1,000 research outputs found

    Smart grids concept in electrical distribution system

    Get PDF
    This paper defines key business processes in electrical distribution systems and key elements and priority components that should be (re)defined in these processes in order to enable the goals of smart grids concept to be fulfilled in the cost effective way. Activities undertaken in the Power Distribution Company of “Elektrovojvodina” (Serbia), which provide the basis for fulfilling the Smart Grids goals and thus enable full implementation of smart grids concept are presented in details

    COMMUNICATION IN SMART GRIDS USING LTE

    Get PDF
    The world today is focusing on the enhancement of efficient use of energy and it has compelled the energy industry to research and seek for measures for increasing energy efficiency. Out of various fields related to energy, Smart Grid has emerged itself as one of the effective contributor to fulfill the approach of efficient use of energy. The term smart grid has been evolved from power grid where the energy is generated, distributed and finally consumed by a consumer. The smart form of this power grid is actually smart grid which facilitates smart way of communication of smart devices between grids, so that the effective mode of controlling and monitoring can be achieved. In order to achieve this, the devices should be smart enough so that they can be interoperable and remotely accessed. For the smart devices to communicate in real time so that controlling and remote access becomes possible, it demands an advanced communicating medium. LTE is one of the most challenging, famous and widely adopted communication technology that meets the requirement imposed by broadband wireless mobile communications. Early tests, evaluations and their pre-commercial deployments have proved that they fulfil all the requirements like high-data-rate, low latency and optimized system that advanced communication demands. Thus, this paper focuses on the evaluation of integration of LTE in Smart Grids so that automation in Smart Grids can be achieved.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A review of architectures and concepts for intelligence in future electric energy system

    Get PDF
    Renewable energy sources are one key enabler to decrease greenhouse gas emissions and to cope with the anthropogenic climate change. Their intermittent behavior and limited storage capabilities present a new challenge to power system operators to maintain power quality and reliability. Additional technical complexity arises from the large number of small distributed generation units and their allocation within the power system. Market liberalization and changing regulatory framework lead to additional organizational complexity. As a result, the design and operation of the future electric energy system have to be redefined. Sophisticated information and communication architectures, automation concepts, and control approaches are necessary in order to manage the higher complexity of so-called smart grids. This paper provides an overview of the state of the art and recent developments enabling higher intelligence in future smart grids. The integration of renewable sources and storage systems into the power grids is analyzed. Energy management and demand response methods and important automation paradigms and domain standards are also reviewed.info:eu-repo/semantics/publishedVersio

    Detection and prevention of Denial-of-Service in cloud-based smart grid

    Get PDF
    Smart Grid (SG), components with historical set of security challenges, becomes more vulnerable because Information and Communications Technology (ICT) has its own share of problems while Cloud infrastructure adds yet another unpredicted layer of threats. Scalability and availability, which are strong aspects of the cloud platform making it attractive to users, also attracts security threats for the same reasons. The malware installed on single host offers very limited scope compared to attack magnitude that compromised Cloud platform can offer. Therefore, the strongest aspect of Cloud itself becomes a nightmare in Cloud-Based SG. A breach in such a delicate system can cause severe consequences including interruption of electricity, equipment damage, data breach, complete blackouts, or even life-threatening consequences. We mimic Denial-of-Service (DoS) attacks to demonstrate interruption of electricity in SG with open-source solution to co-simulate power and communication systems

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd

    Development of a Remotely Accessible Wireless Testbed for Performance Evaluation of AMI Related Protocols

    Get PDF
    Although smart meters are deployed in many countries, the data collection process from smart meters in Smart Grid (SG) still has some challenges related to consumer privacy that needs to be addressed. Referred to as Advanced Metering Infrastructure (AMI), the data collected and transmitted through the AMI can leak sensitive information about the consumers if it is sent as a plaintext. While many solutions have been proposed in the past, the deployment of these solutions in real-life was not possible since the actual AMIs were not accessible to researchers. Therefore, a lot of solutions relied on simulations which may not be able to capture the real performance of these solutions. In this thesis, two 802.11s wireless mesh-based SG AMI network testbeds are developed with Beaglebone Black and Raspberry Pi 3 boards to provide a baseline for the simulations. The Raspberry Pi 3 testbed is also configured to be remotely accessible

    Data management and use: case studies of technologies and governance

    Get PDF
    corecore