47 research outputs found

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    Constrained optimization in simulation: a novel approach.

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation modeling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Kriging metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outperforms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Constrained Optimization in Simulation: A Novel Approach

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation mod- eling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Krig- ing metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outper- forms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Online Appendix for “Gradient-Based Myopic Allocation Policy: An Efficient Sampling Procedure in a Low-Confidence Scenario”

    Get PDF
    This is the online appendix, which includes theoretical and numerical supplements containing some technical details and three additional numerical examples, which could not fit in the main body due to page limits by the journal for a technical note. The abstract for the main body is as follows: In this note, we study a simulation optimization problem of selecting the alternative with the best performance from a finite set, or a so-called ranking and selection problem, in a special low-confidence scenario. The most popular sampling allocation procedures in ranking and selection do not perform well in this scenario, because they all ignore certain induced correlations that significantly affect the probability of correct selection in this scenario. We propose a gradient-based myopic allocation policy (G-MAP) that takes the induced correlations into account, reflecting a trade-off between the induced correlation and the two factors (mean-variance) found in the optimal computing budget allocation formula. Numerical experiments substantiate the efficiency of the new procedure in the low-confidence scenario.This work was supported in part by the National Science Foundation (NSF) under Grants CMMI-0856256, CMMI- 1362303, CMMI-1434419, by the National Natural Science Foundation of China (NSFC) under Grants 71571048, by the Air Force of Scientific Research (AFOSR) under Grant FA9550-15-10050, and by the Science and Technology Agency of Sichuan Province under Grant 2014GZX0002

    Bayesian simulation optimization with input uncertainty

    Get PDF
    We consider simulation optimization in the presence of input uncertainty. In particular, we assume that the input distribution can be described by some continuous parameters, and that we have some prior knowledge defining the probability distribution for these parameters. We then seek the simulation design that has the best expected performance over the possible parameters of the input distributions. Assuming correlation of performance between solutions and also between input distributions, we propose modifications of two well-known simulation optimization algorithms, Efficient Global Optimization and Knowledge Gradient with Continuous Parameters, so that they work efficiently under input uncertainty
    corecore