82 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Design and Hardware Implementation Considerations of Modified Multilevel Cascaded H-Bridge Inverter for Photovoltaic System

    Get PDF
    Inverters are an essential part in many applications including photovoltaic generation. With the increasing penetration of renewable energy sources, the drive for efficient inverters is gaining more and more momentum. In this paper, output power quality, power loss, implementation complexity, cost, and relative advantages of the popular cascaded multilevel H-bridge inverter and a modified version of it are explored. An optimal number of levels and the optimal switching frequency for such inverters are investigated, and a five-level architecture is chosen considering the trade-offs. This inverter is driven by level shifted in-phase disposition pulse width modulation technique to reduce harmonics, which is chosen through deliberate testing of other advanced disposition pulse width modulation techniques. To reduce the harmonics further, the application of filters is investigated, and an LC filter is applied which provided appreciable results. This system is tested in MATLAB/Simulink and then implemented in hardware after design and testing in Proteus ISIS. The general cascaded multilevel H-bridge inverter design is also implemented in hardware to demonstrate a novel low-cost MOSFET driver build for this study. The hardware setups use MOSFETs as switching devices and low-cost ATmega microcontrollers for generating the switching pulses via level shifted in-phase disposition pulse width modulation. This implementation substantiated the effectiveness of the proposed design

    Comparative Detailed Analysis of a 7-Level Cascaded H-Bridge Inverter in Symmetric and Asymmetric Configurations

    Get PDF
    This paper discusses the advantages of asymmetric multilevel inverters over traditional inverters and presents a comparative analysis between symmetric and asymmetric cascaded H-bridge multilevel topologies. The use of multilevel inverters is gaining importance in sectors such as electric transportation and renewable energy integration due to their ability to generate high-quality waveforms with lower harmonic content. However, the cost associated with multilevel inverters is a challenge due to the large number of required components. The paper focuses on a single-phase 7-level binary asymmetrical Cascaded H-Bridge Multilevel Inverter (CHBMIs) and compares its performance with the symmetrical counterpart in terms of both harmonic content and total harmonic distortion. In addition, the percentage of power absorbed by both bridges of the asymmetric converter is also analyzed. The results presented in this work show demonstrate the effectiveness of the proposed asymmetrical converter

    A New Topology of Cross-Switched Multilevel Inverter

    Get PDF
    This study proposed a Multilevel Inverter (MLI) topology that generates a high number of output voltage levels with a reduced number of components. The proposed topology was configured with symmetrical, asymmetrical, and hybrid configurations. Each configuration generates a different level of output voltage. In parallel to the increased output level, the output voltage has a better output quality (i.e., a lower percentage of total harmonic distortion), simple design and less demanding operation

    Mitigation of power quality issues due to high penetration of renewable energy sources in electric grid systems using three-phase APF/STATCOM technologies: a review.

    Get PDF
    This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM) and active power filter (APF) inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM) and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519

    A Five Level Modified Cascaded H-Bridge Inverter STATCOM for Power Quality Improvement

    Get PDF
    Multilevel converters have received serious attention on account of their capability of high voltage operation, high efficiency, and low electromagnetic interference. It has many advantages compared to conventional two-level inverters such as high dc-link voltages, reduced harmonic distortion, fewer voltage stresses, and low electromagnetic interferences. The multilevel converters have been used for STATCOM widely as it can improve the power rating of the compensator to make it suitable for medium or high-voltage high power applications. While deploying multilevel STATCOMs, designer’s role is to reduce the number of switching devices since, the total switching losses are proportional to the number of switching devices. The reduction in the count of switching devices also reduces the size and cost. In this paper, a five-level modified cascaded H-bridge inverter STATCOM is proposed for mitigation of harmonics. Modified Five-level CHB configuration is the most suitable as with lesser number of switches, give better performance resulting in a compact system. The PQ theory-based controller is developed for control of STATCOM operation. MATLAB simulation results are presented to demonstrate mitigation of harmonics

    Online Control of Modular Active Power Line Conditioner to Improve Performance of Smart Grid

    Get PDF
    This thesis is explored the detrimental effects of nonlinear loads in distribution systems and investigated the performances of shunt FACTS devices to overcome these problems with the following main contribution: APLC is an advanced shunt active filter which can mitigate the fundamental voltage harmonic of entire network and limit the THDv and individual harmonic distortion of the entire network below 5% and 3%, respectively, as recommended by most standards such as the IEEE-519

    Comprehensive STATCOM Control For Distribution And Transmission System Applications

    Get PDF
    This thesis presents the development of a comprehensive STATCOM controller for load compensation, voltage regulation and voltage balancing in electric power distribution and transmission networks. The behavior of this controller is first validated with published results. Subsequently, the performance of this STATCOM controller is examined in a realistic Hydro One distribution feeder for accomplishing the compensation of both mildly and grossly unbalanced loads, and balancing of network voltages using PSCAD/EMTDC software. The STATCOM voltage control function is utilized for increasing the connectivity of wind plants in the same distribution feeder. The thesis further presents a frequency scanning technique for simple and rapid identification of the potential of subsynchronous resonance in induction generator based wind farms connected to series compensated lines, utilizing MATLAB software. This technique is validated by published eigenvalue analysis results. The voltage control performance of the developed comprehensive STATCOM controller is then demonstrated for different scenarios in the modified IEEE First SSR Benchmark transmission system for mitigating subsynchronous resonance in series compensated wind farms using industry grade PSCAD/EMTDC software

    Investigation on Cascade Multilevel inverter for Medium and High-Power Applications

    Get PDF
    It is hard to connect a single power semiconductor switch directly to medium voltage grids (2.3, 3.3, 4.16, or 6.9 kV). For these reasons, a new family of multilevel inverters has emerged as the solution for working with higher voltage levels. Multilevel inverters have received more attention in industrial application, such as motor drives, static VAR compensators and renewable energy systems, etc. Primarily multilevel inverters are known to have output voltages with more than two levels. As a result, the inverter output voltages have reduced harmonic distortions and high quality of waveforms. Additionally, the devices are confined to fraction of dc-link voltage. These characteristics make multilevel inverter to adopt for high-power and high-voltage applications. A good number of multilevel inverter topologies have been proposed during the last two decades. Contemporary research has engaged novel converter topologies and unique modulation schemes. Moreover, four major multilevel inverter structures have been reported in the literature these are as follows: cascaded H-bridges inverter (CHB) with separate dc sources, diode clamped (neutral-clamped), and flying capacitors (capacitor clamped), P2 Multilevel inverters. Although different multilevel inverter exists, Cascade Multilevel Inverter (CMI) is one of the productive topology from multilevel family. In reality, on comparing with other multilevel based topologies, CMI feature a high modularity degree because each inverter can be seen as a module with similar circuit topology, control structure, and modulation. Therefore, in the case of a fault in one of these modules, it is possible to replace it quickly and easily. Moreover, with an appropriated control strategy, it is possible to bypass the faulty module without stopping the load, bringing an almost continuous overall availability. All this features make CMI an outstanding power converter. However, one of the greatest limitations of CMI is utilization of separate DC source for each H-Bridge cell. This not only increases cost but also affects the reliability of the system. This is the key motivation for this dissertation. In the present work, we have investigated different CMI based topologies with separate and single DC sources and finally proposed a new CMI based configuration with single dc source by using three-phase transformers. The proposed CMI based inverter presented in this thesis is well defined with logical and mathematical approach. Additionally to illustrate the merits, it is compared with traditional multilevel inverters. The feasibility of proposed inverter is demonstrated with different illustrations and confirmed by experimental results. The proposed CMI is well suited for grid / photovoltaic and FACTS systems. To elevate the application of proposed CMI a shunt active power filter (APF) design is demonstrated. In this case, the goal is to inject, in parallel with the load, compensation current to get a sinusoidal source current. The proposed APF is verified through Matlabsimulation. Finally, Opal-RT verifications are performed to verify the final design
    corecore