize accuracy and minmize cost,  

each given dataset is characterized, then diffrent feature selection methods with diffrent 

stategies are applied on a given dataset in a base learning level, then all previous result is 

fed to meta learner in meta learning base to develop a set of rules that created the needed 

meta knowledge, this scenario with its use cases are shown in Figure B1-10. 

 

 

              Figure B1-10: Feature Selection Meta-knowledge Development Use Case 
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 Predict feature selection plan and classifier with its performance for a given 

dataset scenario.  

The user inputs a dataset, the system  generates  meta-features for a given dataset, 

after meta-features are generated, the system predicts the performance of 

applying specific classifier and specific feature selection method on a given 

dataset. Figure B1-11 shows predict feature selection plan and performance for 

given dataset. 

 

   

Figure B1-11: Predict feature selection with classifier with its performance for given 

dataset 

 

 Predict feature selection plan and classifier performance for a given dataset and 

given cost file.  

 

The user will input a dataset, and a cost file, the system will generate  meta-features 

for a given dataset, after meta-features are generated, the system will predict the 

performance of applying specific classifier on a give dataset after applying a specific 

feature selection method see Figure B1-12. 
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Figure B1-12: Predict feature selection and classifier with its performance for given 

dataset and given cost file 

 

 

 Predict feature selection plan and classifier performance for a given dataset and 

given classifier  

          The user inputs a dataset and the classifier name, the system  generates  

metafeatures for a given dataset, after meta-features are generated, the system 

predicts the performance of applying given classifier on a given dataset with 

feature selection method. 

Figure B1-13 shows predict feature selection method and performance for given 

dataset and given classifier.  
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Figure B1-13: Predict feature selection and classifier performance for given dataset and 

given classifier 

 

 Predict feature selection method and classifier performance for a given dataset, 

given classifier and given cost file.  

The user will input a dataset, chooses a classifier name, and input a cost file, the 

system will generate meta-features for a given dataset, after meta-features are 

generated, the system will predict the performance of applying specific classifier on 

a give dataset after applying a specific feature selection plan for a given cost file, see 

Figure B1-14. 
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Figure 2B1-14: Predict feature selection and classifier performance a given dataset and 

given cost file, and given classifier  

 

 

Cost Sensitive Meta-knowledge Development 

 

The aim of this section is to show each individual task to develop a working scenario for cost 

senstive meta knowdelge development and how each object interacts to demonostrate those 

working scenario: 

 Cost sensitive meta knowledge development scenario 

In this scenario, large number of dataset are used to generate a meta-knowledge that 

recommend cost senstive with classifier that maximize accuracy and minmize cost, each 

given dataset is characterized, then diffrent cost senstive methods with diffrent wrapper 

methods are applied to convert cost insenstive base learners to cost senstive, then all 

previous result is fed to meta learner in meta learning base to develop a set of rules that 

used to create the needed meta knowledge, this scenario with its use cases are shown in 

Figure B1-15. 
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            Figure B1-15: Cost Sensitive Meta-Knowledge Development Scenario 

 

 Predict cost senstive method and classifier performance for a given dataset and 

given cost ratio scenario.  

The user inputs a dataset, the system  generates  meta-features for a given dataset, 

after meta-features are generated, the system predicts the performance of 

applying specific classifier and specific cost senstive plan on a given dataset with 

the selected cost ratio. 

Figure B1-16 shows predict cost sensitive plan and performance for given dataset 

and given costRatio.  

 



 

 

177 

 

 

 

Figure B1-16: Predict cost sensitive plan and performance for given dataset and given 

costRatio 

 

 

 Predict classifier performance for a given dataset, given cost ratio, given classifier, 

and  given wrapper cost sensitive wrapper method. 

 

The user will input a dataset, the system will generate meta-features for a given 

dataset, after meta-features are generated, the system will predict the performance of 

applying specific classifier after adding given wrapper cost senstive method with 

given cost ratio, see Figure B1-17. 
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Figure B1-17: Predict classifier performance for a given dataset, given cost ratio, given 

classifier, and given wrapper cost sensitive wrapper method 

 

 Predict cost senstive method and classifier performance for a given dataset and 

given cost file scenario.  

The user inputs a dataset, the system  generates  meta-features for a given dataset, 

after meta-features are generated, the system predicts the performance of 

applying specific classifier and specific cost senstive plan on a given dataset with 

the given cost file. 

Figure B1-18 shows predict cost sensitive plan and performance for given dataset 

and given cost file. 
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Figure B1-18: Predict cost sensitive plan and performance for given dataset and given 

cost file 
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B2.   Active Learning Based on Clustering  

 
The aim of this part of the system is seek more informative data that is selected using 

active learning based on clustering algorithim, following is class diagram for this part of 

the system that shows the main classes, thier links and mutiplicies.  

Class Model  

 

The first step in structuring this part of the system is to model the system domain in terms of 

a collection of classes and the relationships between them. 

 Following is the main classes that contribute in reaching this aim with each class attributes 

and associations, shown in B2-1. 

 

 

Figure B2-1: Active Learning based on Clustering Class Diagram 
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Appendix C  System Implementation 
 

As described before, this research develops a cost sensitive meta-learning system that aims to 

recommend the cost sensitive and insensitive methods that best suit a specific problem. The 

system has been implemented using java programming language. In particular, the JDK (Java 

development Kit (version 8) and eclipse (version 4.4) open source java environment language 

is used. For Data mining algorithms, there are many tools available for data mining and 

machine learning, but this thesis is built over the open source software suite WEKA (version 

3.6) which stands for Waikato Environment for Knowledge Analysis. The main reason why I 

selected to use WEKA is its popularity, ease of use, and availability. WEKA is a popular tool 

used for data analysis, machine learning and predictive modelling that was developed by the 

University of Waikato in New Zealand using the programming language JAVA (Hall et al., 

2009). WEKA is a big workbench for data analysis and machine learning which has a 

majority of the most needed algorithms that (are) ready to be used in the developed system. 

The following are some of the WEKA features that have been used in the developed cost 

sensitive system and ALBC algorithm: 

Data pre-processing: WEKA supports a couple of popular text file formats such as CSV, 

and ARFF. This feature facilities a wide collection of supervised and unsupervised filters to 

convert each dataset to the format applicable in the algorithms which needs to be applied 

such as: Discretization, AttributeSelection,NominalToBinary.    

 Data clustering: Includes a wide range of algorithms for clustering such as SimplekMeans, 

EM, and CobWeb. EM (Expectation Maximization) is used in developing ALBC algorithm 

which assigns a probability distribution to each instance that indicates the probability of its 

membership to each cluster (Hall et al., 2009). The main benefit of using EM is its ability to 

decide on the number of the clusters by using a cross validation technique. Furthermore, it 

may give users the option to specify a priori the number of clusters to generate. 

Classification: WEKA supports a huge collection of algorithms that have been implemented 

to perform classification on different types of datasets. These include Bayesian algorithms 

such as Naïve Bayes, mathematical functions such as Neural Network, lazy classifiers 
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implementing nearest-neighbour such as K-NN, rule and tree-based classifiers such as J48, 

rule based algorithms such as OneR, Part and ZeroR. 

 

Attribute selection: Methods to evaluate which attribute will perform best when predicting 

the classifier model. Those contain filter and wrapper methods such as CfsSubSetEval, 

GainRatioSubSetEval, InfoGainAttributeEval, OneAttributeEval, and WrapperSubSetEval  

And search strategies to find the minimum attribute subsets that contribute more in the 

predictive power such as BestFirst, Ranker, and GreedyStepWise. 

The user interface for the implemented application has been developed by using java web-

based technology using Apache tomcat 7. Tomcat includes web applications which are the 

most popular HTTP server for running Java applications. The most benefit of using Apache 

tomcat is flexibility. For example, it is possible to run Apache on one physical server, and run 

the actual JSP and servlets on another machine. 

The interface of the developed application for the system can provide a good interaction 

between the user and the system itself. The following options are available for cost sensitive 

meta-learning system: 

 To choose either to work with cost sensitive learning or to work with cost in-

sensitive learning. Cost sensitive learning includes cost sensitive without any 

wrapper method, bagging, sampling, and minimum expected cost, while cost in-

sensitive includes working with the classifiers without any cost sensitive methods. 

 To choose to work with a specific classifier (J48, NN, Naïve Bayes, Part, ZeroR, 

and OneR).  

 To choose to work with a specific wrapper method (None, bagging, sampling, 

and minimum expected cost). 

 To upload the data file. 

 To upload the cost file. 

 To choose a specific cost ratio. 

 To choose a system define classifier  

 To choose a system define wrapper methods  
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Figure C1-1 shows a snapshot for cost sensitive meta-learning user interface 

 

 

Figure C-1: Cost sensitive Meta learning user interface 

  

Two CDs are provided with this thesis one contains cost sensitive meta-learning system 

provided with friendly user interface, and the other contains the application of developed 

ALBC algorithm. 

 


