137,806 research outputs found

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    The phonetics of second language learning and bilingualism

    Get PDF
    This chapter provides an overview of major theories and findings in the field of second language (L2) phonetics and phonology. Four main conceptual frameworks are discussed and compared: the Perceptual Assimilation Model-L2, the Native Language Magnet Theory, the Automatic Selection Perception Model, and the Speech Learning Model. These frameworks differ in terms of their empirical focus, including the type of learner (e.g., beginner vs. advanced) and target modality (e.g., perception vs. production), and in terms of their theoretical assumptions, such as the basic unit or window of analysis that is relevant (e.g., articulatory gestures, position-specific allophones). Despite the divergences among these theories, three recurring themes emerge from the literature reviewed. First, the learning of a target L2 structure (segment, prosodic pattern, etc.) is influenced by phonetic and/or phonological similarity to structures in the native language (L1). In particular, L1-L2 similarity exists at multiple levels and does not necessarily benefit L2 outcomes. Second, the role played by certain factors, such as acoustic phonetic similarity between close L1 and L2 sounds, changes over the course of learning, such that advanced learners may differ from novice learners with respect to the effect of a specific variable on observed L2 behavior. Third, the connection between L2 perception and production (insofar as the two are hypothesized to be linked) differs significantly from the perception-production links observed in L1 acquisition. In service of elucidating the predictive differences among these theories, this contribution discusses studies that have investigated L2 perception and/or production primarily at a segmental level. In addition to summarizing the areas in which there is broad consensus, the chapter points out a number of questions which remain a source of debate in the field today.https://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHAccepted manuscriptAccepted manuscrip

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future
    corecore